Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors
<p>Structures of some conductive polymers: (<b>a</b>) PPy; (<b>b</b>) PANI and (<b>c</b>) PEDOT.</p> "> Figure 2
<p>Schematic illustration of pen-writing PPy on A4 paper: (<b>a</b>) pen-writing FeCl<sub>3</sub> solution on the paper; (<b>b</b>) Exposing the FeCl<sub>3</sub> lines to Py vapor; (<b>c</b>) Interfacial polymerization of Py along the FeCl<sub>3</sub> lines. Insets are photographs of A4 paper written with FeCl<sub>3</sub> and PPy after fumigation. Reprinted with permission from [<a href="#B71-sensors-17-00562" class="html-bibr">71</a>]. Copyright (2017) American Chemical Society.</p> "> Figure 3
<p>The schematic illustration of Py dimer’s synthesis: (<b>a</b>) formation of the cation radical R<sup>+•</sup> and (<b>b</b>) formation of the aromatic dimer. Reproduced from [<a href="#B88-sensors-17-00562" class="html-bibr">88</a>] with permission of The Royal Society of Chemistry.</p> "> Figure 4
<p>The schematic illustration of Py trimers’s synthesis. Reproduced from [<a href="#B88-sensors-17-00562" class="html-bibr">88</a>] with permission of The Royal Society of Chemistry.</p> "> Figure 5
<p>SEM image of the PPy nanowires grown in the AAO template. Reproduced from [<a href="#B21-sensors-17-00562" class="html-bibr">21</a>]. Copyright (2017), with permission from Elsevier.</p> "> Figure 6
<p>Current-time curve during PPy synthesis. Reproduced from [<a href="#B21-sensors-17-00562" class="html-bibr">21</a>]. Copyright (2017), with permission from Elsevier.</p> "> Figure 7
<p>Schematic illustration of Au-PPy nanorods.</p> "> Figure 8
<p>SEM images of PPy nanoparticles with diameter of (<b>a</b>) 20 nm; (<b>b</b>) 60 nm; and (<b>c</b>) 100 nm. Reprinted with permission from [<a href="#B58-sensors-17-00562" class="html-bibr">58</a>]. Copyright (2017) American Chemical Society.</p> "> Figure 9
<p>SEM image of PPy nanostructured array prepared by chemical synthesis in AAO template after its dissolving. Reprinted from [<a href="#B98-sensors-17-00562" class="html-bibr">98</a>]. Copyright (2017), with permission from Elsevier.</p> "> Figure 10
<p>TEM images (<b>a</b>,<b>b</b>) of synthesized PPy nanotubes with two different magnitudes. Reprinted from [<a href="#B13-sensors-17-00562" class="html-bibr">13</a>]. Copyright (2017), with permission from Elsevier.</p> "> Figure 11
<p>SEM images of three different MnO<sub>2</sub> nanostructures: (<b>a</b>) nanorods; (<b>b</b>) nanowires; and (<b>c</b>) urchins with corresponding morphologies of PPy: (<b>d</b>) nanotubes; (<b>e</b>) nanofibers; and (<b>f</b>) urchins. Reprinted from [<a href="#B65-sensors-17-00562" class="html-bibr">65</a>]. Copyright (2017), with permission from Elsevier.</p> "> Figure 12
<p>Schematic illustration of an electrochemical sensor consisting of substrate, electrodes, and CP film which is acting as sensing material and transducer. The overall sensing process involves analyte recognition, signal transduction, and electrical readout.</p> "> Figure 13
<p>The schematic illustration of PPy interaction with ammonia. Reprinted from [<a href="#B111-sensors-17-00562" class="html-bibr">111</a>] with permission from Elsevier. Copyright 2017.</p> ">
Abstract
:1. Introduction
2. Basic Characteristics of CP
- the fast charge-discharge mechanism which is related directly with polymer structure, i.e., the presence of conjugated bonds, and applied voltage,
- high charge density causing high conductivity,
- solid stability in ambient conditions,
- the physico-chemical properties of the systems which are not easily changed by an external stimulus,
- and last but not least easy a low cost way of preparation [39].
3. Preparation of PPy Sensing Layers
3.1. Electrochemical Synthesis
3.2. Chemical Synthesis
4. Gas and VOC Sensing
- Recognition of the analytes: the CP nanostructures act as sensitive layer and interact with the analytes with different level of selectivity.
- Signal transduction: if the sensitive layer recognizes the analytes, it is reflected as a change of electronic charge-transfer properties of the CP. That changes are in the quantitative correlation with the concentration of the analytes [104,105]. The oxidation or reduction reactions proceeding between the sensitive layer and exposed analytes cause a physical swelling of the polymer structure.
- Electrical readout: finally, the previously described steps are monitored as changes of the electrical resistance or more general of any electrical magnitude.
4.1. Detection of Ammonia
4.2. Detection of Other Gases and VOC
4.3. Detection of Humidity
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Haick, H.; Cohen-Kaminsky, S. Detecting Lung infections in breathprints: Empty promise or next generation diagnosis of infections. Eur. Respir. J. 2015, 45, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Van de Kant, K.D.G.; van der Sande, L.; Jobsis, Q.; van Schayck, O.C.P.; Dompeling, E. Clinical use of exhaled volatile organic compounds in pulmonary diseases: A systematic review. Respir. Res. 2012, 13, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Broza, Y.Y.; Mochalski, P.; Ruzsanyi, V.; Amann, A.; Haick, H. Hybrid Volatolomics and Disease Detection. Angew. Chem. Int. Ed. 2015, 54, 11036–11048. [Google Scholar] [CrossRef] [PubMed]
- Broza, Y.Y.; Haick, H. Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomedicine 2013, 8, 785–806. [Google Scholar] [CrossRef] [PubMed]
- Konvalina, G.; Haick, H. Sensors for Breath Testing: From Nanomaterials to Comprehensive Disease Detection. Acc. Chem. Res. 2014, 47, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Tisch, U.; Adams, O.; Hakim, M.; Shehada, N.; Broza, Y.Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Haick, H. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 2009, 4, 669–673. [Google Scholar] [CrossRef] [PubMed]
- Vallejos, S.; Gràcia, I.; Bravo, J.; Figueras, E.; Hubálek, J.; Cané, C. Detection of volatile organic compounds using flexible gas sensing devices based on tungsten oxide nanostructures functionalized with Au and Pt nanoparticles. Talanta 2015, 139, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, A. Polyaniline/silver nanocomposites: Dielectric properties and ethanol vapour sensitivity. Sens. Actuators B Chem. 2009, 138, 318–325. [Google Scholar] [CrossRef]
- Kabir, L.; Mandal, A.R.; Mandal, S.K. Humidity-sensing properties of conducting polypyrrole-silver nanocomposites. J. Exp. Nanosci. 2008, 3, 297–305. [Google Scholar] [CrossRef]
- Lee, J.-S.; Yoon, N.-R.; Kang, B.-H.; Lee, S.-W.; Gopalan, S.-A.; Kim, S.-W.; Lee, S.-H.; Kwon, D.-H.; Kang, S.-W. Au-Polypyrrole Framework Nanostructures for Improved Localized Surface Plasmon Resonance Volatile Organic Compounds Gas Sensing. J. Nanosci. Nanotechnol. 2015, 15, 7738–7742. [Google Scholar] [CrossRef] [PubMed]
- Athawale, A.A.; Bhagwat, S.V.; Katre, P.P. Nanocomposite of Pd–polyaniline as a selective methanol sensor. Sens. Actuators B Chem. 2006, 114, 263–267. [Google Scholar] [CrossRef]
- Huang, J.; Yang, T.L.; Kang, Y.F.; Wang, Y.; Wang, S.R. Gas sensing performance of polyaniline/ZnO organic-inorganic hybrids for detecting VOCs at low temperature. J. Nat. Gas Chem. 2011, 20, 515–519. [Google Scholar] [CrossRef]
- Joulazadeh, M.; Navarchian, A.H. Ammonia detection of one-dimensional nano-structured polypyrrole/metal oxide nanocomposites sensors. Synth. Met. 2015, 210, 404–411. [Google Scholar] [CrossRef]
- Bachhav, S.G.; Patil, D.R. Study of Polypyrrole-Coated MWCNT Nanocomposites for Ammonia Sensing at Room Temperature. J. Mater. Sci. Chem. Eng. 2015, 3, 30–44. [Google Scholar] [CrossRef]
- Daneshkhah, A.; Shrestha, S.; Agarwal, M.; Varahramyan, K. Poly(vinylidene fluoride-hexafluoropropylene) composite sensors for volatile organic compounds detection in breath. Sens. Actuators B Chem. 2015, 221, 635–643. [Google Scholar] [CrossRef]
- Tung, T.T.; Castro, M.; Pillin, I.; Kim, T.Y.; Suh, K.S.; Feller, J.F. Graphene-Fe3O4/PIL-PEDOT for the design of sensitive and stable quantum chemo-resistive VOC sensors. Carbon 2014, 74, 104–112. [Google Scholar] [CrossRef]
- Feng, X.M.; Yan, Z.Z.; Li, R.M.; Liu, X.F.; Hou, W.H. The synthesis of shape-controlled polypyrrole/graphene and the study of its capacitance properties. Polym. Bull. 2013, 70, 2291–2304. [Google Scholar] [CrossRef]
- Yoon, H. Current Trends in Sensors Based on Conducting Polymer Nanomaterials. Nanomaterials 2013, 3, 524–549. [Google Scholar] [CrossRef]
- Janata, J.; Josowicz, M. Conducting polymers in electronic chemical sensors. Nat. Mater. 2003, 2, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Guernion, N.; Ewen, R.J.; Pihlainen, K.; Ratcliffe, N.M.; Teare, G.C. The fabrication and characterisation of a highly sensitive polypyrrole sensor and its electrical responses to amines of differing basicity at high humidities. Synth. Metals 2002, 126, 301–310. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, F.; Chen, Y.; Liu, J.; Sun, Y.; Luo, T.; Li, M.; Liu, J. A novel ammonia sensor based on high density, small diameter polypyrrole nanowire arrays. Sens. Actuators B Chem. 2009, 142, 204–209. [Google Scholar] [CrossRef]
- Athawale, A.A.; Kulkarni, M.V. Polyaniline and its substituted derivatives as sensor for aliphatic alcohols. Sens. Actuators B Chem. 2000, 67, 173–177. [Google Scholar] [CrossRef]
- Kim, J.-S.; Sohn, S.-O.; Huh, J.-S. Fabrication and sensing behavior of PVF2 coated-polyaniline sensor for volatile organic compounds. Sens. Actuators B Chem. 2005, 108, 409–413. [Google Scholar] [CrossRef]
- Eaidkong, T.; Mungkarndee, R.; Phollookin, C.; Tumcharern, G.; Sukwattanasinitt, M.; Wacharasindhu, S. Polydiacetylene paper-based colorimetric sensor array for vapor phase detection and identification of volatile organic compounds. J. Mater. Chem. 2012, 22, 5970–5977. [Google Scholar] [CrossRef]
- Yoon, J.; Chae, S.K.; Kim, J.M. Colorimetric sensors for volatile organic compounds (VOCs) based on conjugated polymer-embedded electrospun fibers. J. Am. Chem. Soc. 2007, 129, 3038–3039. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Kwak, D. Flexible VOC Sensors Using Conductive Polymers and Porous Membranes for Application to Textiles. Fibers Polym. 2012, 13, 471–474. [Google Scholar] [CrossRef]
- Park, E.; Kwon, O.S.; Park, S.J.; Lee, J.S.; You, S.; Jang, J. One-pot synthesis of silver nanoparticles decorated poly(3,4-ethylenedioxythiophene) nanotubes for chemical sensor application. J. Mater. Chem. 2012, 22, 1521–1526. [Google Scholar] [CrossRef]
- Arena, A.; Donato, N.; Saitta, G.; Bonavita, A.; Rizzo, G.; Neri, G. Flexible ethanol sensors on glossy paper substrates operating at room temperature. Sens. Actuators B Chem. 2010, 145, 488–494. [Google Scholar] [CrossRef]
- Sarfraz, J.; Ihalainen, P.; Maattanen, A.; Peltonen, J.; Linden, M. Printed hydrogen sulfide gas sensor on paper substrate based on polyaniline composite. Thin Solid Films 2013, 534, 621–628. [Google Scholar] [CrossRef]
- Lee, C.T.; Lee, H.Y.; Chiu, Y.S. Performance Improvement of Nitrogen Oxide Gas Sensors Using Au Catalytic Metal on SnO2/WO3 Complex Nanoparticle Sensing Layer. IEEE Sens. J. 2016, 16, 7581–7585. [Google Scholar] [CrossRef]
- Karmaoui, M.; Leonardi, S.G.; Latino, M.; Tobaldi, D.M.; Donato, N.; Pullar, R.C.; Seabra, M.P.; Labrincha, J.A.; Neri, G. Pt-decorated In2O3 nanoparticles and their ability as a highly sensitive (<10 ppb) acetone sensor for biomedical applications. Sens. Actuators B Chem. 2016, 230, 697–705. [Google Scholar]
- Bamsaoud, S.F.; Rane, S.B.; Karekar, R.N.; Aiyer, R.C. Nano particulate SnO2 based resistive films as a hydrogen and acetone vapour sensor. Sens. Actuators B Chem. 2011, 153, 382–391. [Google Scholar] [CrossRef]
- Tharsika, T.; Haseeb, A.; Akbar, S.A.; Sabri, M.F.M.; Hoong, W.Y. Enhanced Ethanol Gas Sensing Properties of SnO2-Core/ZnO-Shell Nanostructures. Sensors 2014, 14, 14586–14600. [Google Scholar] [CrossRef] [PubMed]
- Righettoni, M.; Tricoli, A.; Pratsinis, S.E. Si:WO3 Sensors for Highly Selective Detection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis. Anal. Chem. 2010, 82, 3581–3587. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kaur, H.; Singh, V.N.; Jain, K.; Senguttuvan, T.D. Highly sensitive and pulse-like response toward ethanol of Nb doped TiO2 nanorods based gas sensors. Sens. Actuators B Chem. 2012, 171–172, 899–906. [Google Scholar] [CrossRef]
- Geng, L.; Wu, S. Preparation, characterization and gas sensitivity of polypyrrole/γ-Fe2O3 hybrid materials. Mater. Res. Bull. 2013, 48, 4339–4343. [Google Scholar] [CrossRef]
- Hamilton, S.; Hepher, M.J.; Sommerville, J. Polypyrrole materials for detection and discrimination of volatile organic compounds. Sens. Actuators B Chem. 2005, 107, 424–432. [Google Scholar] [CrossRef]
- Bhat, N.V.; Gadre, A.P.; Bambole, V.A. Structural, mechanical, and electrical properties of electropolymerized polypyrrole composite films. J. Appl. Polym. Sci. 2001, 80, 2511–2517. [Google Scholar] [CrossRef]
- Lee, S.; Cho, M.S.; Nam, J.D.; Lee, Y. Fabrication of Polypyrrole Nanorod Arrays for Supercapacitor: Effect of Length of Nanorods on Capacitance. J. Nanosci. Nanotechnol. 2008, 8, 5036–5041. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.F.; Liu, S.B.; Meng, F.L.; Liu, J.Y.; Jin, Z.; Kong, L.T.; Liu, J.H. Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review. Sensors 2012, 12, 2610–2631. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Jang, J. Conducting-Polymer Nanomaterials for High-Performance Sensor Applications: Issues and Challenges. Adv. Funct. Mater. 2009, 19, 1567–1576. [Google Scholar] [CrossRef]
- Hatchett, D.W.; Josowicz, M. Composites of intrinsically conducting polymers as sensing nanomaterials. Chem. Rev. 2008, 108, 746–769. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cheng, S.; Liu, H.; Hu, S.; Zhang, D.; Ning, H. A Survey on Gas Sensing Technology. Sensors 2012, 12, 9635–9665. [Google Scholar] [CrossRef] [PubMed]
- Song, H.K.; Palmore, G.T.R. Redox-active polypyrrole: Toward polymer-based batteries. Adv. Mater. 2006, 18, 1764–1768. [Google Scholar] [CrossRef]
- Ehsani, A.; Jaleh, B.; Nasrollahzadeh, M. Electrochemical properties and electrocatalytic activity of conducting polymer/copper nanoparticles supported on reduced graphene oxide composite. J. Power Sources 2014, 257, 300–307. [Google Scholar] [CrossRef]
- Wei, W.F.; Cui, X.W.; Chen, W.X.; Ivey, D.G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40, 1697–1721. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhao, P.; Liang, K.; Yao, M.; Yang, Y.; Hu, W. CVD-grown polypyrrole nanofilms on highly mesoporous structure MnO2 for high performance asymmetric supercapacitors. Chem. Eng. J. 2017, 307, 105–112. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Q.; Zhang, W.; Wang, Y.; Chen, W. Nanorod structure of Polypyrrole-covered MoO3 for supercapacitors with excellent cycling stability. Mater. Lett. 2016, 182, 121–124. [Google Scholar] [CrossRef]
- Liu, C.; Cai, Z.; Zhao, Y.; Zhao, H.; Ge, F. Potentiostatically synthesized flexible polypyrrole/multi-wall carbon nanotube/cotton fabric electrodes for supercapacitors. Cellulose 2016, 23, 637–648. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, J.; Tang, J.; Tang, W.H. Three-Dimensional, Chemically Bonded Polypyrrole/Bacterial Cellulose/Graphene Composites for High-Performance Supercapacitors. Chem. Mater. 2015, 27, 7034–7041. [Google Scholar] [CrossRef]
- Wang, Z.B.; Zhang, C.L.; Xu, C.Q.; Zhu, Z.H.; Chen, C.N. Hollow polypyrrole nanosphere embedded in nitrogen-doped graphene layers to obtain a three-dimensional nanostructure as electrode material for electrochemical supercapacitor. Ionics 2017, 23, 147–156. [Google Scholar] [CrossRef]
- Rao, V.; Praveen, P.; Latha, D. A novel method for synthesis of polypyrrole grafted chitin. J. Polym. Res. 2016, 23, 6. [Google Scholar] [CrossRef]
- Joulazadeh, M.; Navarchian, A.H. Alcohol Sensibility of One-Dimensional Polyaniline and Polypyrrole Nanostructures. IEEE Sens. J. 2015, 15, 1697–1704. [Google Scholar] [CrossRef]
- Jang, J.; Bae, J. Carbon nanofiber/polypyrrole nanocable as toxic gas sensor. Sens. Actuator B Chem. 2007, 122, 7–13. [Google Scholar] [CrossRef]
- Basavaraja, C.; Kim, W.J.; Kim, D.G.; Huh, D.S. Synthesis and characterization of soluble polypyrrole-poly(epsilon-caprolactone) polymer blends with improved electrical conductivities. Mater. Chem. Phys. 2011, 129, 787–793. [Google Scholar] [CrossRef]
- Tu, J.C.; Li, N.; Yuan, Q.; Wang, R.; Geng, W.C.; Li, Y.J.; Zhang, T.; Li, X.T. Humidity-sensitive property of Fe2+ doped polypyrrole. Synth. Metals 2009, 159, 2469–2473. [Google Scholar] [CrossRef]
- Kang, H.C.; Geckeler, K.E. Enhanced electrical conductivity of polypyrrole prepared by chemical oxidative polymerization: Effect of the preparation technique and polymer additive. Polymer 2000, 41, 6931–6934. [Google Scholar] [CrossRef]
- Kwon, O.S.; Hong, J.Y.; Park, S.J.; Jang, Y.; Jang, J. Resistive Gas Sensors Based on Precisely Size-Controlled Polypyrrole Nanoparticles: Effects of Particle Size and Deposition Method. J. Phys. Chem. C 2010, 114, 18874–18879. [Google Scholar] [CrossRef]
- Hong, J.Y.; Yoon, H.; Jang, J. Kinetic Study of the Formation of Polypyrrole Nanoparticles in Water-Soluble Polymer/Metal Cation Systems: A Light-Scattering Analysis. Small 2010, 6, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, S.C.; Chaudhuri, D.; Chen, W.; Myung, N.V.; Mulchandani, A. Single polypyrrole nanowire ammonia gas sensor. Electroanalysis 2007, 19, 2125–2130. [Google Scholar] [CrossRef]
- Dubal, D.P.; Lee, S.H.; Kim, J.G.; Kim, W.B.; Lokhande, C.D. Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. J. Mater. Chem. 2012, 22, 3044–3052. [Google Scholar] [CrossRef]
- Chartuprayoon, N.; Hangarter, C.M.; Rheem, Y.; Jung, H.; Myung, N.V. Wafer-Scale Fabrication of Single Polypyrrole Nanoribbon-Based Ammonia Sensor. J. Phys. Chem. C 2010, 114, 11103–11108. [Google Scholar] [CrossRef]
- Yang, X.M.; Zhu, Z.X.; Dai, T.Y.; Lu, Y. Facile fabrication of functional polypyrrole nanotubes via a reactive self-degraded template. Macromol. Rapid Commun. 2005, 26, 1736–1740. [Google Scholar] [CrossRef]
- Joulazadeh, M.; Navarchian, A.H.; Niroomand, M. A Comparative Study on Humidity Sensing Performances of Polyaniline and Polypyrrole Nanostructures. Adv. Polym. Technol. 2014, 33. [Google Scholar] [CrossRef]
- Dubal, D.P.; Caban-Huertas, Z.; Holze, R.; Gomez-Romero, P. Growth of polypyrrole nanostructures through reactive templates for energy storage applications. Electrochim. Acta 2016, 191, 346–354. [Google Scholar] [CrossRef]
- Guo, Y.B.; Tang, Q.X.; Liu, H.B.; Zhang, Y.J.; Li, Y.L.; Hu, W.P.; Wang, S.; Zhu, D.B. Light-controlled organic/inorganic P-N junction nanowires. J. Am. Chem. Soc. 2008, 130, 9198. [Google Scholar] [CrossRef] [PubMed]
- Sankir, N.D.; Dogan, B. Investigation of structural and optical properties of the CdS and CdS/PPy nanowires. J. Mater. Sci. 2010, 45, 6424–6432. [Google Scholar] [CrossRef]
- Chitte, H.K.; Bhat, N.V.; Gore, A.V.; Shind, G.N. Synthesis of Polypyrrole Using Ammonium Peroxy Disulfate (APS) as Oxidant Together with Some Dopants for Use in Gas Sensors. Mater. Sci. Appl. 2011, 2, 1491–1498. [Google Scholar] [CrossRef]
- Chitte, H.K.; Bhat, N.V.; Walunj, V.E.; Shinde, G.N. Synthesis of Polypyrrole Using Ferric Chloride (FeCl3) as Oxidant Together with Some Dopants for Use in Gas Sensors. J. Sens. Technol. 2011, 1, 47–56. [Google Scholar] [CrossRef]
- Kim, J.; Sohn, D.; Sung, Y.; Kim, E.-R. Fabrication and characterization of conductive polypyrrole thin film prepared by in situ vapor-phase polymerization. Synth. Met. 2003, 132, 309–313. [Google Scholar] [CrossRef]
- Jia, H.; Wang, J.; Zhang, X.; Wang, Y. Pen-Writing Polypyrrole Arrays on Paper for Versatile Cheap Sensors. ACS Macro Lett. 2014, 3, 86–90. [Google Scholar] [CrossRef]
- Liana, D.D.; Raguse, B.; Gooding, J.J.; Chow, E. Recent Advances in Paper-Based Sensors. Sensors 2012, 12, 11505–11526. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, J.C.; DeGregory, P.R.; Crooks, R.M. New Functionalities for Paper-Based Sensors Lead to Simplified User Operation, Lower Limits of Detection, and New Applications. In Annual Review of Analytical Chemistry; Bohn, P.W., Pemberton, J.E., Eds.; Annual Reviews: Palo Alto, CA, USA, 2016; Volume 9, pp. 183–202. [Google Scholar]
- Steffens, C.; Manzoli, A.; Francheschi, E.; Corazza, M.L.; Corazza, F.C.; Oliveira, J.V.; Herrmann, P.S.P. Low-cost sensors developed on paper by line patterning with graphite and polyaniline coating with supercritical CO2. Synth. Metals 2009, 159, 2329–2332. [Google Scholar] [CrossRef]
- Sarfraz, J.; Tobjork, D.; Osterbacka, R.; Linden, M. Low-Cost Hydrogen Sulfide Gas Sensor on Paper Substrates: Fabrication and Demonstration. IEEE Sens. J. 2012, 12, 1973–1978. [Google Scholar] [CrossRef]
- Mousavi, S.; Kang, K.; Park, J.; Park, I. Polyaniline-polystyrene nanofibers directly written on cheap flexible substrates by electrospinning, a low-cost and sensitive hydrogen sulfide gas sensor. In Proceedings of the 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), Shangai, China, 24–28 January 2016; pp. 917–919.
- Huang, L.H.; Jiang, P.; Wang, D.; Luo, Y.F.; Li, M.F.; Lee, H.; Gerhardt, R.A. A novel paper-based flexible ammonia gas sensor via silver and SWNT-PABS inkjet printing. Sens. Actuators B Chem. 2014, 197, 308–313. [Google Scholar] [CrossRef]
- Bai, H.; Shi, G.Q. Gas sensors based on conducting polymers. Sensors 2007, 7, 267–307. [Google Scholar] [CrossRef]
- Patois, T.; Lakard, B.; Monney, S.; Roizard, X.; Fievet, P. Characterization of the surface properties of polypyrrole films: Influence of electrodeposition parameters. Synth. Met. 2011, 161, 2498–2505. [Google Scholar] [CrossRef]
- Otero, T.F.; Rodríguez, J. Role of protons on the electrochemical polymerization of pyrrole from acetonitrile solutions. J. Electroanal. Chem. 1994, 379, 513–516. [Google Scholar] [CrossRef]
- Kupila, E.L.; Kankare, J. Electropolymerization of pyrrole in aqueous solvent mixtures studied by in situ conductimetry. Synth. Met. 1996, 82, 89–95. [Google Scholar] [CrossRef]
- Patois, T.; Lakard, B.; Martin, N.; Fievet, P. Effect of various parameters on the conductivity of free standing electrosynthesized polypyrrole films. Synth. Met. 2010, 160, 2180–2185. [Google Scholar] [CrossRef]
- Paramo-Garcia, U.; Batina, N.; Ibanez, J.G. The Effect of pH on the Morphology of Electrochemically-grown Polypyrrole Films: An AFM Study. Int. J. Electrochem. Sci. 2012, 7, 12316–12325. [Google Scholar]
- Nakata, M.; Taga, M.; Kise, H. Synthesis of Electrical Conductive Polypyrrole Films By Interphase Oxidative Polymerization—Effects of Polymerization Temperature and Oxidizing-Agents. Polym. J. 1992, 24, 437–441. [Google Scholar] [CrossRef]
- Karami, H.; Nezhad, A.R. Investigation of Pulse-Electropolymerization of Conductive Polypyrrole Nanostructures. Int. J. Electrochem. Sci. 2013, 8, 8905–8921. [Google Scholar]
- Li, C.; Bai, H.; Shi, G.Q. Conducting polymer nanomaterials: Electrosynthesis and applications. Chem. Soc. Rev. 2009, 38, 2397–2409. [Google Scholar] [CrossRef] [PubMed]
- Babaei, M.; Alizadeh, N. Methanol selective gas sensor based on nano-structured conducting polypyrrole prepared by electrochemically on interdigital electrodes for biodiesel analysis. Sens. Actuators B Chem. 2013, 183, 617–626. [Google Scholar] [CrossRef]
- Sadki, S.; Schottland, P.; Brodie, N.; Sabouraud, G. The mechanisms of pyrrole electropolymerization. Chem. Soc. Rev. 2000, 29, 283–293. [Google Scholar]
- Genies, E.M.; Bidan, G.; Diaz, A.F. Spectroelectrochemical study of polypyrrole films. J. Electroanal. Chem. Interfacial Electrochem. 1983, 149, 101–113. [Google Scholar] [CrossRef]
- Yang, C.; Liu, P.; Guo, J.; Wang, Y. Polypyrrole/vermiculite nanocomposites via self-assembling and in situ chemical oxidative polymerization. Synth. Met. 2010, 160, 592–598. [Google Scholar] [CrossRef]
- Joshi, A.; Gangal, S.A.; Gupta, S.K. Ammonia sensing properties of polypyrrole thin films at room temperature. Sens. Actuators B Chem. 2011, 156, 938–942. [Google Scholar] [CrossRef]
- Bahraeian, S.; Abron, K.; Pourjafarian, F.; Majid, R.A. Study on Synthesis of Polypyrrole via Chemical Polymerization Method. In Proceedings of the 2nd International Conference on Sustainable Materials, Penang, Malaysia, 26–27 March 2013; pp. 707–710.
- Yeole, B.; Sen, T.; Hansora, D.P.; Mishra, S. Effect of electrical properties on gas sensitivity of polypyrrole/cds nanocomposites. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Sanches, E.A.; Alves, S.F.; Soares, J.C.; da Silva, A.M.; da Silva, C.G.; de Souza, S.M.; da Frota, H.O. Nanostructured Polypyrrole Powder: A Structural and Morphological Characterization. J. Nanomater. 2015, 16, 301. [Google Scholar] [CrossRef]
- Rawal, I.; Kaur, A. Synthesis of mesoporous polypyrrole nanowires/nanoparticles for ammonia gas sensing application. Sens. Actuators A Phys. 2013, 203, 92–102. [Google Scholar] [CrossRef]
- Macdiarmid, A.G.; Epstein, A.J. The Polyanilines—Potential Technology Based On New Chemistry and New Properties. In Science and Applications of Conducting Polymers; Salaneck, W.R., Clark, D.T., Samuelsen, E.J., Eds.; Adam Hilger Ltd.: Bristol, UK, 1991; pp. 117–127. [Google Scholar]
- Mohammadi, A.; Hasan, M.A.; Liedberg, B.; Lundstrom, I.; Salaneck, W.R. Chemical vapor-deposition (cvd) of conducting polymers—Polypyrrole. Synth. Met. 1986, 14, 189–197. [Google Scholar] [CrossRef]
- Hassanzadeh, N.; Omidvar, H.; Tabaian, S.H. Chemical synthesis of high density and long polypyrrole nanowire arrays using alumina membrane and their hydrogen sensing properties. Superlattices Microstruct. 2012, 51, 314–323. [Google Scholar] [CrossRef]
- Eggins, B.R. Chemical Sensors and Biosensors; Wiley: West Sussex, UK, 2008. [Google Scholar]
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2013, 24, 59. [Google Scholar] [CrossRef]
- Rheaume, J.M.; Pisano, A.P. A review of recent progress in sensing of gas concentration by impedance change. Ionics 2011, 17, 99–108. [Google Scholar] [CrossRef]
- Bhatt, C.M.; Jampana, N. Multi frequency interrogation of polypyrrole based gas sensors for organic vapors. Microsyst. Technol. Micro Nanosyst. Inf. Storage Process. Syst. 2011, 17, 417–423. [Google Scholar] [CrossRef]
- Musio, F.; Ferrara, M.C. Low frequency A.C. response of polypyrrole gas sensors. Sens. Actuators B Chem. 1997, 41, 97–103. [Google Scholar] [CrossRef]
- Trojanowicz, M. Application of conducting polymers in chemical analysis. Microchim. Acta 2003, 143, 75–91. [Google Scholar] [CrossRef]
- Brahim, S.; Wilson, A.M.; Narinesingh, D.; Iwuoha, E.; Guiseppi-Elie, A. Chemical and Biological Sensors Based on Electrochemical Detection Using Conducting Electroactive Polymers. Microchim. Acta 2003, 143, 123–137. [Google Scholar] [CrossRef]
- Bazzaoui, M.; Martins, J.I.; Machnikova, E.; Bazzaoui, E.A.; Martins, L. Polypyrrole films electrosynthesized on stainless steel grid from saccharinate aqueous solution and its behaviour toward acetone vapor. Eur. Polym. J. 2007, 43, 1347–1358. [Google Scholar] [CrossRef]
- Bhat, N.V.; Gadre, A.P.; Bambole, V.A. Investigation of electropolymerized polypyrrole composite film: Characterization and application to gas sensors. J. Appl. Polym. Sci. 2003, 88, 22–29. [Google Scholar] [CrossRef]
- Lin, C.W.; Liu, Y.L.; Thangamuthu, R. Investigation of the relationship between surface thermodynamics of the chemically synthesized polypyrrole films and their gas-sensing responses to BTEX compounds. Sens. Actuators B Chem. 2003, 94, 36–45. [Google Scholar] [CrossRef]
- Kumar, G.; Mishra, S.; Jain, A. Development of breath ammonia analysis system for disease diagnosis. Asian J. Biochem. Pharm. Res. 2013, 3, 36–43. [Google Scholar]
- Jang, W.-K.; Yun, J.; Kim, H.-I.; Lee, Y.-S. Improvement of ammonia sensing properties of polypyrrole by nanocomposite with graphitic materials. Colloid Polym. Sci. 2013, 291, 1095–1103. [Google Scholar] [CrossRef]
- Gustafsson, G.; Lundström, I.; Liedberg, B.; Wu, C.R.; Inganäs, O.; Wennerström, O. The interaction between ammonia and poly(pyrrole). Synth. Met. 1989, 31, 163–179. [Google Scholar] [CrossRef]
- Carquigny, S.; Sanchez, J.-B.; Berger, F.; Lakard, B.; Lallemand, F. Ammonia gas sensor based on electrosynthesized polypyrrole films. Talanta 2009, 78, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.S.; Park, S.J.; Yoon, H.; Jang, J. Highly sensitive and selective chemiresistive sensors based on multidimensional polypyrrole nanotubes. Chem. Commun. 2012, 48, 10526–10528. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.Q.; Li, F.W.; Chen, D.; Yang, Z.H.; Wang, X.W.; Ji, J.H. High-Oriented Polypyrrole Nanotubes for Next-Generation Gas Sensor. Adv. Mater. 2016, 28, 8265–8270. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, L.; Zhao, Y. Ag/AgCl-decorated polypyrrole nanotubes and their sensory properties. Synth. Met. 2010, 160, 1822–1825. [Google Scholar] [CrossRef]
- Xiang, C.L.; Jiang, D.D.; Zou, Y.J.; Chu, H.L.; Qiu, S.J.; Zhang, H.Z.; Xu, F.; Sun, L.X.; Zheng, L.J. Ammonia sensor based on polypyrrole-graphene nanocomposite decorated with titania nanoparticles. Ceram. Int. 2015, 41, 6432–6438. [Google Scholar] [CrossRef]
- Yan, Y.R.; Zhang, M.L.; Moon, C.H.; Su, H.C.; Myung, N.V.; Haberer, E.D. Viral-templated gold/polypyrrole nanopeapods for an ammonia gas sensor. Nanotechnology 2016, 27, 325502. [Google Scholar] [CrossRef] [PubMed]
- Chougule, M.A.; Sen, S.; Patil, V.B. Development of Nanostructured Polypyrrole (PPy) Thin Film Sensor for NO2 Detection. Sens. Transducers 2012, 139, 122–132. [Google Scholar]
- Liu, X.; Chen, N.; Han, B.Q.; Xiao, X.C.; Chen, G.; Djerdj, I.; Wang, Y.D. Nanoparticle cluster gas sensor: Pt activated SnO2 nanoparticles for NH3 detection with ultrahigh sensitivity. Nanoscale 2015, 7, 14872–14880. [Google Scholar] [CrossRef] [PubMed]
- Bhuvaneshwari, S.; Gopalakrishnan, N. Hydrothermally synthesized Copper Oxide (CuO) superstructures for ammonia sensing. J. Colloid Interface Sci. 2016, 480, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, L.; Wang, H.; Xiong, M.; Yang, T.; Zakharova, G.S. Highly sensitive and selective ammonia gas sensors based on PbS quantum dots/TiO2 nanotube arrays at room temperature. Sens. Actuators B Chem. 2016, 236, 529–536. [Google Scholar] [CrossRef]
- Kumar, L.; Rawal, I.; Kaur, A.; Annapoorni, S. Flexible room temperature ammonia sensor based on polyaniline. Sens. Actuators B Chem. 2017, 240, 408–416. [Google Scholar] [CrossRef]
- Hoa, N.D.; Van Quy, N.; Cho, Y.S.; Kim, D. Nanocomposite of SWNTs and SnO2 fabricated by soldering process for ammonia gas sensor application. Phys. Status Solidi A 2007, 204, 1820–1824. [Google Scholar]
- Qadri, M.U.; Annanouch, F.E.; Aguilo, M.; Diaz, F.; Borull, J.F.; Pujol, M.C.; Llobet, E. Metal Decorated WO3 Nanoneedles Fabricated by Aerosol Assisted Chemical Vapor Deposition for Optical Gas Sensing. J. Nanosci. Nanotechnol. 2016, 16, 10125–10132. [Google Scholar] [CrossRef]
- Huotari, J.; Lappalainen, J.; Eriksson, J.; Bjorklund, R.; Heinonen, E.; Miinalainen, I.; Puustinen, J.; Lloyd Spetz, A. Synthesis of nanostructured solid-state phases of V7O16 and V2O5 compounds for ppb-level detection of ammonia. J. Alloys Compd. 2016, 675, 433–440. [Google Scholar] [CrossRef]
- Krivetskiy, V.; Malkov, I.; Garshev, A.; Mordvinova, N.; Lebedev, O.I.; Dolenko, S.; Efitorov, A.; Grigoriev, T.; Rumyantseva, M.; Gaskov, A. Chemically modified nanocrystalline SnO2-based materials for nitrogen-containing gases detection using gas sensor array. J. Alloys Compd. 2017, 691, 514–523. [Google Scholar] [CrossRef]
- Dalavi, D.S.; Harale, N.S.; Mulla, I.S.; Rao, V.K.; Patil, V.B.; Kim, I.Y.; Kim, J.H.; Patil, P.S. Nanoporous network of nickel oxide for ammonia gas detection. Mater. Lett. 2015, 146, 103–107. [Google Scholar] [CrossRef]
- Nayak, A.K.; Ghosh, R.; Santra, S.; Guha, P.K.; Pradhan, D. Hierarchical nanostructured WO3-SnO2 for selective sensing of volatile organic compounds. Nanoscale 2015, 7, 12460–12473. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.H.; Song, H.-K.; Lee, C.-S.; Jee, J.-G. Fabrication and its characteristics of metal-loaded TiO2/SnO2 thick-film gas sensor for detecting dichloromethane. J. Ind. Eng. Chem. 2008, 14, 818–823. [Google Scholar] [CrossRef]
- Qin, H.Y.; Kukarni, A.; Zhang, H.; Kim, H.; Jiang, D.; Kim, T. Polypyrrole thin film fiber optic chemical sensor for detection of VOCs. Sens. Actuators B Chem. 2011, 158, 223–228. [Google Scholar] [CrossRef]
- Campos, M.; Simoes, F.R.; Pereira, E.C. Influence of methane in the electrical properties of polypyrrole films doped with dodecylbenzene sulfonic acid. Sens. Actuators B Chem. 2007, 125, 158–166. [Google Scholar] [CrossRef]
- Campos, M. Gas sensing properties based on a doped conducting polymer/inorganic semiconductor. In Proceedings of the 2nd IEEE International Conference on Sensors, Toronto, ON, Canada, 22–24 October 2003; pp. 1126–1129.
- Xu, Y.W.; Lee, H.; Hu, Y.S.; Huang, J.Y.; Kim, S.; Yun, M. Detection and Identification of Breast Cancer Volatile Organic Compounds Biomarkers Using Highly-Sensitive Single Nanowire Array on a Chip. J. Biomed. Nanotechnol. 2013, 9, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.R.; Roh, J.G.; Lee, D.D.; Lim, J.O.; Huh, J.S. Sensing behavior of the polypyrrole and polyaniline sensor for several volatile organic compounds. Met. Mater. Int. 2003, 9, 287–291. [Google Scholar] [CrossRef]
- Low, K.; Chartuprayoon, N.; Echeverria, C.; Li, C.L.; Bosze, W.; Myung, N.V.; Nam, J. Polyaniline/poly(epsilon-caprolactone) composite electrospun nanofiber-based gas sensors: Optimization of sensing properties by dopants and doping concentration. Nanotechnology 2014, 25, 115501. [Google Scholar] [CrossRef] [PubMed]
- Kebiche, H.; Debarnot, D.; Merzouki, A.; Poncin-Epaillard, F.; Haddaoui, N. Relationship between ammonia sensing properties of polyaniline nanostructures and their deposition and synthesis methods. Anal. Chim. Acta 2012, 737, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Brédas, J.L.; Silbey, R. Conjugated Polymers: The Novel Science and Technology of Highly Conducting and Nonlinear Optically Active Materials; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Wang, L.Q.; Gao, P.; Bao, D.; Wang, Y.; Chen, Y.J.; Chang, C.; Li, G.B.; Yang, P.P. Synthesis of Crystalline/Amorphous Core/Shell MoO3 Composites through a Controlled Dehydration Route and Their Enhanced Ethanol Sensing Properties. Cryst. Growth Des. 2014, 14, 569–575. [Google Scholar] [CrossRef]
- Sun, Y.J.; Chen, L.; Wang, Y.; Zhao, Z.T.; Li, P.W.; Zhang, W.D.; Leprince-Wang, Y.; Hu, J. Synthesis of MoO3/WO3 composite nanostructures for highly sensitive ethanol and acetone detection. J. Mater. Sci. 2017, 52, 1561–1572. [Google Scholar] [CrossRef]
- Li, Y.; Deng, D.; Xing, X.; Chen, N.; Liu, X.; Xiao, X.; Wang, Y. A high performance methanol gas sensor based on palladium-platinum-In2O3 composited nanocrystalline SnO2. Sens. Actuators B Chem. 2016, 237, 133–141. [Google Scholar] [CrossRef]
- Li, Y.S.; Xu, J.; Chao, J.F.; Chen, D.; Ouyang, S.X.; Ye, J.H.; Shen, G.Z. High-aspect-ratio single-crystalline porous In2O3 nanobelts with enhanced gas sensing properties. J. Mater. Chem. 2011, 21, 12852–12857. [Google Scholar] [CrossRef]
- Tang, W.; Wang, J.; Yao, P.J.; Li, X.G. Hollow hierarchical SnO2-ZnO composite nanofibers with heterostructure based on electrospinning method for detecting methanol. Sens. Actuators B Chem. 2014, 192, 543–549. [Google Scholar] [CrossRef]
- Sun, A.H.; Li, Z.X.; Wei, T.F.; Li, Y.; Cui, P. Highly sensitive humidity sensor at low humidity based on the quaternized polypyrrole composite film. Sens. Actuators B Chem. 2009, 142, 197–203. [Google Scholar] [CrossRef]
- Zeng, F.-W.; Liu, X.-X.; Diamond, D.; Lau, K.T. Humidity sensors based on polyaniline nanofibres. Sens. Actuators B Chem. 2010, 143, 530–534. [Google Scholar] [CrossRef]
- Chani, M.T.S.; Karimov, K.S.; Khalid, F.A.; Moiz, S.A. Polyaniline based impedance humidity sensors. Solid State Sci. 2013, 18, 78–82. [Google Scholar] [CrossRef]
- Lin, W.D.; Chang, H.M.; Wu, R.J. Applied novel sensing material graphene/polypyrrole for humidity sensor. Sens. Actuators B Chem. 2013, 181, 326–331. [Google Scholar] [CrossRef]
- Yang, M.Z.; Dai, C.L.; Lu, D.H. Polypyrrole Porous Micro Humidity Sensor Integrated with a Ring Oscillator Circuit on Chip. Sensors 2010, 10, 10095–10104. [Google Scholar] [CrossRef] [PubMed]
Vibration of the PPy Structure | Wavenumber (cm−1) of PPy Prominent Peaks |
---|---|
C–H stretching | 2854–2931 [54] |
C–H in plane deformation vibration | 1039–1220 [54,55] |
C–H out-of-plane vibration | 804–931 [55,56] |
C–H wagging vibration | 782 [54] |
C=C stretching of pyrrole ring | 1538–1553 [17,57] |
C–N | 1192 [57] 1484 [54] |
N–H stretching | 3432–3443 [17] |
Nanostructures Morphology | Type of Substrate | Fabrication Process | Oxidation Agent | Ref. |
---|---|---|---|---|
Nanowires diameter: 50 nm | Silicon | AAO template assisted electrochemical polymerisation in potentiostatic mode at 1 V | Lithium perchlorate LiClO4 | [21] |
Nanobelts, nanosheets and nanobricks with diameter of 400 nm | Stainless steel foil | Electrochemical polymerisation in potentiodynamic mode cycling from 0 to +1.2 V | Potassium nitrate KNO3 | [61] |
Nanoribbons length of 1 cm and diameter of | Silicon | Ni nanobands assisted electrochemical polymerisation in potentiostatic mode at 0.7 V | Lithium perchlorate LiClO4 | [62] |
Nanorods of Au/PPy diameter: 200 nm | Glass | AAO template assisted electrochemical polymerisation in potentiostatic mode at 0.95 V | Tetraethyl-ammonium tetrafluoroborate (C2H5)4N(BF4) | [10] |
Nanotube diameter: 50 nm | Glass | Soft template assisted chemical polymerization | Ferric chloride FeCl3 | [53] |
Nanowires diameter: 300 nm | Silicon with SiO2 layer | AAO template assisted chemical polymerisation | Ferric chloride FeCl3 | [60] |
Nanoparticles diameter: 20, 60, 100 nm | Glass | Chemical polymerization | Ferric chloride FeCl3 | [58,59] |
Globular structures with diameter of about 590 nm | Printed circuit board | Chemical polymerization | Ammonium peroxydisulfate (NH4)2S2O8 or ferric chloride FeCl3 | [68,69] |
Nanolayers with thickness of 37, 43, 62, and 71 nm | Various polymeric substrates | Vapour-phase polymerization | Ferric chloride FeCl3 | [70] |
Compact layers (thickness N/A) | Cellulosic paper | “Pen-writing” vapour-phase polymerization | Ferric chloride FeCl3 | [71] |
Polymer Type | LOD | Response Time/Recovery Time | Transducing Mechanism | Ref. |
---|---|---|---|---|
PPy nanoparticles | 5 ppm | Less than 1 s/2 s | Chemiresistive | [58] |
Multidimensional PPy nanotubes | 0.01 ppm | Less than 1 s/55–60 s | Chemiresistive | [113] |
Single PPy nanowire | 40 ppm | 15–10 min (for 40–300 ppm)/15 min for 40 ppm | Chemiresistive | [36] |
PPy nanowires | 1.5 ppm | 60 s for 73 ppm/prolonged with increasing of con. (1.5–73 ppm) | Chemiresistive | [18] |
Single crystal PPy nanotube | 0.00005 ppm | ~16 s/~16 s for 1 ppm | Chemiresistive | [114] |
PPy nanoribbons | 0.5 ppm | ~8 min/3 min | Chemiresistive | [62] |
PPy nanotubes PPy/Ag–AgCl composite Nanotubes | – | >1000 s for 100 ppm/−150 s for 100 ppm/500 s | Chemiresistive | [115] |
PPy/ZnO nanocomposite PPy/SnO2 nanocomposite | 10 ppm | ~100 s for 24 ppm/100 s ~50 s for 24 ppm/250 s for first 3 cycles | Chemiresistive | [13] |
PPy/graphene nanocomposite decorated with TiO2 nanoparticles | 1 ppm | ~36 s/~16 s for 50 ppm | Chemiresistive | [116] |
Au/PPy nanopeapods | 0.007 ppmv | ~15 min for 5 ppmv/did not reach Ro value | Chemiresistive | [117] |
Polymer Type | LOD | Response Time/Recovery Time | Transducing Mechanism | Ref. |
---|---|---|---|---|
Nanofibrous PANI films | 5 ppm | ~200 s/~100 s | Chemiresistive | [122] |
PbS quantum dots/TiO2 nanotube | 2 ppm | -/- | Chemiresistive | [121] |
Co3O4 nanosheets | 0.2 ppm | ~9 s/~134 s | Chemiresistive | [121] |
Carbon nanotubes/SnO2 nanocomposite | 10 ppm | ~100 s/~192 s | Chemiresistive | [123] |
CuO Nanostructures | 50 ppm | ~6 min/~5–6 min | Chemiresistive | [120] |
Au-decorated tungsten oxide nanoneedles | - | ~4 s/~4 min for 100 ppm | Optical | [124] |
Type of Material | LOD | Response Time/Recovery Time | Operative Temperature | Transducing mechanism | Ref. |
---|---|---|---|---|---|
V2O5 and V7O16 thin-film structures | 0.2 ppm | ~1 h/~2 h | 350 °C | Chemiresistive | [125] |
SnO2-Nb-Pt nanocrystaline | 10 ppm | ~150 s/~170 s | 355 °C | Chemiresistive | [126] |
Nanoporous NiO thin films | 20 ppm | ~89 s/~128 s | 250 °C | Chemiresistive | [127] |
Pt activated SnO2 nanoparticle clusters | 10 ppm | ~75 s/~67 s for 50 ppm | 115 °C | Chemiresistive | [119] |
Mixed WO3–SnO2 nanostructures | 0.52 ppm | ~220 s/~195 s for 400 ppm | 200 °C | Chemiresistive | [128] |
Polymer Type | Target Analytes | LOD | Response Time/Recovery Time | Transducing Mechanism | Ref. |
---|---|---|---|---|---|
PPy nanoparticles | Methanol Acetonitrile Acetic acid | 50 ppm 100 ppm 100 ppm | 1 s/90 s <1 s/<10 s <1 s/<10 s | Chemiresistive | [58] |
PANI/Pd Nanocomposite | Methanol | 1 ppm | ~8 s/~9 s | Chemiresistive | [11] |
Multidimensional PPy nanotubes | Ethanol | 1 ppm | < 1 s/4–5 s | Chemiresistive | [113] |
Nanotubular PPy | Butanol Propanol Methanol Ethanol | 3 ppm for all alcohols | Data for 10 ppm: ~200 s/>5 s ~200 s/>5 s ~150 s/5 s ~110 s/5 s | Chemiresistive | [53] |
Nanofibrillar PANI | Butanol Propanol Methanol Ethanol | 3 ppm for all alcohols | Data for 10 ppm: ~100 s/not completely recovered ~80 s/not completely recovered ~80 s/~15 s ~80 s/~15 s | Chemiresistive | [53] |
Au/PPy nanorods | Benzene Toluene Acetic acid | 10 ppm for all analytes | 20 s/40 s | Optical based on localized surface plasmon resonance | [10] |
PPy coated quartz fibres | Methanol Ethanol Acetone Toluene Chloroform Isopropyl alcohol | 1 ppm for methanol 10–30 ppm for other VOC | Data for 286 ppm of methanol: 200 s/400 s. Data for 6 ppm of methanol: 100 s/200 s. | Optical based on reflectance | [130] |
Al/PPy/Au/ dodecylbenzene sulfonic acid diodes | Methanol | 20 ppm | 10 min/6 h | Capacitive | [131] |
PPy films on n-silicon | Acetone | 10 ppm | -/- | Capacitive | [132] |
Single PPy nanowire | Heptanal Acetophenone Isopropyl myristate 2-Propanol | 8.982 ppm 798 ppb 134 ppm 129.5 ppm | -/- | Chemiresistive | [133] |
PPy film on gold IDE/FR4 | Acetone Ethanol Isopropyl alcohol | - | -/- | Impedance | [102] |
PPy film on gold | Methanol Acetone Ethyl acetate Ethanol | - | ~100 s/~50 s | Impedance | [103] |
Type of Material | Target Analytes | LOD | Response Time/Recovery Time | Operative Temperature | Transducing Mechanism | Ref. |
---|---|---|---|---|---|---|
Mixed WO3–SnO2 nanostructures | Ethanol | 0.131 ppm | ~225 s/~300 s for 180 ppm | 300 °C | Chemiresistive | [128] |
Crystalline/amorphous core/shell MoO3 nanocomposite | Ethanol | 10 ppm | <40 s/<40 s | 180 °C | Chemiresistive | [138] |
MoO3/WO3 composite nanostructures | Ethanol | 0.5 ppm | ~13 s/~10 s | 320 °C | Chemiresistive | [139] |
SnO2-Pd-Pt-In2O3 composite | Methanol | 0.1 ppm | ~32 s/~47 s for 100 ppm | 160 °C | Chemiresistive | [140] |
Porous In2O3 nanobelts | Methanol | 0.1 ppm | ~10 s/~10 s for 20 ppm | 370 °C | Chemiresistive | [141] |
SnO2-ZnO composite nanofibers | Methanol | 1 ppm tested | ~20 s/~40 s for 10 ppm | 350 °C | Chemiresistive | [142] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šetka, M.; Drbohlavová, J.; Hubálek, J. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors. Sensors 2017, 17, 562. https://doi.org/10.3390/s17030562
Šetka M, Drbohlavová J, Hubálek J. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors. Sensors. 2017; 17(3):562. https://doi.org/10.3390/s17030562
Chicago/Turabian StyleŠetka, Milena, Jana Drbohlavová, and Jaromír Hubálek. 2017. "Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors" Sensors 17, no. 3: 562. https://doi.org/10.3390/s17030562
APA StyleŠetka, M., Drbohlavová, J., & Hubálek, J. (2017). Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors. Sensors, 17(3), 562. https://doi.org/10.3390/s17030562