Static Calibration and Analysis of the Velodyne HDL-64E S2 for High Accuracy Mobile Scanning
"> Figure 1
<p>The Velodyne HDL-64E S2 Scanner.</p> "> Figure 2
<p><b>(a)</b> Scanner frame axes. <b>(b)</b> Scanner layout. <b>(c)</b> Scanner Parameters in Vertical Plane. <b>(d)</b> Scanner Parameters in Horizontal Plane.</p> "> Figure 3
<p><b>(a)</b> Calibration Site (Buildings in Red, Wood Fence in Green, Scan Locations in Blue). <b>(b)</b> Photo of Building in Northwest Quadrant of Site.</p> "> Figure 4
<p><b>(a)</b> Planar Misclosure Before Adjustment. <b>(b)</b> Planar Misclosure After Adjustment.</p> "> Figure 5
<p><b>(a)</b> Encoder Angle Residuals. <b>(b)</b> Range Residuals for Least Squares Adjustment.</p> "> Figure 6
<p>Residuals <span class="html-italic">Versus</span> Planar Incidence Angle <b>(a)</b> Encoder Angle <b>(b)</b> Range.</p> "> Figure 7
<p>Range Residuals <span class="html-italic">versus</span> Laser # (Red Line = Mean Value).</p> "> Figure 8
<p>Magnitude of Mean Range Residual <span class="html-italic">vs</span> Laser Vertical Angle.</p> ">
Abstract
:1. Introduction
Sensor | 64 lasers |
360° (azimuth) by 26.8° (vertical) FOV | |
range: 50 m (10% reflectivity) 120 m (80%) | |
1.5 cm range accuracy (1 sigma) | |
0.09° Horizontal Encoder Resolution | |
>1.3333 MHz | |
Laser | Class 1 |
905 nm wavelength | |
5 nanosecond pulse | |
2.0 mrad beam divergence |
2. Mathematical Model of the HDL-64E S2 Scanner
- si
- is the distance scale factor for laser i;
- is the distance offset for laser i;
- δi
- is the vertical rotation correction for laser i;
- βi
- is the horizontal rotation correction for laser i;
- is the horizontal offset from scanner frame origin for laser i;
- is the vertical offset from scanner frame origin for laser i;
- Ri
- is the raw distance measurement from laser i;
- ε
- is the encoder angle measurement.
3. Calibration Models
3.1. Mathematical Model for Calibration Adjustment
3.2. Static Plane-Based Functional Model
3.3. Least Squares Solution for the Static Model
# of Conditions | m = I |
# of Unknowns | u = 6 * (S − 1) − 3 + 6 * (Lasers − 1) + 2 + 4P |
# of Observations | n = 2I |
# of Constraints | c = P |
# of Degrees of Freedom | r = I − u + c |
4. Experimental Description
4.1. Data Collection
5. Analysis of Results
5.1. Planar Surface Misclosure
(meters) | Planar Misclosure | |
Before | After | |
Min | −0.225 | −0.063 |
Max | 0.148 | 0.063 |
Mean | 0.000 | 0.000 |
RMSE | 0.036 | 0.013 |
5.2. Measurement Residual Analysis
All Measurements | Incidence Angle < 65 deg | |||
Range (m) | Encoder (deg) | Range (m) | Encoder (deg) | |
Minimum | −1.058 | −0.940 | −0.232 | −0.298 |
Maximum | 0.498 | 0.710 | 0.204 | 0.298 |
Mean | 0.001 | −0.001 | 0.000 | 0.000 |
RMSE | 0.084 | 0.063 | 0.037 | 0.027 |
5.3. Parameter Correlation
Correlation Coefficients | |||||||||||
Y | Z | OMEGA | PHI | KAPPA | □ | □ | Dio | Hio | Vio | s | |
X | 0.113 | 0.064 | 0.072 | 0.153 | 0.19 | 0.012 | 0.045 | 0.018 | 0.011 | 0.018 | 0.029 |
Y | xx | 0.114 | 0.071 | 0.083 | 0.227 | 0.023 | 0.015 | 0.022 | 0.01 | 0.022 | 0.145 |
Z | xx | xx | 0.459 | 0.195 | 0.042 | 0.038 | 0.013 | 0.039 | 0.014 | 0.035 | 0.019 |
OMEGA | xx | xx | xx | 0.157 | 0.188 | 0.098 | 0.017 | 0.025 | 0.021 | 0.094 | 0.021 |
PHI | xx | xx | xx | xx | 0.17 | 0.078 | 0.021 | 0.019 | 0.021 | 0.076 | 0.021 |
KAPPA | xx | xx | xx | xx | xx | 0.022 | 0.068 | 0.023 | 0.024 | 0.018 | 0.021 |
δ | xx | xx | xx | xx | xx | xx | 0.127 | 0.491 | 0.095 | 0.909 | 0.454 |
β | xx | xx | xx | xx | xx | xx | xx | 0.132 | 0.879 | 0.111 | 0.193 |
Dio | xx | xx | xx | xx | xx | xx | xx | xx | 0.112 | 0.593 | 0.754 |
Hio | xx | xx | xx | xx | xx | xx | xx | xx | xx | 0.091 | 0.154 |
Vio | xx | xx | xx | xx | xx | xx | xx | xx | xx | xx | 0.493 |
5.4. Accuracy of Estimated Parameters
Unknown | Maximum Correction | Minimum Correction | Average | Units | |
Correction | Estimated Accuracy | ||||
X | 0.0022 | −0.0014 | 0.0007 | 0.0012 | m |
Y | 0.0115 | −0.0051 | 0.0035 | 0.0019 | m |
Z | 0.0004 | −0.0006 | −0.0001 | 0.0004 | m |
OMEGA | 0.0133 | −0.0075 | 0.0006 | 0.0038 | deg |
PHI | 0.0058 | −0.0077 | −0.0003 | 0.0046 | deg |
KAPPA | 0.0037 | −0.0068 | −0.0005 | 0.0053 | deg |
V ROT | 0.3967 | −0.1299 | 0.1118 | 0.0124 | deg |
H ROT | 0.1703 | −0.1941 | −0.0517 | 0.0167 | deg |
D OFF | 0.1640 | −0.0140 | 0.0657 | 0.0046 | m |
H OFF | 0.0351 | −0.0238 | −0.0006 | 0.0039 | m |
V OFF | 0.0601 | −0.0203 | 0.0223 | 0.0028 | m |
D SCALE | 0.0009 | −0.0022 | −0.0006 | 0.0003 | unitless |
6. Summary and Future Work
Acknowledgments
References
- Cheung, H. Spinning laser maker is the real winner of the Urban Challenge. TGDaily. 7th November 2007. Available online: http://www.tgdaily.com/trendwatch-features/34750-spinning-laser-maker-is-the-real-winner-of-the-urban-challenge (accessed on May 17, 2010).
- High Definition LiDAR; Datasheet for Velodyne HDL-64E S2; Velodyne: Morgan Hill, CA, USA; Available online: http://www.velodyne.com/lidar/products/brochure/HDL64E%20S2%20datasheet_2010_lowres.pdf (accessed on May 28, 2010).
- Glennie, C. Kinematic terrestrial light-detection and ranging system for scanning. Transp. Res. Record: J. Transp. Res. Board 2009, 2105, 135–141. [Google Scholar] [CrossRef]
- Glennie, C. Rigorous 3D error analysis of kinematic scanning LIDAR systems. J. Appl. Geodesy 2007, 1, 147–157. [Google Scholar] [CrossRef]
- Lichti, D. Error modeling, calibration and analysis of an AM-CW terrestrial laser scanner system. ISPRS J. Photogramm. Remote Sensing 2007, 61, 307–324. [Google Scholar] [CrossRef]
- Schneider, D. Calibration of a Riegl LMS-420i Based on a Multi-Station Adjustment and a Geometric Model With Additional Parameters. In Proceedings of ISPRS Workshop on Laser Scanning, Paris, France, September 1–2, 2009; pp. 177–182.
- Filin, S. Recovery of systematic biases in laser altimetry data using natural surfaces. Photogramm. Eng. Remote Sens. 2003, 69, 1235–1242. [Google Scholar] [CrossRef]
- Skaloud, J.; Lichti, D. Rigorous approach to bore-sight self-calibration in airborne laser scanning. ISPRS J. Photogramm. Remote Sensing 2006, 61, 47–59. [Google Scholar] [CrossRef]
- Skaloud, J.; Schaer, P. Towards automated LiDAR boresight self-calibration. In Proceedings of 5th International Symposium on Mobile Mapping Technology, Padova, Italy, May 29–31, 2007. [CD-ROM].
- Bae, K.H.; Lichti, D. On-site self-calibration using planar features for terrestrial laser scanners. In Proceedings of ISPRS Workshop on Laser Scanning and SilviLaser, Espoo, Finland, September 12–14, 2007. [CD-ROM].
- Förstner, W.; Wrobel, B. Mathematical concepts in photogrammetry. In Manual of Photogrammetry, 5th ed.; McGlone, J.C., Mikhail, E.M., Bethel, J., Mullen, R., Eds.; American Society of Photogrammetry and Remote Sensing: Bethesda, MD, USA, 2004; pp. 15–180. [Google Scholar]
- Kuang, S. Geodetic Network Analysis and Optimal Design: Concepts and Applications; Ann Arbor Press: Chelsea, MI, USA, 1996. [Google Scholar]
- Lichti, D.; Lampard, J. Reflectorless total station self-calibration. Survey Review 2008, 40, 244–259. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Glennie, C.; Lichti, D.D. Static Calibration and Analysis of the Velodyne HDL-64E S2 for High Accuracy Mobile Scanning. Remote Sens. 2010, 2, 1610-1624. https://doi.org/10.3390/rs2061610
Glennie C, Lichti DD. Static Calibration and Analysis of the Velodyne HDL-64E S2 for High Accuracy Mobile Scanning. Remote Sensing. 2010; 2(6):1610-1624. https://doi.org/10.3390/rs2061610
Chicago/Turabian StyleGlennie, Craig, and Derek D. Lichti. 2010. "Static Calibration and Analysis of the Velodyne HDL-64E S2 for High Accuracy Mobile Scanning" Remote Sensing 2, no. 6: 1610-1624. https://doi.org/10.3390/rs2061610