Ground-Based MAX-DOAS Observations of Tropospheric Ozone and Its Precursors for Diagnosing Ozone Formation Sensitivity
<p>Multi-axis differential optical absorption spectroscopy (MAX-DOAS) instrument and the measurement site.</p> "> Figure 2
<p>Diurnal variations of NO<sub>2</sub> at the AIOFM site from MAX-DOAS measurements.</p> "> Figure 3
<p>Diurnal variations of HCHO at the AIOFM site from MAX-DOAS measurements.</p> "> Figure 4
<p>Vertical O<sub>3</sub> profiles at the AIOFM site from MAX-DOAS measurements.</p> "> Figure 5
<p>Linear fittings of surface NO<sub>2</sub> (<b>a</b>) and O<sub>3</sub> (<b>b</b>) between CNEMC in situ and MAX-DOAS measurements.</p> "> Figure 6
<p>Linear fittings of tropospheric NO<sub>2</sub> (<b>a</b>) and HCHO (<b>b</b>) VCDs between MAX-DOAS and TROPOMI measurements.</p> "> Figure 7
<p>(<b>a</b>) Third-order fitting curve between surface HCHO/NO<sub>2</sub> ratios and O<sub>3</sub>; (<b>b</b>) third-order fitting curve between surface HCHO/NO<sub>2</sub> ratios and ΔO<sub>3</sub>. The red and blue areas denote the 95% prediction interval and regime transition, respectively. The red and blue lines denote the fitting curve and the peak of the fitting curve, respectively.</p> "> Figure 8
<p>The regime transitions (blue shaded area), binned statistics of HCHO/NO<sub>2</sub> ratios (boxes), averaged values (triangles), and the calculated HCHO/NO<sub>2</sub> profile (red line).</p> "> Figure 9
<p>Average diurnal variations of O<sub>3</sub>, HCHO, NO<sub>2</sub>, and HCHO/NO<sub>2</sub> ratios on non-polluted (<b>a</b>) and polluted days (<b>b</b>).</p> "> Figure 10
<p>Diurnal variations of O<sub>3</sub> (<b>a</b>), HCHO (<b>b</b>), NO<sub>2</sub> (<b>c</b>), and HCHO/NO<sub>2</sub> ratios (<b>d</b>) in a typical O<sub>3</sub> pollution episode.</p> ">
Abstract
:1. Introduction
2. Measurement and Method
2.1. MAX-DOAS Measurement
2.2. Auxiliary Data
2.3. Profiles Retrieval
3. Results and Discussions
3.1. Diurnal Variations of NO2, HCHO, and O3
3.2. Validations
3.3. Diagnosis of O3 Formation Sensitivity
3.4. O3 Pollution Analyses
4. Summary
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, M.; Huang, X.; Song, Y.; Xu, T.; Wang, S.; Wu, Z.; Hu, M.; Zhang, L.; Zhang, Q.; Pan, Y.; et al. Rapid SO2 emission reductions significantly increase tropospheric ammonia concentrations over the North China Plain. Atmos. Chem. Phys. 2018, 18, 17933–17943. [Google Scholar] [CrossRef]
- Lu, X.; Chen, Y.; Huang, Y.; Chen, D.; Shen, J.; Lin, C.; Li, Z.; Fung, J.C.H.; Lau, A.K.H. Exposure and mortality apportionment of PM2.5 between 2006 and 2015 over the Pearl Delta region in southern China. Atmos. Environ. 2020, 231, 117512. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J. Tropospheric SO2 and NO2 in 2012–2018: Contrasting views of two sensors (OMI and OMPS) from space. Atmos. Environ. 2020, 223, 117214. [Google Scholar] [CrossRef]
- Krotkov, N.A.; McLinden, C.A.; Li, C.; Lamsal, L.N.; Celarier, E.A.; Marchenko, S.V.; Swartz, W.H.; Bucsela, E.J.; Joiner, J.; Ducan, B.N.; et al. Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015. Atmos. Chem. Phys. 2016, 16, 4605–4629. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, Q.; van der A, R.J.; Zheng, B.; Tong, D.; Yan, L.; Zheng, Y.; He, K. Recent reduction in NOx emissions over China: Synthesis of satellite observations and emission inventories. Environ. Res. Lett. 2016, 11, 114002. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Karimian, H.; Li, M.; Fan, Q.; Xu, Z. Spatio-temporal variation of ozone pollution risk and its influencing factors in China based on Geodetector and Geospatial models. Chemosphere 2022, 302, 134843. [Google Scholar] [CrossRef]
- Lu, X.; Hong, J.; Zhang, L.; Cooper, O.R.; Schultz, M.G.; Xu, X.; Wang, T.; Gao, M.; Zhao, Y.; Zhang, Y. Severe surface ozone pollution in China: A global perspective. Environ. Sci. Technol. Lett. 2018, 5, 487–494. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, H.; Yao, Y.; Zeng, C.; Gao, P.; Zhuang, L.; Fan, L.; Ye, D. Relationships of ozone formation sensitivity with precursors emissions, meteorology and land use types, in Guangdong-Hong Kong-Macao Greater Bay Area, China. J. Environ. Sci. 2020, 94, 1–13. [Google Scholar] [CrossRef]
- Turner, M.C.; Jerrett, M.; Pope, C.A.; Krewski, D.; Gapstur, S.M.; Diver, R.; Beckerman, B.S.; Marshall, J.D.; Su, J.; Crouse, D.L.; et al. Long-term ozone exposure and mortality in a large prospective study. Am. J. Respir. Crit. Care Med. 2016, 193, 1134–1142. [Google Scholar] [CrossRef]
- Wang, Y.; Wild, O.; Chen, X.; Wu, Q.; Gao, M.; Chen, H.; Qi, Y.; Wang, Z. Health impacts of long-term ozone exposure in China over 2013–2017. Environ. Int. 2020, 144, 106030. [Google Scholar] [CrossRef]
- Ashmore, M.R. Assessing the future global impacts of ozone on vegetation. Plant Cell Environ. 2005, 28, 949–964. [Google Scholar] [CrossRef]
- Yi, F.; Feng, J.; Wang, Y.; Jiang, F. Influence of surface ozone on crop yield of maize in China. J. Integr. Agric. 2020, 19, 578–589. [Google Scholar] [CrossRef]
- Pu, X.; Wang, T.J.; Huang, X.; Melas, D.; Zanis, P.; Papanastasiou, D.K.; Poupkou, A. Enhanced surface ozone during the heat wave of 2013 in Yangtze River Delta region, China. Sci. Total Environ. 2017, 603, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Monks, P.S.; Archibald, A.T.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C.; Law, K.S.; Mills, G.E.; et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 2015, 15, 8889–8973. [Google Scholar] [CrossRef]
- Sillman, S. The use of Noy, H2O2, and HNO3 as indicators for ozone-NOx-hydrocarbon sensitivity in urban locations. J. Geophys. Res. Atmos. 1995, 100, 14175–14188. [Google Scholar] [CrossRef]
- Martin, R.V.; Fiore, A.M.; van Donkelaar, A. Space-based diagnosis of surface ozone sensitivity to anthropogenic emissions. Geophys. Res. Lett. 2004, 31, L06120. [Google Scholar] [CrossRef]
- Duncan, B.N.; Yoshida, Y.; Olson, J.R.; Sillman, S.; Martin, R.V.; Lamsal, L.; Hu, Y.; Pickering, K.E.; Retscher, C.; Allen, D.J.; et al. Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation. Atmos. Environ. 2010, 44, 2213–2223. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Tan, Z.; Wang, W.; Yang, Y.; Zhu, Y.; Yang, S.; Song, M.; Chen, S.; Wang, H.; et al. Assessing the ratios of formaldehyde and glyoxal to NO2 as indicators of O3-NOx-VOC sensitivity. Environ. Sci. Technol. 2021, 55, 10935–10945. [Google Scholar] [CrossRef]
- Qian, Y.; Wang, D.; Li, Z.; Liu, H.; Zhou, H.; Dou, K.; Xi, L.; Tang, F.; Si, F.; Luo, Y. Ground-based MAX-DOAS observations of tropospheric formaldehyde and nitrogen dioxide: Insights into ozone formation sensitivity. Atmos. Pollut. Res. 2024, 15, 102285. [Google Scholar] [CrossRef]
- Lin, H.; Xing, C.; Hong, Q.; Liu, C.; Ji, X.; Liu, T.; Lin, J.; Lu, C.; Tan, W.; Li, Q.; et al. Diagnosis of ozone formation sensitivities in different height layers via MAX-DOAS observations in Guangzhou. J. Geophys. Res. Atmos. 2022, 127, e2022JD036803. [Google Scholar] [CrossRef]
- Ryan, R.G.; Rhodes, S.; Tully, M.; Schofield, R. Surface ozone exceedances in Melbourne, Australia are shown to be under NOx control, as demonstrated using formaldehyde: NO2 and glyoxal: Formaldehyde ratios. Sci. Total Environ. 2020, 749, 141460. [Google Scholar] [CrossRef] [PubMed]
- Zhan, C.; Xie, M.; Liu, J.; Wang, T.; Xu, M.; Chen, B.; Li, S.; Zhuang, B.; Li, M. Surface ozone in the Yangtze River Delta, China: A synthesis of basic features, meteorological driving factors, and health impacts. J. Geophys. Res. Atmos. 2021, 126, e2020JD033600. [Google Scholar] [CrossRef]
- Mao, Y.; Shang, Y.; Liao, H.; Cao, H.; Qu, Z.; Henze, D.K. Sensitivities of ozone to its precursors during heavy ozone pollution events in the Yangtze River Delta using the adjoint method. Sci. Total Environ. 2024, 925, 171585. [Google Scholar] [CrossRef] [PubMed]
- Hönninger, G.; von Friedeburg, C.; Platt, U. Multi axis differential optical absorption spectroscopy (MAX-DOAS). Atmos. Chem. Phys. 2004, 4, 231–254. [Google Scholar] [CrossRef]
- Von Friedeburg, C.; Pundt, I.; Mettendorf, K.U.; Wagner, T.; Platt, U. Multi-axis-DOAS measurements of NO2 during the BAB II motorway emission campaign. Atmos. Environ. 2005, 39, 977–985. [Google Scholar] [CrossRef]
- Frieβ, U.; Monks, P.S.; Remedios, J.J.; Rozanov, A.; Sinreich, R.; Wagner, T.; Platt, U. MAX-DOAS O4 measurements: A new technique to derive information on atmospheric aerosols: 2. modeling studies. J. Geophys. Res. Atmos. 2006, 111, D14203. [Google Scholar] [CrossRef]
- Irie, H.; Takashima, H.; Kanaya, Y.; Boersma, K.F.; Gast, L.; Wittrock, F.; Brunner, D.; Zhou, Y.; van Roozendael, M. Eight-component retrievals from ground-based MAX-DOAS observations. Atmos. Meas. Tech. 2011, 4, 1027–1044. [Google Scholar] [CrossRef]
- Platt, U.; Stutz, J. Differential Optical Absorption Spectroscopy: Principles and Applications; Springer: Berlin/Heidelberg, Germany, 2008; pp. 135–174. [Google Scholar]
- Wagner, T.; Dix, B.; von Friedeburg, C.; Frieβ, U.; Sanghavi, S.; Sinreich, R.; Platt, U. MAX-DOAS O4 measurements: A new technique to derive information on atmospheric aerosols—Principles and information content. J. Geophys. Res. Atmos. 2004, 109, D22205. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, S.; Zhu, J.; Zhang, R.; Guo, S.; Saiz-Lopez, A.; Zhou, B. Atmospheric formaldehyde, glyoxal and their relations to ozone pollution under low- and high-NOx regimes in summertime Shanghai, China. Atmos. Res. 2021, 258, 105635. [Google Scholar] [CrossRef]
- Hong, Q.; Zhu, L.; Xing, C.; Hu, Q.; Lin, H.; Zhang, C.; Zhao, C.; Liu, T.; Su, W.; Liu, C. Inferring vertical variability and diurnal evolution of O3 formation sensitivity based on the vertical distribution of summertime HCHO and NO2 in Guangzhou, China. Sci. Total Environ. 2022, 827, 154045. [Google Scholar] [CrossRef]
- Ryan, R.G.; Marais, E.A.; Gershenson-Smith, E.; Ramsay, R.; Muller, J.P.; Tirpitz, J.L.; Frieβ, U. Measurement report: MAX-DOAS measurements characterise central London ozone pollution episodes during 2022 heatwaves. Atmos. Chem. Phys. 2023, 23, 7121–7139. [Google Scholar] [CrossRef]
- Xing, C.; Liu, C.; Hong, Q.; Liu, H.; Wu, H.; Lin, J.; Song, Y.; Chen, Y.; Liu, T.; Hu, Q.; et al. Vertical distributions and potential sources of wintertime atmospheric pollutants and the corresponding ozone production on the coast of Bohai Sea. J. Environ. Manag. 2022, 319, 115721. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Luo, Y.; Dou, K.; Zhou, H.; Xi, L.; Yang, T.; Zhang, T.; Si, F. Retrieval of tropospheric ozone profiles using ground-based MAX-DOAS. Sci. Total Environ. 2023, 857, 159341. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Tang, X.; Zhu, J.; Wang, Z.; Li, J.; Wu, H.; Wu, Q.; Chen, H.; Zhu, L.; Wang, W.; et al. A 6-year-long (2013–2018) high-resolution air quality reanalysis dataset in China based on the assimilation of surface observations from CNEMC. Earth Syst. Sci. Data 2021, 13, 529–570. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, C.; Li, B.; Zhao, F.; Zhao, C. Spatiotemporal neural network for estimating surface NO2 concentrations over north China and their human health impact. Environ. Int. 2022, 307, 119510. [Google Scholar] [CrossRef]
- Ialongo, I.; Virta, H.; Eskes, H.; Hovila, J.; Douros, J. Comparison of TROPOMI/Sentinel-5 Precursor NO2 observations with ground-based measurements in Helsinki. Atmos. Chem. Phys. 2020, 13, 205–218. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Frieß, U.; Sihler, H.; Sander, R.; Pöhler, D.; Yilmaz, S.; Platt, U. The vertical distribution of BrO and aerosols in the Arctic: Measurements by active and passive differential optical absorption spectroscopy. J. Geophys. Res. Atmos. 2011, 116, D00R04. [Google Scholar] [CrossRef]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding—Theory and Practice; Series on Atmospheric, Oceanic and Planetary Physics–Volume 2; World Scientific Publishing Co., Pte. Ltd.: Singapore, 2000. [Google Scholar] [CrossRef]
- Rozanov, V.V.; Rozanov, A.V.; Kokhanovsky, A.A.; Burrows, J.P. Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN. J. Quant. Spectro. Rad. 2014, 133, 13–71. [Google Scholar] [CrossRef]
- Chan, K.; Hartl, A.; Lam, Y.F.; Xie, P.; Liu, W.; Cheung, H.; Lampel, J.; Pöhler, D.; Li, A.; Xu, J.; et al. Observations of tropospheric NO2 using ground based MAX-DOAS and OMI measurements during the Shanghai World Expo 2010. Atmos. Environ. 2015, 119, 45–58. [Google Scholar] [CrossRef]
- Griffin, D.; Zhao, X.; McLinden, C.A.; Boersma, F.; Bourassa, A.; Dammers, E.; Degenstein, D.; Eskes, H.; Fehr, L.; Fioletov, V.; et al. High-resolution mapping of nitrogen dioxide with TROPOMI: First results and validation over the Canadian oil sands. Geophys. Res. Lett. 2019, 46, 1049–1060. [Google Scholar] [CrossRef] [PubMed]
- De Smedt, I.; Pinardi, G.; Vigouroux, C.; Compernolle, S.; Bais, A.; Benavent, N.; Boersma, F.; Chan, K.L.; Donner, S.; Eichmann, K.U.; et al. Comparative assessment of TROPOMI and OMI formaldehyde observations and validation against MAX-DOAS network column measurements. Atmos. Chem. Phys. 2021, 21, 12561–12593. [Google Scholar] [CrossRef]
- Jin, X.; Fiore, A.; Boersma, K.F.; De Smedt, I.; Valin, L. Inferring changes in summertime surface ozone-NOx-VOC chemistry over U.S. urban areas from two decades of satellite and ground-based observations. Environ. Sci. Technol. 2020, 54, 6518–6529. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Ji, X.; Hong, Q.; Li, J.; Li, Q.; Ou, J.; Liu, H.; Xing, C.; Tan, W.; Chen, J.; et al. Vertical evolution of ozone formation sensitivity based on synchronous vertical observations of ozone and proxies for its precursors: Implications for ozone pollution prevention strategies. Environ. Sci. Technol. 2024, 58, 4291–4301. [Google Scholar] [CrossRef]
- Wang, W.; van der A, R.; Ding, J.; van Weele, M.; Cheng, T. Spatial and temporal changes of the ozone sensitivity in China based on satellite and ground-based observations. Atmos. Chem. Phys. 2021, 21, 7253–7269. [Google Scholar] [CrossRef]
- Ren, J.; Guo, F.; Xie, S. Diagnosing ozone-NOx-VOC sensitivity and revealing causes of ozone increases in China based on 2013–2021 satellite retrievals. Atmos. Chem. Phys. 2022, 22, 15035–15047. [Google Scholar] [CrossRef]
- Bogumil, K.; Orphal, J.; Homann, T.; Voigt, S.; Spietz, P.; Fleischmann, O.C.; Vogel, A.; Hartmann, M.; Kromminga, H.; Bovensmann, H.; et al. Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: Instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region. J. Photochem. Photobiol. A Chem. 2003, 157, 167–184. [Google Scholar] [CrossRef]
- Fleischmann, O.C.; Hartmann, M.; Burrows, J.P.; Orphal, J. New ultraviolet absorption cross-sections of BrO at atmospheric temperatures measured by time-windowing Fourier transform spectroscopy. J. Photochem. Photobiol. A Chem. 2004, 168, 117–132. [Google Scholar] [CrossRef]
- Meller, R.; Moortgat, G.K. Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K in the wavelength range 225–375 nm. J. Geophys. Res. 2000, 105, 7089–7101. [Google Scholar] [CrossRef]
- Thalman, R.; Volkamer, R. Temperature dependent absorption cross-sections of O2-O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure. Phys. Chem. Chem. Phys. 2013, 15, 15371–15381. [Google Scholar] [CrossRef]
- Vandaele, A.C.; Hermans, C.; Simon, P.C.; Van Roozendaele, M.; Guilmot, J.M.; Carleer, M.; Colin, R. Fourier transform measurement of NO2 absorption cross-section in the visible range at room temperature. J. Atmos. Chem. 1996, 25, 289–305. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, Y.; Wang, D.; Li, Z.; Yan, G.; Zhao, M.; Zhou, H.; Si, F.; Luo, Y. Ground-Based MAX-DOAS Observations of Tropospheric Ozone and Its Precursors for Diagnosing Ozone Formation Sensitivity. Remote Sens. 2025, 17, 658. https://doi.org/10.3390/rs17040658
Qian Y, Wang D, Li Z, Yan G, Zhao M, Zhou H, Si F, Luo Y. Ground-Based MAX-DOAS Observations of Tropospheric Ozone and Its Precursors for Diagnosing Ozone Formation Sensitivity. Remote Sensing. 2025; 17(4):658. https://doi.org/10.3390/rs17040658
Chicago/Turabian StyleQian, Yuanyuan, Dan Wang, Zhiyan Li, Ge Yan, Minjie Zhao, Haijin Zhou, Fuqi Si, and Yuhan Luo. 2025. "Ground-Based MAX-DOAS Observations of Tropospheric Ozone and Its Precursors for Diagnosing Ozone Formation Sensitivity" Remote Sensing 17, no. 4: 658. https://doi.org/10.3390/rs17040658
APA StyleQian, Y., Wang, D., Li, Z., Yan, G., Zhao, M., Zhou, H., Si, F., & Luo, Y. (2025). Ground-Based MAX-DOAS Observations of Tropospheric Ozone and Its Precursors for Diagnosing Ozone Formation Sensitivity. Remote Sensing, 17(4), 658. https://doi.org/10.3390/rs17040658