High Sensitivity Detection of CdSe/ZnS Quantum Dot-Labeled DNA Based on N-type Porous Silicon Microcavities
<p>Schematic diagram of the sensing principle.</p> "> Figure 2
<p>Scanning electron microscopy image (<b>a</b>) subjected to a corrosion current 14 mA and (<b>b</b>) subjected to a corrosion current 28 mA; (<b>c</b>) cross-sectional view of the PSM; (<b>d</b>) an enlarged view of the cross section.</p> "> Figure 3
<p>Fluorescence and absorption spectra of QD and the QD-labeled DNA: QD represents the fluorescence spectrum of the quantum dots, QD + DNA represents the fluorescence spectrum of the quantum dot-labeled DNA. (<b>a</b>) fluorescence spectra; (<b>b</b>) absorption spectra.</p> "> Figure 4
<p>PSM reflectance spectrum following (<b>a</b>) oxidation; (<b>b</b>) silanization; (<b>c</b>) glutaraldehyde; (<b>d</b>) DNA probe; (<b>e</b>) QD-DNA target.</p> "> Figure 5
<p>Relationship between the target DNA at different concentrations and the reflectance spectrum shift. The black squares represent the QD-DNA and the red dots represent the control DNA (unlabeled).</p> "> Figure 6
<p>(<b>a</b>) The TEM image and (<b>b</b>) the absorption and emission spectra of QD.</p> ">
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Instruments
- Target DNA: 5′-CGCGGCCTATCAGCTTGTTG-3′-NH2,
- Probe DNA: 5′-CAACAAGCTGATAGGCCGCG-3′-NH2.
- DNA primers were purchased from INVITROGEN TRADING Co., Ltd. (Shanghai, China).
2.2. Porous Silicon Microcavity Preparation
2.3. Quantum Dot Coupled with DNA
2.4. PSM Functionalization
2.5. DNA Probe Connected to Porous Silicon Microcavity
2.6. Target DNA Detection
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Janshoff, A.; Dancil, K.-P.S.; Steinem, C.; Greiner, D.P.; Lin, V.S.Y.; Gurtner, C.; Motesharei, K.; Sailor, M.J.; Ghadiri, M.R. Macroporous p-Type Silicon Fabry−Perot Layers. Fabrication, Characterization, and Applications in Biosensing. J. Am. Chem. Soc. 1998, 120, 12108–12116. [Google Scholar]
- Collins, B.E.; Dancil, K.P.S.; Abbi, G.; Sailor, M.J. Determining Protein Size Using an Electrochemically Machined Pore Gradient in Silicon. Adv. Funct. Mater. 2002, 12, 187–191. [Google Scholar] [CrossRef]
- Torres-Costa, V.; Agulló-Rueda, F.; Martín-Palma, R.J.; Martínez-Duart, J.M. Porous silicon optical devices for sensing applications. Opt. Mater. 2005, 27, 1084–1087. [Google Scholar] [CrossRef]
- Dancil, K.P.S.; Greiner, D.P.; Sailor, M.J. A Porous Silicon Optical Biosensor: Detection of Reversible Binding of IgG to a Protein A-Modified Surface. J. Am. Chem. Soc. 1999, 121, 7925–7930. [Google Scholar] [CrossRef]
- Stefano, L.D.; Arcari, P.; Lamberti, A.; Sanges, C.; Rotiroti, L.; Rea, I.; Rendina, I. DNA Optical Detection Based on Porous Silicon Technology: From Biosensors to Biochips. Sensors 2007, 7, 214–221. [Google Scholar] [CrossRef]
- Lin, V.S.; Motesharei, K.; Dancil, K.P.; Sailor, M.J.; Ghadiri, M.R. A porous silicon-based optical interferometric biosensor. Science 1997, 278, 840–843. [Google Scholar] [CrossRef] [PubMed]
- Pacholski, C.; Sartor, M.; Sailor, M.J.; Cunin, F.; Miskelly, G.M. Biosensing using porous silicon double-layer interferometers: Reflective interferometric Fourier transform spectroscopy. J. Am. Chem. Soc. 2005, 127, 11636–11645. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, Y.Y.; Lee, K.W.; Park, S.H. A distributed Bragg reflector porous silicon layer for optical interferometric sensing of organic vapor. Sens. Actuators B Chem. 2011, 155, 673–678. [Google Scholar] [CrossRef]
- Mulloni, V.; Pavesi, L. Porous silicon microcavities as optical chemical sensors. Appl. Phys. Lett. 2000, 76, 2523–2525. [Google Scholar] [CrossRef]
- Chan, S.; Fauchet, P.M.; Li, Y.; Rothberg, L.J.; Miller, B.L. Porous Silicon Microcavities for Biosensing Applications. Phys. Status Solidi 2000, 182, 541–546. [Google Scholar] [CrossRef]
- Chan, W.C.W.; Maxwell, D.J.; Gao, X.; Bailey, R.E.; Han, M.; Nie, S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 2002, 13, 40–46. [Google Scholar] [CrossRef]
- Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Mirkin, C.A.; Letsinger, R.L.; Mucic, R.C.; Storhoff, J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607–609. [Google Scholar] [CrossRef] [PubMed]
- Gill, R.; Patolsky, F.; Katz, E.; Willner, I. Electrochemical Control of the Photocurrent Direction in Intercalated DNA/CdS Nanoparticle Systems. Angew. Chem. Int. Ed. 2005, 117, 4630–4633. [Google Scholar] [CrossRef]
- Katz, E.; Willner, I. Integrated Nanoparticle–Biomolecule Hybrid Systems: Synthesis, Properties, and Applications. Angew. Chem. Int. Ed. 2004, 43, 6042–6108. [Google Scholar] [CrossRef] [PubMed]
- Gaur, G.; Koktysh, D.S.; Weiss, S.M. Immobilization of Quantum Dots in Nanostructured Porous Silicon Films: Characterizations and Signal Amplification for Dual-Mode Optical Biosensing. Adv. Funct. Mater. 2013, 23, 3604–3614. [Google Scholar] [CrossRef]
- Weiss, S.M. Porous silicon biosensors using quantum dot signal amplifiers. Proc. SPIE 2013, 8594, 859408. [Google Scholar] [CrossRef]
- Ouyang, H.; Striemer, C.C.; Fauchet, P.M. Quantitative analysis of the sensitivity of porous silicon optical biosensors. Appl. Phys. Lett. 2006, 88. [Google Scholar] [CrossRef]
- Ouyang, H.; Christophersen, M.; Viard, R.; Miller, B.; Fauchet, P. Macroporous Silicon Microcavities for Macromolecule Detection. Adv. Funct. Mater. 2005, 15, 1851–1859. [Google Scholar] [CrossRef]
- Wang, J.; Li, P.; Lv, X.; Lv, C.; Jia, Z. Macromesoporous silicon Bragg and microcavity structures. Mater. Res. Innov. 2014, 18, S2-424–S2-428. [Google Scholar] [CrossRef]
- Zhang, H.; Jia, Z.; Lv, X.; Zhou, J.; Chen, L.; Liu, R. Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection. Biosens. Bioelectron. 2013, 44C, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Jia, Z.; Lü, X.; Liu, Y.; Ning, X.; Mo, J.; Wang, J. Spectrometer-free biological detection method using porous silicon microcavity devices. Opt. Express 2015, 23, 24626–24633. [Google Scholar] [CrossRef] [PubMed]
QD:DNA | 1:20 | 1:5 | ck DNA |
---|---|---|---|
0.1 μM | 7 ± 0.8 | 11 ± 1 | – |
0.5 μM | 12 ± 1 | 18 ± 1.5 | 10 ± 0.9 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, C.; Jia, Z.; Lv, J.; Zhang, H.; Li, Y. High Sensitivity Detection of CdSe/ZnS Quantum Dot-Labeled DNA Based on N-type Porous Silicon Microcavities. Sensors 2017, 17, 80. https://doi.org/10.3390/s17010080
Lv C, Jia Z, Lv J, Zhang H, Li Y. High Sensitivity Detection of CdSe/ZnS Quantum Dot-Labeled DNA Based on N-type Porous Silicon Microcavities. Sensors. 2017; 17(1):80. https://doi.org/10.3390/s17010080
Chicago/Turabian StyleLv, Changwu, Zhenhong Jia, Jie Lv, Hongyan Zhang, and Yanyu Li. 2017. "High Sensitivity Detection of CdSe/ZnS Quantum Dot-Labeled DNA Based on N-type Porous Silicon Microcavities" Sensors 17, no. 1: 80. https://doi.org/10.3390/s17010080
APA StyleLv, C., Jia, Z., Lv, J., Zhang, H., & Li, Y. (2017). High Sensitivity Detection of CdSe/ZnS Quantum Dot-Labeled DNA Based on N-type Porous Silicon Microcavities. Sensors, 17(1), 80. https://doi.org/10.3390/s17010080