Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantum dot bioconjugates for imaging, labelling and sensing

Abstract

One of the fastest moving and most exciting interfaces of nanotechnology is the use of quantum dots (QDs) in biology. The unique optical properties of QDs make them appealing as in vivo and in vitro fluorophores in a variety of biological investigations, in which traditional fluorescent labels based on organic molecules fall short of providing long-term stability and simultaneous detection of multiple signals. The ability to make QDs water soluble and target them to specific biomolecules has led to promising applications in cellular labelling, deep-tissue imaging, assay labelling and as efficient fluorescence resonance energy transfer donors. Despite recent progress, much work still needs to be done to achieve reproducible and robust surface functionalization and develop flexible bioconjugation techniques. In this review, we look at current methods for preparing QD bioconjugates as well as presenting an overview of applications. The potential of QDs in biology has just begun to be realized and new avenues will arise as our ability to manipulate these materials improves.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of rhodamine red/DsRed2 spectral properties to those of QDs highlighting how multiple narrow, symmetric QD emissions can be used in the same spectral window as that of an organic or genetically encoded dye.
Figure 2: Representative QD core materials scaled as a function of their emission wavelength superimposed over the spectrum.
Figure 3: QD resistance to photobleaching and multicolour labelling.
Figure 4: Near-infrared QD imaging in vivo.
Figure 5: Properties of QDs as FRET donors.
Figure b1: Novel QD bio-applications and materials.

Similar content being viewed by others

References

  1. Miyawaki, A. Visualization of the spatial and temporal dynamics of intracellular signaling. Dev. Cell 4, 295–305 (2003).

    Article  CAS  Google Scholar 

  2. Schrock, E. et al. Multicolor spectral karyotyping of human chromosomes. Science 273, 494–497 (1996).

    Article  CAS  Google Scholar 

  3. Bruchez, M., Jr, Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    Article  CAS  Google Scholar 

  4. Chan, W. C. W. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    Article  CAS  Google Scholar 

  5. Dabbousi, B. O. et al. (CdSe)ZnS core-shell quantum dots: synthesis and optical and structural characterization of a size series of highly luminescent materials. J. Phys. Chem. B 101, 9463–9475 (1997).

    Article  CAS  Google Scholar 

  6. Leatherdale, C. A., Woo, W. K., Mikulec, F. V. & Bawendi, M. G. On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B 106, 7619–7622 (2002).

    Article  CAS  Google Scholar 

  7. Murphy, C. J. Optical sensing with quantum dots. Anal. Chem. 74, 520A–526A (2002).

    Article  CAS  Google Scholar 

  8. Parak, W. J. et al. Biological applications of colloidal nanocrystals. Nanotech. 14, R15–R27 (2003).

    Article  CAS  Google Scholar 

  9. Niemeyer, C. M. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew. Chem. Int. Edn Eng. 40, 4128–4158 (2001).

    Article  CAS  Google Scholar 

  10. Alivisatos, P. The use of nanocrystals in biological detection. Nature Biotechnol. 22, 47–52 (2004).

    Article  CAS  Google Scholar 

  11. Mattoussi, H., Kuno, M. K., Goldman, E. R., Anderson, G. P. & Mauro, J. M. in Optical Biosensors: Present and Future (eds Ligler, F. S. & Rowe C. A.) 537–569 (Elsevier, Amsterdam, Netherlands, 2002).

    Book  Google Scholar 

  12. Nirmal, M. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–806 (1996).

    Article  CAS  Google Scholar 

  13. Efros, A. L. & Rosen, M. Random telegraph signal in the photoluminescence intensity of a single quantum dot. Phys. Rev. Lett. 78, 1110–1113 (1996).

    Article  Google Scholar 

  14. Hines, M. A. & Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471 (1996).

    Article  CAS  Google Scholar 

  15. Peng, Z. A. & Peng, X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123, 183–184 (2001).

    Article  CAS  Google Scholar 

  16. Bailey, R. E. & Nie, S. Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J. Am. Chem. Soc. 125, 7100–7106 (2003).

    Article  CAS  Google Scholar 

  17. Gu, H., Ho, P.-L., Tsang, K. W. T., Wang, L. & Xu, B. Using Biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. J. Am. Chem. Soc. 125, 15702–15703 (2003).

    Article  CAS  Google Scholar 

  18. Gu, H., Zheng, R., Zhang, X. & Xu, B. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: A conjugate of quantum dot and magnetic nanoparticles. J. Am. Chem. Soc. 126, 5664–5665 (2004).

    Article  CAS  Google Scholar 

  19. Pinaud, F., King, D., Moore, H.-P. & Weiss, S. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J. Am. Chem. Soc. 126, 6115–6123 (2004).

    Article  CAS  Google Scholar 

  20. Tsay, J. M., Pflughoefft, M., Bentolila, L. A. & Weiss, S. Hybrid approach to the synthesis of highly luminescent CdTe/ZnS and CdHgTe/ZnS nanocrystals. J. Am. Chem. Soc. 126, 1926–1927 (2004).

    Article  CAS  Google Scholar 

  21. Xu, C. J. et al. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. J. Am. Chem. Soc. 126, 3392–3393 (2004).

    Article  CAS  Google Scholar 

  22. Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann. Rev. Mater. Sci. 30, 545–610 (2000).

    Article  CAS  Google Scholar 

  23. Xu, C. J. et al. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J. Am. Chem. Soc. 126, 5664–5665 (2004).

    Article  CAS  Google Scholar 

  24. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  25. Peng, X., Schlamp, M. C., Kadavanich, A. V. & Alivisatos, A. P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119, 7019–7029 (1997).

    Article  CAS  Google Scholar 

  26. Mattoussi, H. et al. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 122, 12142–12150 (2000).

    Article  CAS  Google Scholar 

  27. Hines, M. A. & Guyot-Sionnest, P. Bright UV-blue luminescent colloidal ZnSe nanocrystals. J. Phys. Chem. B 102, 3655–3657 (1998).

    Article  CAS  Google Scholar 

  28. Suyver, J. F., Wuister, S. F., Kelly, J. J. & Meijerink, A. Synthesis and photoluminescence nanocrystalline ZnS:Mn2+. Nano Lett. 1, 429–433 (2001).

    Article  CAS  Google Scholar 

  29. Artmeyev, M. V., Gaponenko, S. V., Germanenko, I. N. & Kapitonov, A. M. Irreversible photochemical spectral hole burning in quantum-sized CdS nanocrystals embedded in a polymeric film. Chem. Phys. Lett. 243, 450–455 (1995).

    Article  Google Scholar 

  30. Reiss, P., Bleuse, J. & Pron, A. Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett. 2, 781–784 (2002).

    Article  CAS  Google Scholar 

  31. Guo, W., Li, J. J., Wang, Y. A. & Peng, X. Conjugation chemistry and bioapplications of semiconductor box nanocrystals prepared via dendrimer bridging. Chem. Mater. 15, 3125–3133 (2003).

    Article  CAS  Google Scholar 

  32. Hong, R. et al. Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds. J. Am. Chem. Soc. 126, 739–743 (2004).

    Article  CAS  Google Scholar 

  33. Dubertret, B. et al. In vivo imaging of quantum dots encapsulated in phospholipids micelles. Science 298, 1759–1762 (2002).

    Article  CAS  Google Scholar 

  34. Wu, X. et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnol. 21, 41–46 (2003).

    Article  CAS  Google Scholar 

  35. Pellegrino, T. et al. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals. Nano Lett. 4, 703–707 (2004).

    Article  CAS  Google Scholar 

  36. Osaki, F., Kanamori, T., Sando, S., Sera, T. & Aoyama, Y. A quantum dot conjugated sugar ball and its cellular uptake on the size effects of endocytosis in the subviral region. J. Am. Chem. Soc. 126, 6520–6521 (2004).

    Article  CAS  Google Scholar 

  37. Kim, S. & Bawendi, M. G. Oligomeric ligands for luminescent and stable nanocrystal quantum dots. J. Am. Chem. Soc. 125, 14652–14653 (2003).

    Article  CAS  Google Scholar 

  38. Wang, X.-S. et al. Surface passivation of luminescent colloidal quantum dots with poly(dimethylaminoethyl methacrylate) through a ligand exchange process. J. Am. Chem. Soc. 126, 7784–7785 (2004).

    Article  CAS  Google Scholar 

  39. Willard, D. M., Carillo, L. L., Jung, J. & Van Orden, A. CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay. Nano Lett. 1, 469–474 (2001).

    Article  CAS  Google Scholar 

  40. Gerion, D. et al. Synthesis and properties of biocompatible water-soluble silicacoated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B 105, 8861–8871 (2001).

    Article  CAS  Google Scholar 

  41. Mitchell, G. P., Mirkin, C. A. & Letsinger, R. L. Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 121, 8122–8123 (1999).

    Article  CAS  Google Scholar 

  42. Goldman, E. R. et al. Avidin: a natural bridge for quantum dot-antibody conjugates. J. Am. Chem. Soc. 124, 6378–6382 (2002).

    Article  CAS  Google Scholar 

  43. Uyeda, H. T., Medintz, I. L., Jaiswal, J. K., Simon, S. M. & Mattoussi, H. Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. J. Am. Chem. Soc. 127, 3870–3878 (2005).

    Article  CAS  Google Scholar 

  44. Mattheakis, L. C. et al. Optical coding of mammalian cells using semiconductor quantum dots. Anal. Biochem. 327, 200–208 (2004).

    Article  CAS  Google Scholar 

  45. Ballou, B., Lagerholm, B. C., Ernst, L. A., Bruchez, M. P. & Waggoner, A. S. Noninvasive imaging of quantum dots in mice. Bioconj. Chem. 15, 79–86 (2004).

    Article  CAS  Google Scholar 

  46. Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. K. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnol. 22, 969–976 (2004).

    Article  CAS  Google Scholar 

  47. Pathak, S., Choi, S. K., Arnheim, N. & Thompson, M. E. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc. 123, 4103–4104 (2001).

    Article  CAS  Google Scholar 

  48. Medintz, I. L. et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nature Mater. 2, 630–638 (2003).

    Article  CAS  Google Scholar 

  49. Akerman, M. E., Chan, W. C. W., Laakkonen, P., Bhatia, S. N. & Ruoslahti, E. Nanocrystal targeting in vivo. Proc. Natl Acad. Sci. 99, 12617–12621 (2002).

    Article  CAS  Google Scholar 

  50. Slocik, J. M., Moore, J. T. & Wright, D. W. Monoclonal antibody recognition of histidine-rich peptide encapsulated nanoclusters. Nano Lett. 2, 169–173 (2002).

    Article  CAS  Google Scholar 

  51. Hainfeld, J. F., Liu, W., Halsey, C. M. R., Freimuth, P. & Powell, R. D. Ni-NTAgold clusters target His-tagged proteins. J. Stuct. Biol. 127, 185–198 (1999).

    Article  CAS  Google Scholar 

  52. Clapp, A. R. et al. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J. Am. Chem. Soc. 126, 301–310 (2004).

    Article  CAS  Google Scholar 

  53. Medintz, I. L., et al. A fluorescence resonance energy transfer derived structure of a quantum dot-protein bioconjugate nanoassembly. Proc. Natl Acad. Sci. 101, 9612–9617 (2004).

    Article  CAS  Google Scholar 

  54. Medintz, I. L., Trammell, S. A., Mattoussi, H. & Mauro, J. M. Reversible modulation of quantum dot photoluminescence using a protein-bound photochromic fluorescence resonance energy transfer acceptor. J. Am. Chem. Soc. 126, 30–31 (2004).

    Article  CAS  Google Scholar 

  55. Goldman, E. R. et al. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal. Chem. 74, 841–847 (2002).

    Article  CAS  Google Scholar 

  56. Hanaki, K. et al. Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem. Biophys. Res. Comm. 302, 496–501 (2003).

    Article  CAS  Google Scholar 

  57. Sukhanova, A. et al. Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. Anal. Biochem. 324, 60–67 (2004).

    Article  CAS  Google Scholar 

  58. Jaiswal, J. K., Mattoussi, H., Mauro, J. M. & Simon, S. M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotechnol. 21, 47–51 (2003).

    Article  CAS  Google Scholar 

  59. Kaul, Z. et al. Mortalin imaging in normal and cancer cells with quantum dot immuno-conjugates. Cell Res. 13, 503–507 (2003).

    Article  Google Scholar 

  60. Hoshino, A., Hanaki, K.-I., Suzuki, K. & Yamamoto, K. Applications of Tlymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. Biochem. Biophys. Res. Comm. 314, 46–53 (2004).

    Article  CAS  Google Scholar 

  61. Chen, F. & Gerion, D. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett. 4, 1827–1832 (2004).

    Article  CAS  Google Scholar 

  62. Derfus, A. M., Chan, W. C. W. & Bhatia, S. N. Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv. Mater. 16, 961–966 (2004).

    Article  CAS  Google Scholar 

  63. Voura, E. B., Jaiswal, J. K., Mattoussi, H. & Simon, S. M. Tracking early metastatic progression with quantum dots and emission scanning microscopy. Nature Med. 10, 993–998 (2004).

    Article  CAS  Google Scholar 

  64. Derfus, A. M., Chan, W. C. W. & Bhatia, S. N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11–18 (2004).

    Article  CAS  Google Scholar 

  65. Pellegrino, T. et al. Quantum dot-based cell motility assay. Differentiation 71, 542–548 (2003).

    Article  Google Scholar 

  66. Dahan, M. et al. Diffusion dynamics of glycine receptors revealed by singlequantum dot tracking. Science 302, 442–445 (2003).

    Article  CAS  Google Scholar 

  67. Lidke, D. S. et al. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nature Biotechnol. 22, 198–203 (2004).

    Article  CAS  Google Scholar 

  68. Levene, M. J., Dombeck, D. A., Kasischke, K. A., Molloy, R. P. & Webb, W. W. In vivo multiphoton microscopy of deep brain tissue. J. Neurophys. 91, 1908–1912 (2004).

    Article  Google Scholar 

  69. Rosenthal, S. J. et al. Targeting cell surface receptors with ligand-conjugated nanocrystals. J. Am. Chem. Soc. 124, 4586–4594 (2002).

    Article  CAS  Google Scholar 

  70. Kim, S. et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nature Biotechnol. 22, 93–97 (2004).

    Article  Google Scholar 

  71. Larson, D. R. et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434–1437 (2003).

    Article  Google Scholar 

  72. Colvin, V. L. The potential environmental impact of engineered nanomaterials. Nature Biotechnol. 21, 1166–1170 (2003).

    Article  CAS  Google Scholar 

  73. Hoet, P. H., Bruske-Hohlfeld, I. & Salata, O. V. Nanoparticles - known and unknown health risks. J. Nanobiotechnol. 2, 2–12 (2004).

    Article  CAS  Google Scholar 

  74. Green, M. & Howman, E. Semiconductor quantum dots and free radical induced DNA nicking. Chem. Comm. 121–123 (2005).

  75. Kirchner, C. et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 5, 331–338 (2005).

    Article  CAS  Google Scholar 

  76. Xiao, Y. & Barker, P. E. Semiconductor nanocrystal probes for human metaphase chromosomes. Nucl. Acids Res. 32, 3 e28 (2004).

    Article  CAS  Google Scholar 

  77. Gerion, D. et al. Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. Anal. Chem. 75, 4766–4772 (2003).

    Article  CAS  Google Scholar 

  78. Gerion, D. et al. Sorting fluorescent nanocrystals with DNA. J. Am. Chem. Soc. 124, 7070–7074 (2002).

    Article  CAS  Google Scholar 

  79. Goldman, E. R. et al. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal. Chem. 76, 684–688 (2004).

    Article  CAS  Google Scholar 

  80. Mamedova, N. N., Kotov, N. A., Rogach, A. L. & Studer, J. Albumin-CdTe nanoparticle bioconjugates: preparation, structure, and interunit energy transfer with antenna effect. Nano Lett. 1, 281–286 (2001).

    Article  CAS  Google Scholar 

  81. Tran, P. T., Goldman, E. R., Anderson, G. P., Mauro, J. M. & Mattoussi, H. Use of luminescent CdSe-ZnS nanocrystal bioconjugates in quantum dot-based nanosensors. Phys. Status Solidi B 229, 427–432 (2002).

    Article  CAS  Google Scholar 

  82. Clapp, A. R., Medintz, I. L., Fisher, B. R., Anderson, G. P. & Mattoussi, H. Can luminescent quantum dots be efficient energy acceptors with organic dye donors. J. Am. Chem. Soc. 127, 1242–1250 (2005).

    Article  CAS  Google Scholar 

  83. Samia, A. C. S., Chen, X. & Burda, C. Semiconductor quantum dots for photodynamic therapy. J. Am. Chem. Soc. 125, 15736–15737 (2003).

    Article  CAS  Google Scholar 

  84. Bakalova, R., Ohba, H., Zhelev, Z., Ishikawa, M. & Baba, Y. Quantum dots as photosensitizers. Nature Biotechnol. 22, 1360–1361 (2004).

    Article  CAS  Google Scholar 

  85. Xu, H. X. et al. Multiplexed SNP genotyping using the Qbead (TM) system: a quantum dot-encoded microsphere-based assay. Nucl. Acids Res. 31, 8 e43 (2003).

    Google Scholar 

  86. Josephson, L., Kircher, M. F., Mahmood, U., Tang, Y. & Weissleder, R. Nearinfrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconj. Chem. 13, 554–560 (2002).

    Article  CAS  Google Scholar 

  87. Hohng, S. & Ha, T. Near-complete suppression of quantum dot blinking in ambient conditions. J. Am. Chem. Soc. 126, 1324–1325 (2004).

    Article  CAS  Google Scholar 

  88. Hu, J. et al. Linearly polarized emission from colloidal semiconductor quantum rods. Science 292, 2060–2063 (2001).

    Article  CAS  Google Scholar 

  89. Han, M., Gao, X., Su, J. Z. & Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnol. 19, 631–635 (2001).

    Article  CAS  Google Scholar 

  90. Katz, E. & Willner, I. Integrated nanoparticle-biomolecule hybrid systems:synthesis, properties, applications. Angew. Chem. Int. Edn Eng. 43, 6042–6108 (2004).

    Article  CAS  Google Scholar 

  91. Ishii, D. et al. Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. Nature 423, 628–632 (2003).

    Article  CAS  Google Scholar 

  92. Wang, D., He, J., Rosenzweig, N. & Rosenzweig, Z. Superparamagnetic Fe2O3 beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Lett. 4, 409–413 (2004).

    Article  CAS  Google Scholar 

  93. Mansson, A. et al. In vitro sliding of actin filaments labelled with single quantum dots. Biochem. Biophys. Res. Comm. 314, 529–534 (2004).

    Article  CAS  Google Scholar 

  94. Bachand, G. D. et al. Assembly and transport of nanocrystal CdSe quantum dot nanocomposites using microtubules and kinesin motor proteins. Nano Lett. 4, 817–821 (2004).

    Article  CAS  Google Scholar 

  95. Kloepfer, J. A. et al. Quantum dots as strain- and metabolism-specific microbiological labels. App. Environ. Microbiol. 69, 4205–4213 (2003).

    Article  CAS  Google Scholar 

  96. Patolsky, F. et al. Lighting-up the dynamics of telomerization and DNA replication by CdSe-ZnS quantum dots. J. Am. Chem. Soc. 125, 13918–13919 (2003).

    Article  CAS  Google Scholar 

  97. Menzel, E. R. et al. Photoluminescent semiconductor nanocrystals for fingerprint detection. J. Forens. Sci. 45, 545–551 (2000).

    Article  CAS  Google Scholar 

  98. Baird, G. S., Zacharias, D. A. & Tsien, R. Y. Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc. Natl Acad. Sci. 97, 11984–11989 (2000).

    Article  CAS  Google Scholar 

  99. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Naval Research Laboratory (NRL) and A. Ervin and L. Chrisey at the Office of Naval Research (ONR grant N001404WX20270) and A. Krishan at DARPA for support. I.L.M. was and H.T.U. is supported by a National Research Council Fellowship through NRL.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Igor L. Medintz or Hedi Mattoussi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medintz, I., Uyeda, H., Goldman, E. et al. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater 4, 435–446 (2005). https://doi.org/10.1038/nmat1390

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1390

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing