Aerosols in the Mixed Layer and Mid-Troposphere from Long-Term Data of the Italian Automated Lidar-Ceilometer Network (ALICENET) and Comparison with the ERA5 and CAMS Models
<p>Location and naming of the ALICENET stations (<b>left</b>) and composite zooms over the three selected stations (<b>right</b>) showing the topography (inset legend) and urbanised areas (reddish shaded areas). Background map credits: (<b>left</b>) NASA/NOAA Suomi-NPP VIIRS; and (<b>right</b>) NASA Worldview combining the Global Digital Elevation Model colour index and colour-shaded relief (inset legend) from the ASTER and urban land cover (red overlaid areas) from the Terra and Aqua combined MODIS Land Cover Type.</p> "> Figure 2
<p>ALICENET aerosol products derived from measurements performed in Rome Tor Vergata, 14–21 October 2022: (<b>a</b>) aerosol extinction profiles at 1064 nm, (<b>b</b>) PM profiles, (<b>c</b>) hourly averaged ALICENET-derived AOD (blue) and AERONET L2 AOD (black) from the co-located sunphotometer, and associated uncertainties (error bars), and (<b>d</b>) aerosol layering mask derived by the ALICENET-ALADIN tool, discriminating the continuous aerosol layer (CAL), mixed aerosol layer (MAL), elevated aerosol layers (EALs), aerosol-free (i.e., molecular, MOL) and cloud-screened (CLOUD) regions.</p> "> Figure 3
<p>CAMS data of (<b>a</b>) the total PM<sub>10</sub> and (<b>b</b>) the dust PM<sub>10</sub> for the same site and period as presented in <a href="#remotesensing-17-00372-f002" class="html-fig">Figure 2</a>.</p> "> Figure 4
<p>ALICENET-derived vertical profiles (0–5 km, y-axis) of the median (2016–2022) PM resolved by month (top x-axis) and time of day (bottom x-axis) in (<b>a</b>) Aosta, (<b>b</b>) Rome, and (<b>c</b>) Messina. The grey dashed lines indicate the ground level at each station.</p> "> Figure 5
<p>Monthly and daily resolved median (2016–2022) horizontal winds from the (<b>a</b>) MERIDA and (<b>b</b>,<b>c</b>) ERA5 reanalysis, plus surface wind from meteorological measurements at the first vertical level. Note the different wind speed colour scale in Aosta with respect to Rome and Messina.</p> "> Figure 6
<p>Seasonal median values (lines) and interquartile ranges (shaded area) of the wet (light blue) and dry (green) ALICENET PM estimates and the CAMS PM<sub>10</sub> data (red) in (<b>a</b>) Aosta, (<b>b</b>) Rome, and (<b>c</b>) Messina. The relevant statistics of the surface PM<sub>10</sub> concentrations measured by the nearest EPA station (black dots) are also reported. The addressed period is 2018–2022.</p> "> Figure 7
<p>Median differences between the CAMS PM<sub>10</sub> data and the ALICENET dry PM estimates in (<b>a</b>) Aosta, (<b>b</b>) Rome, and (<b>c</b>) Messina. The addressed period is 2018–2022.</p> "> Figure 8
<p>Median value (2016–2022) of the ALICENET-derived AOD (at 1064 nm, black dots, right y-axis) and relevant vertical build-up from ground level to a 5 km altitude (in percentage, colour scale) in (<b>a</b>) Aosta, (<b>b</b>) Rome, and (<b>c</b>) Messina.</p> "> Figure 9
<p>Monthly median values and interquartile ranges (bars) of the diurnal (orange dots) and nocturnal (blue dots) ALICENET-retrieved AOD in (<b>a</b>) Aosta, (<b>b</b>) Rome, and (<b>c</b>) Messina during 2016–2022. The corresponding AOD statistics from the nearest AERONET or SKYNET sunphotometer are also displayed (black dots).</p> "> Figure 10
<p>Median values (2016–2022) and interquartile ranges (shaded areas) of the CAL and MAL in (<b>a</b>) Aosta, (<b>b</b>) Rome, and (<b>c</b>) Messina.</p> "> Figure 11
<p>Monthly and altitude-resolved frequency of occurrence (left panels) and average contribution to the PM concentrations (right panels) of the EALs detected by ALICENET over (<b>a</b>) Aosta, (<b>b</b>) Rome, and (<b>c</b>) Messina (2016–2022).</p> "> Figure 12
<p>The mean (2016–2022) 500 hPa geopotential anomalies (ERA5 fields) relative to the mean seasonal conditions during the ALICENET-detected EAL events in winter (<b>left column</b>) and summer (<b>right column</b>) over (from top to bottom) Aosta, Rome, and Messina (red dots).</p> "> Figure 13
<p>Monthly resolved frequency of days with EALs detected by ALICENET (green bars) and subset statistics (red bars) of those EAL impacting the MAL PM loads (see text) over (<b>a</b>) Aosta, (<b>b</b>) Rome, and (<b>c</b>) Messina during 2016–2022.</p> "> Figure 14
<p>Monthly and altitude-resolved statistics (2018–2022) of the dominant aerosol type (desert dust, wildfires, others) identified through CAMS data in correspondence to the EALs detected by ALICENET in (<b>a</b>) Aosta, (<b>b</b>) Rome, and (<b>c</b>) Messina. Dark blue indicates regions not statistically significant (NS) for EAL classification.</p> "> Figure A1
<p>Monthly and daily resolved median percentage of cloud-screened data points in (<b>a</b>) Aosta, (<b>b</b>) Rome, and (<b>c</b>) Messina over 2016–2022. The grey dashed lines indicate the ground level.</p> "> Figure A2
<p>Monthly and daily resolved median wind speeds and wind directions at the surface level from the anemometric measurements and ERA5 reanalysis in (<b>a</b>) Aosta, (<b>b</b>) Rome, and (<b>c</b>) Messina during 2016–2022.</p> "> Figure A3
<p>Monthly median values (points) and interquartile ranges (bars) of the ALICENET PM estimates (‘real atmospheric condition’ (wet) and corrected to dry PM) during 2016–2022 in (<b>a</b>) Aosta, (<b>b</b>) Rome, and (<b>c</b>) Messina. The corresponding statistics of the (dry) surface PM<sub>10</sub> concentrations measured by the nearest EPA station are also included (black points).</p> "> Figure A4
<p>Mean geopotential field at 500 hPa from ERA5 during the winter (<b>left column</b>) and summer (<b>right column</b>) EAL events over (from top to bottom) Aosta, Rome, and Messina (red dots), as derived from the 2016–2022 ALICENET dataset.</p> "> Figure A5
<p>Mean geopotential field at 500 hPa from ERA5 during winter days with elevated aerosol layers below (<b>left</b>) and above (<b>right</b>) 2.5 km a.s.l. over Aosta (red dot), as derived from the 2016–2022 ALC dataset.</p> "> Figure A6
<p>Difference between the CAMS PM<sub>10</sub> and ALICENET PM estimates within the EALs in (<b>a</b>) Aosta, (<b>b</b>) Rome, and (<b>c</b>) Messina (2018–2022).</p> "> Figure A7
<p>Seasonal median (2018–2022) vertical profiles of the CAMS PM<sub>10</sub> components: dust (PM<sub>10</sub>DUST, red), wildfire (PM<sub>10</sub>WF, green), and other components (PM<sub>10</sub>OTHER = PM<sub>10</sub>TOT − PM<sub>10</sub>DUST − PM<sub>10</sub>WF, light blue) over (<b>a</b>) Aosta, (<b>b</b>) Rome, and (<b>c</b>) Messina. The shaded areas represent the interquartile ranges. Note the log scale on the x-axis.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sites and Instruments
2.2. ALICENET Data Processing and Long-Term Statistics
- The mixed aerosol layer (MAL), a layer where aerosols are well mixed by turbulent fluxes.
- The elevated aerosol layers (EALs), structures of enhanced aerosol concentrations located above the MAL.
- The continuous aerosol layer (CAL), the maximum altitude affected by aerosols, above which the atmosphere is thus aerosol-free.
2.3. ERA5 and CAMS Model Reanalysis Datasets
3. Results
3.1. Aerosol Mass Profiles from ALICENET Observations and Integration with Model Data
3.2. Vertical Build-Up of Aerosol Optical Depth and Diurnal–Nocturnal Variability
3.3. Aerosol Vertical Layering and Investigation of Main Driving Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Quality Assurance Criteria for Long-Term Analysis of ALICENET Products
ALICENET Product | QA Criteria Applied to Long-Term ALICENET Data |
---|---|
Aerosol Profiles (AP) | QA.AP.1 (instrument status) ALC state optics > 70% QA.AP.2 (physical significance): 0 < α(z,t) < 15 m−1, 0 < PM(z,t) < 200 μg m−3, Std(AOD)/Mean(AOD) < 6 QA.AP.3 (statistical significance): Number of profiles/season > 10,000, Difference in data coverage between consecutive months < 30% |
Aerosol Layers (AL) | QA.AL.1 (instrument status) ALC state optics > 70% QA.AL.2 (physical significance): 0 < CALH(t) < 7000 m, 0 < MALH(t) < 3500 m, |ΔCALH/Δt| < 3000 m over 3 h, |ΔMALH/Δt| < 1000 m over 1 h QA.AL.3 (statistical significance): Number of layers/season > 5000, Difference in data coverage between consecutive months < 30% |
Appendix A.2. Supplementary Material for the Long-Term Analysis of Aerosol Products
References
- Bellouin, N.; Quaas, J.; Gryspeerdt, E.; Kinne, S.; Stier, P.; Watson-Parris, D.; Boucher, O.; Carslaw, K.S.; Christensen, M.; Daniau, A.; et al. Bounding Global Aerosol Radiative Forcing of Climate Change. Rev. Geophys. 2020, 58, e2019RG000660. [Google Scholar] [CrossRef] [PubMed]
- Wall, C.J.; Storelvmo, T.; Possner, A. Global observations of aerosol indirect effects from marine liquid clouds. Atmos. Chem. Phys. 2023, 23, 13125–13141. [Google Scholar] [CrossRef]
- Stier, P.; van den Heever, S.C.; Christensen, M.W.; Gryspeerdt, E.; Dagan, G.; Saleeby, S.M.; Bollasina, M.; Donner, L.; Emanuel, K.; Ekman, A.M.L.; et al. Multifaceted aerosol effects on precipitation. Nat. Geosci. 2024, 17, 719–732. [Google Scholar] [CrossRef]
- Fuzzi, S.; Baltensperger, U.; Carslaw, K.; Decesari, S.; Van Der Gon, H.D.; Facchini, M.C.; Fowler, D.; Koren, I.; Langford, B.; Lohmann, U.; et al. Particulate matter, air quality and climate: Lessons learned and future needs. Atmos. Chem. Phys. 2015, 15, 8217–8299. [Google Scholar] [CrossRef]
- World Health Statistics 2024: Monitoring Health for the SDGs, Sustainable Development Goals. 2024. Available online: https://www.who.int/publications/i/item/9789240094703 (accessed on 9 December 2024).
- World Meteorological Organization (WMO). The 2022 GCOS ECVs Requirements (GCOS 245). GCOS. 2022. Available online: https://library.wmo.int/idurl/4/58111 (accessed on 9 December 2024).
- Raptis, I.-P.; Kazadzis, S.; Amiridis, V.; Gkikas, A.; Gerasopoulos, E.; Mihalopoulos, N. A decade of aerosol optical properties measurements over Athens, Greece. Atmosphere 2020, 11, 154. [Google Scholar] [CrossRef]
- Vogel, A.; Alessa, G.; Scheele, R.; Weber, L.; Dubovik, O.; North, P.; Fiedler, S. Uncertainty in aerosol optical depth from modern aerosol-climate models, reanalyses, and satellite products. J. Geophys. Res. 2022, 127, e2021JD035483. [Google Scholar] [CrossRef]
- Tuna Tuygun, G.; Elbir, T. Comparative analysis of CAMS aerosol optical depth data and AERONET observations in the Eastern Mediterranean over 19 years. Environ. Sci. Pollut. Res. Int. 2024, 31, 27069–27084. [Google Scholar] [CrossRef]
- Peters, A. Ambient air pollution and Alzheimer’s disease: The role of the composition of fine particles. Proc. Natl. Acad. Sci. USA 2023, 120, e2220028120. [Google Scholar] [CrossRef]
- Directive—EU—2024/2881—EN—EUR-Lex. Available online: http://data.europa.eu/eli/dir/2024/2881/oj (accessed on 9 December 2024).
- Fountoulakis, I.; Papachristopoulou, K.; Proestakis, E.; Amiridis, V.; Kontoes, C.; Kazadzis, S. Effect of aerosol vertical distribution on the modeling of solar radiation. Remote Sens. 2022, 14, 1143. [Google Scholar] [CrossRef]
- Napoli, A.; Desbiolles, F.; Parodi, A.; Pasquero, C. Aerosol indirect effects in complex-orography areas: A numerical study over the Great Alpine Region. Atmos. Chem. Phys. 2022, 22, 3901–3909. [Google Scholar] [CrossRef]
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.M.; Kondo, Y.; Liao, H.; Lohmann, U.; et al. Clouds Aerosols. In Clouds Aerosols: Climate Change 2013: Physical Science Basis. Contribution Working Group I Fifth Assessment Report Intergovernmental Panel Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Balestrini, R.; Diémoz, H.; Freppaz, M.; Delconte, C.; Caschetto, M.; Matiatos, I. Nitrogen atmospheric deposition in a high-altitude Alpine environment: A chemical and isotopic approach to investigate the influence from anthropized areas. Atmos. Environ. 2024, 328, 120513. [Google Scholar] [CrossRef]
- Di Mauro, B.; Garzonio, R.; Rossini, M.; Filippa, G.; Pogliotti, P.; Galvagno, M.; di Cella, U.M.; Migliavacca, M.; Baccolo, G.; Clemenza, M.; et al. Saharan dust events in the European Alps: Role in snowmelt and geochemical characterization. Cryosphere 2019, 13, 1147–1165. [Google Scholar] [CrossRef]
- Fasano, G.; Diémoz, H.; Fountoulakis, I.; Cassardo, C.; Kudo, R.; Siani, A.M.; Ferrero, L. Vertical profile of the clear-sky aerosol direct radiative effect in an Alpine valley, by the synergy of ground-based measurements and radiative transfer simulations. Bull. Atmos. Sci. Technol. 2021, 2, 11. [Google Scholar] [CrossRef]
- Barreto, Á.; Cuevas, E.; García, R.D.; Carrillo, J.; Prospero, J.M.; Ilić, L.; Basart, S.; Berjón, A.J.; Marrero, C.L.; Hernández, Y.; et al. Long-term characterisation of the vertical structure of the Saharan Air Layer over the Canary Islands using lidar and radiosonde profiles: Implications for radiative and cloud processes over the subtropical Atlantic Ocean. Atmos. Chem. Phys. 2022, 22, 739–763. [Google Scholar] [CrossRef]
- Gobbi, G.; Barnaba, F.; Di Liberto, L.; Bolignano, A.; Lucarelli, F.; Nava, S.; Perrino, C.; Pietrodangelo, A.; Basart, S.; Costabile, F.; et al. An inclusive view of Saharan dust advections to Italy and the Central Mediterranean. Atmos. Environ. 2019, 201, 242–256. [Google Scholar] [CrossRef]
- Diémoz, H.; Barnaba, F.; Magri, T.; Pession, G.; Dionisi, D.; Pittavino, S.; Tombolato, I.K.F.; Campanelli, M.; Della Ceca, L.S.; Hervo, M.; et al. Transport of Po Valley aerosol pollution to the northwestern Alps—Part 1: Phenomenology. Atmos. Chem. Phys. 2019, 19, 3065–3095. [Google Scholar] [CrossRef]
- Diémoz, H.; Gobbi, G.P.; Magri, T.; Pession, G.; Pittavino, S.; Tombolato, I.K.F.; Campanelli, M.; Barnaba, F. Transport of Po Valley aerosol pollution to the northwestern Alps—Part 2: Long-term impact on air quality. Atmos. Chem. Phys. 2019, 19, 10129–10160. [Google Scholar] [CrossRef]
- Kotthaus, S.; Bravo-Aranda, J.A.; Coen, M.C.; Guerrero-Rascado, J.L.; Costa, M.J.; Cimini, D.; O’Connor, E.J.; Hervo, M.; Alados-Arboledas, L.; Jiménez-Portaz, M.; et al. Atmospheric boundary layer height from ground-based remote sensing: A review of capabilities and limitations. Atmos. Meas. Tech. 2023, 16, 433–479. [Google Scholar] [CrossRef]
- Lampilahti, J.; Leino, K.; Manninen, A.; Poutanen, P.; Franck, A.; Peltola, M.; Hietala, P.; Beck, L.; Dada, L.; Quéléver, L.; et al. Aerosol particle formation in the upper residual layer. Atmos. Chem. Phys. 2021, 21, 7901–7915. [Google Scholar] [CrossRef]
- Curci, G.; Ferrero, L.; Tuccella, P.; Barnaba, F.; Angelini, F.; Bolzacchini, E.; Carbone, C.; van der Gon, H.A.C.D.; Facchini, M.C.; Gobbi, G.P.; et al. How much is particulate matter near the ground influenced by upper-level processes within and above the PBL? A summertime case study in Milan (Italy) evidences the distinctive role of nitrate. Atmos. Chem. Phys. 2015, 15, 2629–2649. [Google Scholar] [CrossRef]
- Diémoz, H.; Magri, T.; Pession, G.; Tarricone, C.; Tombolato, I.K.F.; Fasano, G.; Zublena, M. Air quality in the Italian northwestern Alps during year 2020: Assessment of the COVID-19 «lockdown effect» from multi-technique observations and models. Atmosphere 2021, 12, 1006. [Google Scholar] [CrossRef]
- Li, X.; Ma, Y.; Wang, Y.; Wei, W.; Zhang, Y.; Liu, N.; Hong, Y. Vertical distribution of particulate matter and its relationship with planetary boundary layer structure in Shenyang, northeast China. Aerosol Air Qual. Res. 2019, 19, 2464–2476. [Google Scholar] [CrossRef]
- Sun, J.; Veefkind, P.; Nanda, S.; van Velthoven, P.; Levelt, P. The role of aerosol layer height in quantifying aerosol absorption from ultraviolet satellite observations. Atmos. Meas. Tech. 2019, 12, 6319–6340. [Google Scholar] [CrossRef]
- Li, C.; Li, J.; Dubovik, O.; Zeng, Z.-C.; Yung, Y.L. Impact of aerosol vertical distribution on Aerosol Optical Depth retrieval from passive satellite sensors. Remote Sens. 2020, 12, 1524. [Google Scholar] [CrossRef]
- Rogozovsky, I.; Ansmann, A.; Althausen, D.; Heese, B.; Engelmann, R.; Hofer, J.; Baars, H.; Schechner, Y.; Lyapustin, A.; Chudnovsky, A. Impact of aerosol layering, complex aerosol mixing, and cloud coverage on high-resolution MAIAC aerosol optical depth measurements: Fusion of lidar, AERONET, satellite, and ground-based measurements. Atmos Environ. 2021, 247, 118163. [Google Scholar] [CrossRef]
- De Leeuw, G.; van der A, R.; Bai, J.; Hoed, M.D.; Ding, J.; Guo, J.; Li, Z.; Zhang, Y.; Fan, C.; Qin, K.; et al. Remote sensing of air pollutants in China to study the effects of emission reduction policies on air quality. J. Atmos. Sol. Terr. Phys. 2024, 265, 106392. [Google Scholar] [CrossRef]
- Koffi, B.; Schulz, M.; Bréon, F.; Dentener, F.; Steensen, B.M.; Griesfeller, J.; Winker, D.; Balkanski, Y.; Bauer, S.E.; Bellouin, N.; et al. Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results. J. Geophys. Res. 2016, 121, 7254–7283. [Google Scholar] [CrossRef]
- Pappalardo, G.; Amodeo, A.; Apituley, A.; Comeron, A.; Freudenthaler, V.; Linné, H.; Ansmann, A.; Bösenberg, J.; D’Amico, G.; Mattis, I.; et al. EARLINET: Towards an advanced sustainable European aerosol lidar network. Atmos. Meas. Tech. 2014, 7, 2389–2409. [Google Scholar] [CrossRef]
- Levin, I.; Karstens, U.; Eritt, M.; Maier, F.; Arnold, S.; Rzesanke, D.; Hammer, S.; Ramonet, M.; Vítková, G.; Conil, S.; et al. A dedicated flask sampling strategy developed for Integrated Carbon Observation System (ICOS) stations based on CO2 and CO measurements and Stochastic Time-Inverted Lagrangian Transport (STILT) footprint modelling. Atmos. Chem. Phys. 2020, 20, 11161–11180. [Google Scholar] [CrossRef]
- Wiegner, M.; Madonna, F.; Binietoglou, I.; Forkel, R.; Gasteiger, J.; Geiß, A.; Pappalardo, G.; Schäfer, K.; Thomas, W. What is the benefit of ceilometers for aerosol remote sensing? An answer from EARLINET. Atmos. Meas. Tech. 2014, 7, 1979–1997. [Google Scholar] [CrossRef]
- Osborne, M.J.; de Leeuw, J.; Witham, C.; Schmidt, A.; Beckett, F.; Kristiansen, N.; Buxmann, J.; Saint, C.; Welton, E.J.; Fochesatto, J.; et al. The 2019 Raikoke volcanic eruption—Part 2: Particle-phase dispersion and concurrent wildfire smoke emissions. Atmos. Chem. Phys. 2022, 22, 2975–2997. [Google Scholar] [CrossRef]
- Rizza, U.; Avolio, E.; Morichetti, M.; Di Liberto, L.; Bellini, A.; Barnaba, F.; Virgili, S.; Passerini, G.; Mancinelli, E. On the interplay between desert dust and meteorology based on WRF-Chem simulations and remote sensing observations in the Mediterranean basin. Remote Sens. 2023, 15, 435. [Google Scholar] [CrossRef]
- Flentje, H.; Mattis, I.; Kipling, Z.; Rémy, S.; Thomas, W. Evaluation of ECMWF IFS-AER (CAMS) operational forecasts during cycle 41r1–46r1 with calibrated ceilometer profiles over Germany. Geosci. Model. Dev. 2021, 14, 1721–1751. [Google Scholar] [CrossRef]
- Illingworth, A.J.; Cimini, D.; Haefele, A.; Haeffelin, M.; Hervo, M.; Kotthaus, S.; Löhnert, U.; Martinet, P.; Mattis, I.; O’connor, E.J.; et al. How can existing ground-based profiling instruments improve European weather forecasts? Bull. Am. Meteorol. Soc. 2019, 100, 605–619. [Google Scholar] [CrossRef]
- Personnel Directory. Pubs.GISS: Teixeira et al.: Toward a Global Planetary Boundary Layer Observing System: The NASA PBL Incubation. 2021. Available online: https://pubs.giss.nasa.gov/abs/te07200b.html (accessed on 9 December 2024).
- Caicedo, V.; Delgado, R.; Sakai, R.; Knepp, T.; Williams, D.; Cavender, K.; Lefer, B.; Szykman, J. An automated common algorithm for planetary boundary layer retrievals using aerosol lidars in support of the U.S. EPA Photochemical Assessment Monitoring Stations Program. J. Atmos. Ocean. Technol. 2020, 37, 1847–1864. [Google Scholar] [CrossRef]
- Barnaba, F.; Alvan Romero, N.; Bolignano, A.; Basart, S.; Renzi, M.; Stafoggia, M. Multiannual assessment of the desert dust impact on air quality in Italy combining PM10 data with physics-based and geostatistical models. Environ. Int. 2022, 163, 107204. [Google Scholar] [CrossRef]
- Scollo, S.; Prestifilippo, M.; Bonadonna, C.; Cioni, R.; Corradini, S.; Degruyter, W.; Rossi, E.; Silvestri, M.; Biale, E.; Carparelli, G.; et al. Near-real-time tephra fallout assessment at mt. Etna, Italy. Remote Sens. 2019, 11, 2987. [Google Scholar] [CrossRef]
- Bellini, A.; Diémoz, H.; Di Liberto, L.; Gobbi, G.P.; Bracci, A.; Pasqualini, F.; Barnaba, F. ALICENET—An Italian network of automated lidar ceilometers for four-dimensional aerosol monitoring: Infrastructure, data processing, and applications. Atmos. Meas. Tech. 2024, 17, 6119–6144. [Google Scholar] [CrossRef]
- Dionisi, D.; Barnaba, F.; Diémoz, H.; Di Liberto, L.; Gobbi, G.P. A multiwavelength numerical model in support of quantitative retrievals of aerosol properties from automated lidar ceilometers and test applications for AOT and PM10 estimation. Atmos. Meas. Tech. 2018, 11, 6013–6042. [Google Scholar] [CrossRef]
- Douros, J.; Eskes, H.; van Geffen, J.; Boersma, K.F.; Compernolle, S.; Pinardi, G.; Blechschmidt, A.-M.; Peuch, V.-H.; Colette, A.; Veefkind, P. Comparing Sentinel-5P TROPOMI NO2 column observations with the CAMS regional air quality ensemble. Geosci. Model. Dev. 2023, 16, 509–534. [Google Scholar] [CrossRef]
- Lavers, D.A.; Simmons, A.; Vamborg, F.; Rodwell, M.J. An evaluation of ERA5 precipitation for climate monitoring. Q. J. R. Meteorol. Soc. 2022, 148, 3152–3165. [Google Scholar] [CrossRef]
- Struckmeier, C.; Drewnick, F.; Fachinger, F.; Gobbi, G.P.; Borrmann, S. Atmospheric aerosols in Rome, Italy: Sources, dynamics and spatial variations during two seasons. Atmos. Chem. Phys. 2016, 16, 15277–15299. [Google Scholar] [CrossRef]
- Di Bernardino, A.; Iannarelli, A.M.; Casadio, S.; Mevi, G.; Campanelli, M.; Casasanta, G.; Cede, A.; Tiefengraber, M.; Siani, A.M.; Spinei, E.; et al. On the effect of sea breeze regime on aerosols and gases properties in the urban area of Rome, Italy. Urban. Clim. 2021, 37, 100842. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database—Automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef]
- Kudo, R.; Diémoz, H.; Estellés, V.; Campanelli, M.; Momoi, M.; Marenco, F.; Ryder, C.L.; Ijima, O.; Uchiyama, A.; Nakashima, K.; et al. Optimal use of the Prede POM sky radiometer for aerosol, water vapor, and ozone retrievals. Atmos. Meas. Tech. 2021, 14, 3395–3426. [Google Scholar] [CrossRef]
- Hervo, M.; Poltera, Y.; Haefele, A. An empirical method to correct for temperature-dependent variations in the overlap function of CHM15k ceilometers. Atmos. Meas. Tech. 2016, 9, 2947–2959. [Google Scholar] [CrossRef]
- Klett, J.D. Lidar inversion with variable backscatter/extinction ratios. Appl. Opt. 1985, 24, 1638–1643. [Google Scholar] [CrossRef]
- Adam, M.; Putaud, J.P.; Martins dos Santos, S.; Dell’Acqua, A.; Gruening, C. Aerosol hygroscopicity at a regional background site (Ispra) in Northern Italy. Atmos. Chem. Phys. 2012, 12, 5703–5717. [Google Scholar] [CrossRef]
- Giorgino, T. Computing and visualizing dynamic time warping alignments inR: ThedtwPackage. J. Stat. Softw. 2009, 31, 1–24. [Google Scholar] [CrossRef]
- Du, P.; Kibbe, W.A.; Lin, S.M. Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching. Bioinformatics 2006, 22, 2059–2065. [Google Scholar] [CrossRef]
- D’Angelo, L.; Rovelli, G.; Casati, M.; Sangiorgi, G.; Perrone, M.G.; Bolzacchini, E.; Ferrero, L. Seasonal behavior of PM2.5 deliquescence, crystallization, and hygroscopic growth in the Po Valley (Milan): Implications for remote sensing applications. Atmos. Res. 2016, 176–177, 87–95. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- C3S Data. Available online: https://cds.climate.copernicus.eu/ (accessed on 11 December 2024).
- CAMS Data. Available online: https://atmosphere.copernicus.eu/european-air-quality-reanalysis (accessed on 13 January 2025).
- Galmarini, S.; Kioutsioukis, I.; Solazzo, E.; Alyuz, U.; Balzarini, A.; Bellasio, R.; Christensen, J.H. Two-scale multi-model ensemble: Is a hybrid ensemble of opportunity telling us more? Atmos. Chem. Phys. 2018, 18, 8727–8744. [Google Scholar] [CrossRef] [PubMed]
- Menut, L.; Mailler, S.; Siour, G.; Bessagnet, B.; Turquety, S.; Rea, G.; Briant, R.; Mallet, M.; Sciare, J.; Formenti, P. Analysis of the atmospheric composition during the summer 2013 over the Mediterranean area using the CHARMEX measurements and the CHIMERE model. Atmos. Chem. Phys. Discuss. 2014, 16, 23075–23123. [Google Scholar] [CrossRef]
- Simpson, D.; Benedictow, A.; Berge, H.; Bergström, R.; Emberson, L.D.; Fagerli, H.; Flechard, C.R.; Hayman, G.D.; Gauss, M.; Jonson, J.E.; et al. The EMEP MSC-W chemical transport model—Technical description. Atmos. Chem. Phys. 2012, 12, 7825–7865. [Google Scholar] [CrossRef]
- Memmesheimer, M.; Jakobs, H.J.; Friese, E.; Müller, W.J.; Ebel, A.; Feldmann, H. Episodes of high concentrations of PM10 and PM2.5 over Europe in winter 2002/2003: Meteorological conditions and chemical composition as calculated with a complex operational short-term air-quality model. J. Aerosol. Sci. 2004, 35, 1251–1262. [Google Scholar] [CrossRef]
- Manders, A.M.M.; Builtjes, P.J.H.; Curier, L.; van der Gon, H.A.C.D.; Hendriks, C.; Jonkers, S.; Kranenburg, R.; Kuenen, J.J.P.; Segers, A.J.; Timmermans, R.M.A.; et al. Curriculum vitae of the LOTOS–EUROS (v2.0) chemistry transport model. Geosci. Model. Dev. 2017, 10, 4145–4173. [Google Scholar] [CrossRef]
- Robertson, L.; Langner, J.; Engardt, M. An eulerian limited-area atmospheric transport model. J. Appl. Meteorol. 1999, 38, 190–210. [Google Scholar] [CrossRef]
- Guth, J.; Josse, B.; Marécal, V.; Joly, M.; Hamer, P. First implementation of secondary inorganic aerosols in the MOCAGE version R2.15.0 chemistry transport model. Geosci. Model. Dev. 2016, 9, 137–160. [Google Scholar] [CrossRef]
- Sofiev, M.; Vira, J.; Kouznetsov, R.; Prank, M.; Soares, J.; Genikhovich, E. Construction of an Eulerian atmospheric dispersion model based on the advection algorithm of M. Galperin: Dynamic cores v.4 and 5 of SILAM v.5.5. Geosci. Model. Dev. Discuss. 2015, 8, 2905–2947. [Google Scholar] [CrossRef]
- Christensen, J.H. The Danish eulerian hemispheric model—A three-dimensional air pollution model used for the arctic. Atmos. Environ. 1997, 31, 4169–4191. [Google Scholar] [CrossRef]
- Kaminski, J.W.; Neary, L.; Struzewska, J.; McConnell, J.C.; Lupu, A.; Jarosz, J.; Toyota, K.; Gong, S.L.; Côté, J.; Liu, X.; et al. GEM-AQ, an on-line global multiscale chemical weather modelling system: Model description and evaluation of gas phase chemistry processes. Atmos. Chem. Phys. 2008, 8, 3255–3281. [Google Scholar] [CrossRef]
- Bonanno, R.; Lacavalla, M.; Sperati, S. A new high-resolution Meteorological Reanalysis Italian Dataset: MERIDA. Q. J. R. Meteorol. Soc. 2019, 145, 1756–1779. [Google Scholar] [CrossRef]
- MERIDA. Available online: https://merida.rse-web.it/ (accessed on 11 December 2024).
- Gkikas, A.; Basart, S.; Hatzianastassiou, N.; Marinou, E.; Amiridis, V.; Kazadzis, S.; Pey, J.; Querol, X.; Jorba, O.; Gassó, S.; et al. Mediterranean intense desert dust outbreaks and their vertical structure based on remote sensing data. Atmos. Chem. Phys. 2016, 16, 8609–8642. [Google Scholar] [CrossRef]
- Angevine, W.M.; Hare, J.E.; Fairall, C.W.; Wolfe, D.E.; Hill, R.J.; Brewer, W.A.; White, A.B. Structure and formation of the highly stable marine boundary layer over the Gulf of Maine. J. Geophys. Res. 2006, 111, D23. [Google Scholar] [CrossRef]
- Bellini, A.; Golzio, A.; Magri, T.; Ferrarese, S.; Pession, G.; Manfrin, M. Sensitivity of pollutant concentrations to the turbulence schemes of a dispersion modelling chain over complex orography. Atmosphere 2022, 13, 167. [Google Scholar] [CrossRef]
- Riccobono, F.; Schobesberger, S.; Scott, C.E.; Dommen, J.; Ortega, I.K.; Rondo, L.; Almeida, J.; Amorim, A.; Bianchi, F.; Breitenlechner, M.; et al. Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles. Science 2014, 344, 717–721. [Google Scholar] [CrossRef]
- Barnaba, F.; Putaud, J.P.; Gruening, C.; dell’Acqua, A.; Dos Santos, S. Annual cycle in co-located in situ, total-column, and height-resolved aerosol observations in the Po Valley (Italy): Implications for ground-level particulate matter mass concentration estimation from remote sensing. J. Geophys. Res. 2010, 115, D19209. [Google Scholar] [CrossRef]
- Fernandes, A.; Pietruczuk, A.; Szkop, A.; Krzyścin, J. Aerosol layering in the free troposphere over the Industrial City of raciborz in southwest Poland and its influence on surface UV radiation. Atmosphere 2021, 12, 812. [Google Scholar] [CrossRef]
- Barreto, A.; Román, R.; Cuevas, E.; Pérez-Ramírez, D.; Berjón, A.J.; Kouremeti, N.; Kazadzis, S.; Gröbner, J.; Mazzola, M.; Toledano, C.; et al. Evaluation of night-time aerosols measurements and lunar irradiance models in the frame of the first multi-instrument nocturnal intercomparison campaign. Atmos. Environ. 2019, 202, 190–211. [Google Scholar] [CrossRef]
- Serafin, S.; Adler, B.; Cuxart, J.; De Wekker, S.F.J.; Gohm, A.; Grisogono, B.; Kalthoff, N.; Kirshbaum, D.J.; Rotach, M.W.; Schmidli, J.; et al. Exchange processes in the atmospheric boundary layer over mountainous terrain. Atmosphere 2018, 9, 102. [Google Scholar] [CrossRef]
- Kotthaus, S.; Haeffelin, M.; Drouin, M.-A.; Dupont, J.-C.; Grimmond, S.; Haefele, A.; Hervo, M.; Poltera, Y.; Wiegner, M. Tailored algorithms for the detection of the atmospheric boundary layer height from common automatic lidars and ceilometers (ALC). Remote Sens. 2020, 12, 3259. [Google Scholar] [CrossRef]
- De Tomasi, F.; Perrone, M.R. PBL and dust layer seasonal evolution by lidar and radiosounding measurements over a peninsular site. Atmos. Res. 2006, 80, 86–103. [Google Scholar] [CrossRef]
- Coen, M.C.; Andrews, E.; Aliaga, D.; Andrade, M.; Angelov, H.; Bukowiecki, N.; Ealo, M.; Fialho, P.; Flentje, H.; Hallar, A.G.; et al. Identification of topographic features influencing aerosol observations at high altitude stations. Atmos. Chem. Phys. 2018, 18, 12289–12313. [Google Scholar] [CrossRef]
- Shang, X.; Lipponen, A.; Filioglou, M.; Sundström, A.-M.; Parrington, M.; Buchard, V.; Darmenov, A.S.; Welton, E.J.; Marinou, E.; Amiridis, V.; et al. Monitoring biomass burning aerosol transport using CALIOP observations and reanalysis models: A Canadian wildfire event in 2019. Atmos. Chem. Phys. 2024, 24, 1329–1344. [Google Scholar] [CrossRef]
- Merdji, A.B.; Lu, C.; Xu, X.; Mhawish, A. Long-term three-dimensional distribution and transport of Saharan dust: Observation from CALIPSO, MODIS, and reanalysis data. Atmos. Res. 2023, 286, 106658. [Google Scholar] [CrossRef]
- Israelevich, P.; Ganor, E.; Alpert, P.; Kishcha, P.; Stupp, A. Predominant transport paths of Saharan dust over the Mediterranean Sea to Europe. J. Geophys. Res. 2012, 117, D2. [Google Scholar] [CrossRef]
- Tositti, L.; Brattich, E.; Cassardo, C.; Morozzi, P.; Bracci, A.; Marinoni, A.; Di Sabatino, S.; Porcù, F.; Zappi, A. Development and evolution of an anomalous Asian dust event across Europe in March 2020. Atmos. Chem. Phys. 2022, 22, 4047–4073. [Google Scholar] [CrossRef]
- Sicard, M.; Barragan, R.; Dulac, F.; Alados-Arboledas, L.; Mallet, M. Aerosol optical, microphysical and radiative properties at regional background insular sites in the western Mediterranean. Atmos. Chem. Phys. 2016, 16, 12177–12203. [Google Scholar] [CrossRef]
- Barnaba, F.; Angelini, F.; Curci, G.; Gobbi, G.P. An important fingerprint of wildfires on the European aerosol load. Atmos. Chem. Phys. 2011, 11, 10487–10501. [Google Scholar] [CrossRef]
- Barnaba, F.; Gobbi, G.P. Aerosol seasonal variability over the Mediterranean region and relative impact of maritime, continental and Saharan dust particles over the basin from MODIS data in the year 2001. Atmos. Chem. Phys. 2004, 4, 2367–2391. [Google Scholar] [CrossRef]
- Scollo, S.; Boselli, A.; Coltelli, M.; Leto, G.; Pisani, G.; Prestifilippo, M.; Spinelli, N.; Wang, X. Volcanic ash concentration during the 12 August 2011 Etna eruption. Geophys. Res. Lett. 2015, 42, 2634–2641. [Google Scholar] [CrossRef]
- Cuevas, E.; Gómez-Peláez, A.; Rodríguez, S.; Terradellas, E.; Basart, S.; García, R.; García, O.; Alonso-Pérez, S. The pulsating nature of large-scale Saharan dust transport as a result of interplays between mid-latitude Rossby waves and the North African Dipole Intensity. Atmos. Environ. 2017, 167, 586–602. [Google Scholar] [CrossRef]
- Pey, J.; Perez, N.; Querol, X.; Alastuey, A.; Forastiere, F.; Stafoggia, M.; Study Group. MED-PARTICLES. Saharan dust and forest fires in Southern Europe in the period 2001–2011: Estimation and geographical distribution. Environ. Health Perspect. 2013, 2013, 4546. [Google Scholar] [CrossRef]
- Gkikas, A.; Hatzianastassiou, N.; Mihalopoulos, N.; Katsoulis, V.; Kazadzis, S.; Pey, J.; Querol, X.; Torres, O. The regime of desert dust episodes in the Mediterranean based on contemporary satellite observations and ground measurements. Atmos. Chem. Phys. Discuss. 2013, 13, 16247–16299. [Google Scholar] [CrossRef]
- Dayan, U.; Ricaud, P.; Zbinden, R.; Dulac, F. Atmospheric pollution over the eastern Mediterranean during summer—A review. Atmos. Chem. Phys. 2017, 17, 13233–13263. [Google Scholar] [CrossRef]
- Putaud, J.P.; Cavalli, F.; Martins dos Santos, S.; Dell’Acqua, A. Long-term trends in aerosol optical characteristics in the Po Valley, Italy. Atmos. Chem. Phys. 2014, 14, 9129–9136. [Google Scholar] [CrossRef]
- Pandolfi, M.; Tobias, A.; Alastuey, A.; Sunyer, J.; Schwartz, J.; Lorente, J.; Pey, J.; Querol, X. Effect of atmospheric mixing layer depth variations on urban air quality and daily mortality during Saharan dust outbreaks. Sci. Total. Environ. 2014, 494–495, 283–289. [Google Scholar] [CrossRef]
ALICENET Station (Reference Institution) | Site Type (Inhabitants) | Lat, Lon | Altitude a.s.l. | ALC Instrument (Operating Period) | Ancillary, Additional Instrumentation Used Here (Reference Network and Distance from ALC) |
---|---|---|---|---|---|
Aosta (ARPA Valle d’Aosta) | semi-rural, Alpine, Aosta outskirts (40 k) | 45°44′N, 07°21′E | 560 m | CHM15k (2015–present) |
|
Rome Tor Vergata (CNR-ISAC) | urban background, Rome outskirts (2.9 M) | 41°50′N, 12°38′E | 100 m | CHM15k (2013–present) |
|
Messina (CNR-ISAC, CNR-IRBIM) | urban, maritime, near Messina harbour (230 k) | 38°11′N, 15°34′E | 5 m | CHM15k (2016–present) |
|
ALICENET Station | Aerosol Profiles (15 min Resolution) | CAL (15 min Resolution) | MAL (30 min Resolution) | EAL (1 h Resolution) |
---|---|---|---|---|
Aosta | 225,148 (23% winter, 25% spring, 27% summer, 25% fall) | 181,826 (18% winter, 28% spring, 35% summer, 19% fall) | 94,656 (24% winter, 24% spring, 27% summer, 25% fall) | 8170 (9% winter, 29% spring, 37% summer, 25% fall) |
Rome | 222,415 (23% winter, 26% spring, 25% summer, 26% fall) | 183,378 (22% winter, 26% spring, 28% summer, 24% fall) | 94,279 (23% winter, 26% spring, 27% summer, 24% fall) | 20,674 (10% winter, 28% spring, 39% summer, 23% fall) |
Messina | 200,706 (23% winter, 24% spring, 27% summer, 26% fall) | 185,060 (22% winter, 24% spring, 30% summer, 24% fall) | 39,684 (21% winter, 19% spring, 34% summer, 26% fall) | 20,720 (8% winter, 22% spring, 45% summer, 25% fall) |
Model Dataset | Vertical Levels | Horizontal Resolution | Temporal Resolution | Analysed Fields | Available Period |
---|---|---|---|---|---|
ERA5 atmospheric reanalysis | 1000, 950, 900, 850, 800, 750, 700, 600, 500 hPa | 0.25° × 0.25° | Hourly | Geopotential, horizontal wind, relative humidity | 2016–2022 |
MERIDA atmospheric reanalysis | 850, 700, 500 hPa | 0.07° × 0.07° | Hourly | Geopotential, horizontal wind, relative humidity | 2016–2022 |
CAMS European air quality Ensemble reanalysis | 0, 250, 500, 1000, 2000, 3000, 5000 m a.g.l. | 0.1° × 0.1° | Hourly | PM10 and relevant vertically resolved components (dust, wildfire) | 2018–2021 (validated) 2022 (interim) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellini, A.; Diémoz, H.; Gobbi, G.P.; Di Liberto, L.; Bracci, A.; Barnaba, F. Aerosols in the Mixed Layer and Mid-Troposphere from Long-Term Data of the Italian Automated Lidar-Ceilometer Network (ALICENET) and Comparison with the ERA5 and CAMS Models. Remote Sens. 2025, 17, 372. https://doi.org/10.3390/rs17030372
Bellini A, Diémoz H, Gobbi GP, Di Liberto L, Bracci A, Barnaba F. Aerosols in the Mixed Layer and Mid-Troposphere from Long-Term Data of the Italian Automated Lidar-Ceilometer Network (ALICENET) and Comparison with the ERA5 and CAMS Models. Remote Sensing. 2025; 17(3):372. https://doi.org/10.3390/rs17030372
Chicago/Turabian StyleBellini, Annachiara, Henri Diémoz, Gian Paolo Gobbi, Luca Di Liberto, Alessandro Bracci, and Francesca Barnaba. 2025. "Aerosols in the Mixed Layer and Mid-Troposphere from Long-Term Data of the Italian Automated Lidar-Ceilometer Network (ALICENET) and Comparison with the ERA5 and CAMS Models" Remote Sensing 17, no. 3: 372. https://doi.org/10.3390/rs17030372
APA StyleBellini, A., Diémoz, H., Gobbi, G. P., Di Liberto, L., Bracci, A., & Barnaba, F. (2025). Aerosols in the Mixed Layer and Mid-Troposphere from Long-Term Data of the Italian Automated Lidar-Ceilometer Network (ALICENET) and Comparison with the ERA5 and CAMS Models. Remote Sensing, 17(3), 372. https://doi.org/10.3390/rs17030372