Detection of Hepatitis B Virus M204I Mutation by Quantum Dot-Labeled DNA Probe
<p>The mechanism of QDs-based fluorescent method for detection of HBV DNA. (<b>a</b>) The amino fixed probe was immobilized on a slide; (<b>b</b>) The added amplified HBV DNA can hybridize to the amino fixed probe and the biotin-labeled DNA is used to hybridize to the other side of the amplified HBV DNA; and (<b>c</b>) The streptavidin-labeled quantum dots combine with the HBV DNA of the patient to form quantum dot-DNA complexes through the reaction of biotin and streptavidin.</p> "> Figure 2
<p>The complementarity of amplified DNA, capture and reporter probes. The mutation site was marked in red color. Amplified DNA: 3′-ATTTTTCCCTGAGTTCTACGACATGTCTGAACCGGGGGTTATGGTGATAATCCATATAACTGA-5′. Capture probe: NH<sub>2</sub>-5′TTTTTTTTTTTAAAAAGGGACTCAAGATGCTGTACAGACTTGGCC-3′. Reporter probe: 5′-TATTAGGTATATTGACTTTTTTTTTTT-3′-biotin.</p> "> Figure 3
<p>The result of QDs-based fluorescent method for detection of HBV DNA. (<b>a</b>) HBV DNA is 10<sup>6</sup> IU/mL with M204I mutation; (<b>b</b>) HBV DNA is 10<sup>5</sup> IU/mL with M204I mutation; (<b>c</b>) HBV DNA is 10<sup>4</sup> IU/mL with M204I mutation; (<b>d</b>) HBV DNA is 10<sup>3</sup> IU/mL with M204I mutation; (<b>e</b>) HBV DNA is 10<sup>2</sup> IU/mL with M204I mutation; (<b>f</b>) HBV DNA is 10<sup>1</sup> IU/mL with M204I mutation; (<b>g</b>) HBV DNA is 10<sup>6</sup> IU/mL without M204I mutation; (<b>h</b>) HBV DNA is 10<sup>6</sup> IU/m with M204I mutation, but without streptavidin-QDs; and (<b>i</b>) ultra-pure water.</p> "> Figure 4
<p>The results of DNA samples from patients with poor response were verified by direct sequencing. The DNA samples of (<b>a</b>–<b>c</b>) were extracted using the magnetic nanobeads method from the serums of patients with poor response to the nucleoside(s) treatment, and detected by the QDs-mediated fluorescent method. The results suggest that they contain the M204I mutation. The amplified products of the above three serum samples were also detected by direct sequencing, suggesting a G to A mutation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Chemical Reagents and Instruments
2.3. Experimental Setup for the Detection System
2.3.1. HBV DNA Extraction
- The 100 μL serum samples were added into a new centrifuge tube, and then mixed with 400 μL of the lysis solution for 10 min at 70 °C.
- To this, 300 μL of the binding solution and 20 μL of the magnetic nanobeads were added into the centrifuge tube in turn, and the mixture was left to stand for 5 min.
- This was then washed with washing buffer I/II/III, respectively, and the supernatant was discarded after short-term centrifugation.
- Subsequently, 30 μL of the elution was added to the centrifuge tube and mixed for 10 min at 70 °C. The DNA adsorbed on the surface of magnetic nanobeads was eluted, and the supernatant was transferred to another centrifuge tube with RNase-free for the PCR amplification.
- The amplification was achieved for 35 cycles at 95 °C for 5 min, 95 °C for 5 s, 57 °C for 1 min, and 72 °C for 1 s.
2.3.2. QDs-Mediated Fluorescent Method for the Detection of HBV M204I Mutation
3. Results and Discussion
3.1. Mechanism of QDs-Based Fluorescent Method for HBV DNA Detection
3.2. Sensitivity of QDs-Based Fluorescent Method for HBV DNA Detection
3.3. Further Verification of the Accuracy of Quantum Dot Probe Hybridization Method for Detecting HBV Drug-Resistanct Sites
3.4. Real Samples Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liang, X.; Bi, S.; Yang, W.; Wang, L.; Cui, G.; Cui, F.; Zhang, Y.; Liu, J.; Gong, X.; Chen, Y.; et al. Reprint of: Epidemiological serosurvey of Hepatitis B in China--declining HBV prevalence due to Hepatitis B vaccination. Vaccine 2013, 31, J21–J28. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Bi, S.; Yang, W.; Wang, L.; Cui, G.; Cui, F.; Zhang, Y.; Liu, J.; Gong, X.; Chen, Y.; et al. Epidemiological serosurvey of hepatitis B in China--declining HBV prevalence due to hepatitis B vaccination. Vaccine 2009, 27, 6550–6557. [Google Scholar] [CrossRef] [PubMed]
- Xing, T.; Xu, H.; Cao, L.; Ye, M. HBeAg Seroconversion in HBeAg-Positive Chronic Hepatitis B Patients Receiving Long-Term Nucleos(t)ide Analog Treatment: A Systematic Review and Network Meta-Analysis. PLoS ONE 2017, 12, e0169444. [Google Scholar] [CrossRef] [PubMed]
- Yuen, M.F.; Ahn, S.H.; Chen, D.S.; Chen, P.J.; Dusheiko, G.M.; Hou, J.L.; Maddrey, W.C.; Mizokami, M.; Seto, W.K.; Zoulim, F.; et al. Chronic Hepatitis B Virus Infection: Disease Revisit and Management Recommendations. J. Clin. Gastroenterol. 2016, 50, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Meng, T.; Shi, X.; Gong, X.; Deng, H.; Huang, Y.; Shan, X.; Shan, Y.; Huang, A.; Long, Q. Analysis of the prevalence of drug-resistant hepatitis B virus in patients with antiviral therapy failure in a Chinese tertiary referral liver centre (2010–2014). J. Glob. Antimicrob. Resist. 2016, 8, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Lok, A.S.; Trinh, H.; Carosi, G.; Akarca, U.S.; Gadano, A.; Habersetzer, F.; Sievert, W.; Wong, D.; Lovegren, M.; Cohen, D.; et al. Efficacy of entecavir with or without tenofovir disoproxil fumarate for nucleos(t)ide-naïve patients with chronic hepatitis B. Gastroenterology 2012, 143, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Degertekin, B.; Hussain, M.; Tan, J.; Oberhelman, K.; Lok, A.S. Sensitivity and accuracy of an updated line probe assay (HBV DR v.3) in detecting mutations associated with hepatitis B antiviral resistance. J. Hepatol. 2009, 50, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Sertoz, R.Y.; Erensoy, S.; Pas, S.; Ozacar, T.; Niesters, H. Restriction fragment length polymorphism analysis and direct sequencing for determination of HBV genotypes in a Turkish population. New Microbiol. 2008, 31, 189–194. [Google Scholar] [PubMed]
- Valsamakis, A. Molecular testing in the diagnosis and management of chronic hepatitis B. Clin. Microbiol. Rev. 2007, 20, 426–439. [Google Scholar] [CrossRef] [PubMed]
- Shaw, T.; Bartholomeusz, A.; Locarnini, S. HBV drug resistance: Mechanisms, detection and interpretation. J. Hepatol. 2006, 44, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Lok, A.S.; Zoulim, F.; Locarnini, S.; Bartholomeusz, A.; Ghany, M.G.; Pawlotsky, J.M.; Liaw, Y.F.; Mizokami, M.; Kuiken, C. Hepatitis B Virus Drug Resistance Working Group. Antiviral drug-resistant HBV: Standardization of nomenclature and assays and recommendations for management. Hepatology 2007, 46, 254–265. [Google Scholar] [CrossRef] [PubMed]
- Lupo, J.; Larrat, S.; Hilleret, M.N.; Germi, R.; Boyer, V.; Nicod, S.; Barguès, G.; Leroy, V.; Seigneurin, J.M.; Zarski, J.P.; et al. Assessment of selective real-time PCR for quantitation of lamivudine and adefovir hepatitis B virus-resistant strains and comparison with direct sequencing and line probe assays. J. Virol. Methods 2009, 156, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Lok, A.S.; Zoulim, F.; Locarnini, S.; Mangia, A.; Niro, G.; Decraemer, H.; Maertens, G.; Hulstaert, F.; De Vreese, K.; Sablon, E. Monitoring drug resistance in chronic hepatitis B virus (HBV)-infected patients during lamivudine therapy: Evaluation of performance of INNO-LiPA HBV DR assay. J. Clin. Microbiol. 2002, 40, 3729–3734. [Google Scholar] [CrossRef] [PubMed]
- Klemke, M.; Drieschner, N.; Belge, G.; Burchardt, K.; Junker, K.; Bullerdiek, J. Detection of PAX8–PPARG Fusion Transcripts in Archival Thyroid Carcinoma Samples by Conventional RT-PCR. Genes Chromosomes Cancer 2012, 51, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A. Real-time, fluorescence-based quantitative PCR: A snapshot of current procedures and preferences. Expert Rev. Mol. Diagn. 2005, 5, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Navarro, E.; Serrano-Heras, G.; Castaño, M.J.; Solera, J. Real-time PCR detection chemistry. Clin. Chim. Acta 2015, 439, 231–250. [Google Scholar] [CrossRef] [PubMed]
- Frickmann, H.; Zautner, A.E.; Moter, A.; Kikhney, J.; Hagen, R.M.; Stender, H.; Poppert, S. Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: A review. Crit. Rev. Microbiol. 2017, 43, 263–293. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.; Maghsoudlou, P. Enzyme-linked immunosorbent assay (ELISA): The basics. Br. J. Hosp. Med. 2016, 77, C98–C101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xu, T.; Li, C.W.; Yang, M. A microfluidic device with microbead array for sensitive virus detection and genotyping using quantum dots as fluorescence labels. Biosens. Bioelectron. 2010, 25, 2402–2407. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lou, X.; Wang, Y.; Guo, Q.; Fang, Z.; Zhong, X.; Mao, H.; Jin, Q.; Wu, L.; Zhao, H.; et al. QDs-DNA nanosensor for the detection of hepatitis B virus DNA and the single-base mutants. Biosens. Bioelectron. 2010, 25, 1934–1940. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Biondi, M.J.; Feld, J.J.; Chan, W.C. Clinical Validation of Quantum Dot Barcode Diagnostic Technology. ACS Nano 2016, 10, 4742–4753. [Google Scholar] [CrossRef] [PubMed]
- Gerion, D.; Parak, W.J.; Williams, S.C.; Zanchet, D.; Micheel, C.M.; Alivisatos, A.P. Sorting fluorescent nanocrystals with DNA. J. Am. Chem. Soc. 2002, 124, 7070–7074. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Qiu, H.; Xiao, Q.; Huang, C.; Su, W.; Hu, B. A Simple QD-FRET Bioprobe for Sensitive and Specific Detection of Hepatitis B Virus DNA. J. Fluoresc. 2013, 23, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Shamsipur, M.; Nasirian, V.; Mansouri, K.; Barati, A.; Veisi-Raygani, A.; Kashanian, S. A highly sensitive quantum dots-DNA nanobiosensor based on fluorescence resonance energy transfer for rapid detection of nanomolar amounts of human papillomavirus 18. J. Pharm. Biomed. Anal. 2017, 136, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Foubert, A.; Beloglazova, N.V.; Rajkovic, A.; Sas, B.; Madder, A.; Goryacheva, I.Y.; Saeger, S.D. Bioconjugation of quantum dots: Review & impact on future application. TrAC Trends Anal. Chem. 2016, 83, 31–48. [Google Scholar]
- Kuang, H.; Zhao, Y.; Ma, W.; Xu, L.; Wang, L.; Xu, C. Recent developments in analytical applications of quantum dots. Trends Anal. Chem. 2011, 30, 1620–1636. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, S.; Gao, D.; Hu, D.; Gong, P.; Sheng, Z.; Deng, J.; Ma, Y.; Cai, L. Click-functionalized compact quantum dots protected by multidentate-imidazole ligands: Conjugation-ready nanotags for living-virus labeling and imaging. J. Am. Chem. Soc. 2012, 134, 8388–8391. [Google Scholar] [CrossRef] [PubMed]
- Algar, W.R.; Tavares, A.J.; Krull, U.J. Beyond labels: A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal. Chim. Acta 2010, 673, 1–25. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Chen, Y.; Liang, X.; Zhang, G.; Ma, H.; Nie, L.; Wang, Y. Detection of Hepatitis B Virus M204I Mutation by Quantum Dot-Labeled DNA Probe. Sensors 2017, 17, 961. https://doi.org/10.3390/s17050961
Zhang C, Chen Y, Liang X, Zhang G, Ma H, Nie L, Wang Y. Detection of Hepatitis B Virus M204I Mutation by Quantum Dot-Labeled DNA Probe. Sensors. 2017; 17(5):961. https://doi.org/10.3390/s17050961
Chicago/Turabian StyleZhang, Cheng, Yiping Chen, Xinmiao Liang, Guanhua Zhang, Hong Ma, Leng Nie, and Yu Wang. 2017. "Detection of Hepatitis B Virus M204I Mutation by Quantum Dot-Labeled DNA Probe" Sensors 17, no. 5: 961. https://doi.org/10.3390/s17050961