Ecosystem Stability in the Ugan–Kuqa River Basin, Xinjiang, China: Investigation of Spatial and Temporal Dynamics and Driving Forces
<p>Schematic diagram of the research region. (<b>a</b>) Geographical location of the study area; (<b>b</b>) Remote sensing image map of the study area; (<b>c</b>) Land use types in the study area; (<b>d</b>) Area percentage of different land use types in the study area.</p> "> Figure 2
<p>Conceptual meta-model of the ecological stability drivers. (<b>a</b>) The overall relationship between stability and climate, vegetation, human activities, and fragmentation. (<b>b</b>) The specific modeling relationship between the drivers of ecosystem stability. The pathways illustrate the interconnections among Pre, Tem, ET, LUCC, GDP, NDVI, ED, PD, LSI, and ecosystem resistance and recovery. Unidirectional arrows denote causation.</p> "> Figure 3
<p>Temporal changes in resistance and recovery.</p> "> Figure 4
<p>Spatial trends in ecosystem resistance and recovery. (<b>a</b>) Spatial trend in resistance. (<b>b</b>) Spatial trend in recovery.</p> "> Figure 5
<p>Scatter plot of resistance–recovery trade-off distributions. The data for both resistance and recovery were standardized within the range of 0 to 1, with the intersection where both factors equate to 0 signifying the origin of the coordinates. The delineation was set at 0.5; values below 0.5 for both resistance and recovery indicate a state of low resistance–low recovery, whereas values surpassing 0.5 indicate high resistance–high recovery. Additionally, resistance above 0.5 and recovery below 0.5 indicate high resistance–low recovery, whereas resistance below 0.5 and recovery above 0.5 suggest low resistance–high recovery.</p> "> Figure 6
<p>Drivers of ecosystem stability, illustrating the simulated effects of climate, vegetation, human ac-tivities, and habitat fragmentation on ecosystem stability. The colors of the arrows represent the degree of significance of the relationships, with dashed arrows indicating nonsignificant correlations. Climatic factors are denoted by blue boxes, vegetation variables are denoted by green boxes, human activity variables are denoted by pink boxes, habitat fragmentation variables are denoted by gray boxes, and stability variables are denoted by yellow boxes.</p> "> Figure 7
<p>Impact of drivers on ecosystem stability. (<b>a</b>) Presents a stacked plot showing the proportions of the total effects of these factors on resistance and recovery, with cells representing negative impacts. (<b>b</b>) Showcases a stacked plot illustrating the percentages of direct versus indirect influences of the variables on resistance, with cells denoting negative impacts. Finally, (<b>c</b>) presents a stacked plot displaying the percentages of direct versus indirect influences of the variables on recovery, with cells indicating a negative impact.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Region
2.2. Data Sources
2.2.1. SPEI Data
2.2.2. GPP Data
2.2.3. Climate Data
2.2.4. Huaman Activities Data
2.2.5. Fragmentation Data
2.3. Research Methods
2.3.1. Data Preprocessing
2.3.2. Drought Threshold
2.3.3. Components of Stability
2.3.4. Trade-Off Between Resistance and Recovery
2.3.5. Analysis of Driving Mechanisms
3. Results
3.1. Temporal and Geographical Differences in Resistance and Recovery
3.2. The Resistance–Recovery Trade-Off
3.3. Drivers of Ecosystem Stability
4. Discussion
4.1. Spatial and Temporal Dynamics of Ecosystem Stability in Watershed
4.2. Climate Warming and Wetting Are Major Contributors to the Enhanced Stability of Watershed Ecosystems
4.3. The Dual Effects of Anthropogenic Activities and Fragmentation on Ecological Stability
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sadiqi, S.S.J.; Hong, E.-M.; Nam, W.-H.; Kim, T. Review: An integrated framework for understanding ecological drought and drought resistance. Sci. Total Environ. 2022, 846, 157477. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar]
- Huang, Z.; Yuan, X.; Liu, X. The key drivers for the changes in global water scarcity: Water withdrawal versus water availability. J. Hydrol. 2021, 601, 126658. [Google Scholar] [CrossRef]
- Haile, G.G.; Tang, Q.; Li, W.; Liu, X.; Zhang, X. Drought: Progress in broadening its understanding. WIREs Water 2020, 7, e1407. [Google Scholar] [CrossRef]
- Wolf, S.; Paul-Limoges, E. Drought and heat reduce forest carbon uptake. Nat. Commun. 2023, 14, 6217. [Google Scholar] [CrossRef]
- Li, W.; Pacheco-Labrador, J.; Migliavacca, M.; Miralles, D.; Hoek van Dijke, A.; Reichstein, M.; Forkel, M.; Zhang, W.; Frankenberg, C.; Panwar, A.; et al. Widespread and complex drought effects on vegetation physiology inferred from space. Nat. Commun. 2023, 14, 4640. [Google Scholar] [CrossRef] [PubMed]
- Gampe, D.; Zscheischler, J.; Reichstein, M.; O’Sullivan, M.; Smith, W.K.; Sitch, S.; Buermann, W. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Change 2021, 11, 772–779. [Google Scholar] [CrossRef]
- Stefanidis, S.; Rossiou, D.; Proutsos, N. Drought Severity and Trends in a Mediterranean Oak Forest. Hydrology 2023, 10, 167. [Google Scholar] [CrossRef]
- Gao, X.; Huang, P.; Wang, K. Assessment of the ecosystem stability of Shapotou Arid Desert Nature Reserve in Ningxia, China. Acta Ecol. Sin. 2019, 39, 6381–6392. [Google Scholar] [CrossRef]
- Noy Meir, I. Stability in arid ecosystems and the effects of man on it. In Proceedings of the 1st International Congress of Ecology, The Hague, The Netherlands, 8–14 September 1974; pp. 220–225. [Google Scholar]
- Van Meerbeek, K.; Jucker, T.; Svenning, J. Unifying the concepts of stability and resilience in ecology. J. Ecol. 2021, 109, 3114–3132. [Google Scholar] [CrossRef]
- Kéfi, S.; Domínguez-García, V.; Donohue, I.; Fontaine, C.; Thébault, E.; Dakos, V. Advancing our understanding of ecological stability. Ecol. Lett. 2019, 22, 1349–1356. [Google Scholar] [CrossRef]
- Justus, J. Complexity, Diversity, and Stability. In A Companion to the Philosophy of Biology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; pp. 321–350. [Google Scholar] [CrossRef]
- Hillebrand, H.; Langenheder, S.; Lebret, K.; Lindström, E.; Östman, Ö.; Striebel, M. Decomposing multiple dimensions of stability in global change experiments. Ecol. Lett. 2018, 21, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Hillebrand, H.; Kunze, C. Meta-analysis on pulse disturbances reveals differences in functional and compositional recovery across ecosystems. Ecol. Lett. 2020, 23, 575–585. [Google Scholar] [CrossRef]
- Donohue, I.; Hillebrand, H.; Montoya, J.M.; Petchey, O.L.; Pimm, S.L.; Fowler, M.S.; Healy, K.; Jackson, A.L.; Lurgi, M.; McClean, D.; et al. Navigating the complexity of ecological stability. Ecol. Lett. 2016, 19, 1172–1185. [Google Scholar] [CrossRef] [PubMed]
- Hoover, D.L.; Pfennigwerth, A.A.; Duniway, M.C. Drought resistance and resilience: The role of soil moisture–plant interactions and legacies in a dryland ecosystem. J. Ecol. 2021, 109, 3280–3294. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Schwalm, C.R.; Gentine, P.; Smith, W.K.; Ciais, P.; Kimball, J.S.; Gazol, A.; Kannenberg, S.A.; Chen, A.; et al. Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems. Nat. Clim. Change 2023, 13, 182–188. [Google Scholar] [CrossRef]
- Abel, C.; Aestre, F.T.; Berdugo, M.; Agesson, T.; Abdi, A.M.; Orion, S.; Ensholt, R. Vegetation resistance to increasing aridity when crossing thresholds depends on local environmental conditions in global drylands. Commun. Earth Environ. 2024, 5, 379. [Google Scholar] [CrossRef]
- Ruppert, J.C.; Harmoney, K.; Henkin, Z.; Snyman, H.A.; Sternberg, M.; Willms, W.; Linstädter, A. Quantifying drylands’ drought resistance and recovery: The importance of drought intensity, dominant life history and grazing regime. Glob. Change Biol. 2015, 21, 1258–1270. [Google Scholar] [CrossRef]
- Yao, Y.; Fu, B.; Liu, Y.; Li, Y.; Wang, S.; Zhan, T.; Wang, Y.; Gao, D. Evaluation of ecosystem resilience to drought based on drought intensity and recovery time. Agric. For. Meteorol. 2022, 314, 108809. [Google Scholar] [CrossRef]
- Shao, X.; Zhang, Y.; Ma, N.; Zhang, X.; Tian, J.; Xu, Z.; Liu, C. Drought-induced ecosystem resistance and recovery observed at 118 flux tower stations across the globe. Agric. For. Meteorol. 2024, 356, 110170. [Google Scholar] [CrossRef]
- Berdugo, M.; Delgado-Baquerizo, M.; Soliveres, S.; Hernández-Clemente, R.; Zhao, Y.; Gaitán, J.J.; Gross, N.; Saiz, H.; Maire, V.; Lehmann, A.; et al. Global ecosystem thresholds driven by aridity. Science 2020, 367, 787–790. [Google Scholar] [CrossRef]
- Pan, X. A preliminary study on the stability of oasis ecosystem in arid area. Quat. Sci. 2001, 21, 345–351. [Google Scholar]
- Li, D.; Yang, Y.; Xia, F.; Sun, W.; Li, X.; Xie, Y. Exploring the influences of different processes of habitat fragmentation on ecosystem services. Landsc. Urban Plan. 2022, 227, 104544. [Google Scholar] [CrossRef]
- Huang, S.; Ding, J.; Liu, B.; Ge, X.; Wang, J.; Zou, J.; Zhang, J. The Capability of Integrating Optical and Microwave Data for Detecting Soil Moisture in an Oasis Region. Remote Sens. 2020, 12, 1358. [Google Scholar] [CrossRef]
- Xia, H.; Zhao, X.; Sha, Y. HSPEI: A 1-km spatial resolution SPEI Dataset across Chinese Mainland from 2001 to 2022. Sci. Data Bank 2024, 11, 479–494. [Google Scholar] [CrossRef]
- Running, S.W.; Glassy, J.M.; Thornton, P.E. MODIS Daily Photosynthesis (PSN) and Annual Net Primary Production (NPP) Product (MOD17) Algorithm Theoretical Basis Document; SCF At-Launch Algorithm ATBD Documents 1999; University of Montana: Missoula, MT, USA, 1999. [Google Scholar]
- Liu, Y.; Liu, R. A Simple Approach for Mapping Forest Cover from Time Series of Satellite Data. Remote Sens. 2020, 12, 2918. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y. Global 1 km × 1 km gridded revised real gross domestic product and electricity consumption during 1992–2019 based on calibrated nighttime light data. Sci. Data 2022, 9, 202. [Google Scholar] [CrossRef]
- Liu, J.; Coomes, D.A.; Gibson, L.; Hu, G.; Liu, J.; Luo, Y.; Wu, C.; Yu, M. Forest fragmentation in China and its effect on biodiversity. Biol. Rev. 2019, 94, 1636–1657. [Google Scholar] [CrossRef]
- Xiong, Y.; Pan, R.; Xu, G.; Jiao, L.; Li, K. A comparison of spatial and temporal characteristics of urban expansion in India during 1990–2014. Prog. Geogr. 2019, 38, 271–282. [Google Scholar]
- Wu, J.; Luo, K.; Zhao, Y. The evolution of urban landscape pattern and its driving forces of Shenzhen from 1996 to 2015. Geographic. Res. 2020, 39, 1725–1738. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- GB/T 20481-2017; Grades of Meteorological Drought. China Standard Press: Beijing, China, 2017.
- Yao, Y.; Liu, Y.; Song, J.; Tao, S.; Li, Y.; Wu, T.; Wang, Y.; Wang, S.; Fu, B. Declining Tradeoff Between Resistance and Resilience of Ecosystems to Drought. Earths Future 2024, 12, e2024EF004665. [Google Scholar] [CrossRef]
- Ver Hoef, J.M.; Peterson, E.E.; Hooten, M.B.; Hanks, E.M.; Fortin, M. Spatial autoregressive models for statistical inference from ecological data. Ecol. Monogr. 2018, 88, 36–59. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, J.; Shirkey, G.; John, R.; Wu, S.R.; Park, H.; Shao, C. Applications of structural equation modeling (SEM) in ecological studies: An updated review. Ecol. Process. 2016, 5, 19. [Google Scholar] [CrossRef]
- Thompson, B. Exploratory and Confirmatory Factor Analysis: Understanding Concepts and Applications; APA: Washington, DC, USA, 2004. [Google Scholar] [CrossRef]
- Klem, L. Path analysis. In Reading and Understanding Multivariate Statistics; American Psychological Association: Washington, DC, USA, 1995; pp. 65–97. [Google Scholar]
- Sun, Q.; Zhang, X.; Jiang, M. Eco-environmental Variables Estimation from Remotely Sensed Data and Eco-environmental Assessment: Models and System. Acta Sci. Nat. Univ. Pekin. 2011, 47, 1073–1080. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, J.; Zhang, J. Remote Sensing-based Drought Monitoring Approach and Research Progress. Sci. Geogr. Sin. 2015, 35, 630–636. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, B.; Zhao, J.; Ye, C.; Wei, L.; Sun, J.; Chu, C.; Lee, T.M. Global patterns and abiotic drivers of ecosystem multifunctionality in dominant natural ecosystems. Environ. Int. 2022, 168, 107480. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, S.; Liu, H.; Wang, F.; Dong, Y.; Wu, G.; Li, Y. Multilevel driving mechanism of ecosystem multidimensional stability in the Yangtze River Economic Belt: A hierarchical linear model approach. J. Clean. Prod. 2024, 449, 141513. [Google Scholar] [CrossRef]
- Gazol, A.; Camarero, J.J.; Anderegg, W.R.L.; Vicente-Serrano, S.M. Impacts of droughts on the growth resilience of Northern Hemisphere forests. Glob. Ecol. Biogeogr. 2017, 26, 166–176. [Google Scholar] [CrossRef]
- Smith, T.; Boers, N. Global vegetation resilience linked to water availability and variability. Nat. Commun. 2023, 14, 498. [Google Scholar] [CrossRef]
- Gong, H.; Wang, G.; Fan, C.; Zhuo, X.; Sha, L.; Kuang, Z.; Bi, J.; Cheng, T. Temporal accumulation and lag effects of precipitation on carbon fluxes in terrestrial ecosystems across semi-arid regions in China. Agric. For. Meteorol. 2024, 356, 110189. [Google Scholar] [CrossRef]
- Madon, O.; Médail, F. The ecological significance of annuals on a Mediterranean grassland (Mt Ventoux, France). Plant Ecol. 1997, 129, 189–199. [Google Scholar] [CrossRef]
- Krieger, A. Temporal dynamics of an ephemeral plant community: Species turnover in seasonal rock pools on Ivorian inselbergs. Plant Ecol. 2003, 167, 283–292. [Google Scholar] [CrossRef]
- Xi, L.; Gou, Q.; Wang, G.; Song, B. The responses of typical annual herbaceous plants to drought stress in a desert-oasis ecotone. Acta Ecol. Sin. 2021, 41, 5425–5434. [Google Scholar] [CrossRef]
- Yasen, M.; Shawuti, M.; Aishan, T.; Mijiti, R.; Abudumiti, Y.; Reheman, M. Spatial-Temporal Characteristics of Cropland in the Ugan-Kuqa River Delta Oasis. Sci. Agric. Sin. 2017, 50, 3506–3518. [Google Scholar] [CrossRef]
- Tilman, D.; Downing, J.A. Biodiversity and stability in grasslands. Nature 1994, 367, 363–365. [Google Scholar] [CrossRef]
- Loreau, M.; De Mazancourt, C. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecol. Lett. 2013, 16, 106–115. [Google Scholar] [CrossRef]
- Isbell, F.; Craven, D.; Connolly, J.; Loreau, M.; Schmid, B.; Beierkuhnlein, C.; Bezemer, T.M.; Bonin, C.; Bruelheide, H.; De Luca, E.; et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 2015, 526, 574–577. [Google Scholar] [CrossRef]
- Chen, F.; Xie, T.; Yang, Y.; Chen, S.; Chen, F.; Huang, W.; Chen, J. Discussion of the “warming and wetting” trend and its future variation in the drylands of Northwest China under global warming. Sci. China Earth Sci. 2023, 66, 1241–1257. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Xu, Y.; Wu, P.; Xue, T.; Wang, J.; Shi, Y.; Zhang, Y.; Song, Y.; Wang, P. Regional Responses to Global Climate Change: Progress and Prospects for Trend, Causes, and Projection of Climatic Warming-Wetting in Northwest China. Adv. Earth Sci. 2023, 38, 551–562. [Google Scholar] [CrossRef]
- Li, M.; Du, J.; Li, W.; Li, R.; Wu, S.; Wang, S. Global Vegetation Change and Its Relationship with Precipitation and Temperature Based on GLASS-LAI in 1982-2015. Sci. Geogr. Sin. 2020, 40, 823–832. [Google Scholar] [CrossRef]
- Zhang, B.; Tian, L.; Zhao, X.; Wu, P. Feedbacks between vegetation restoration and local precipitation over the Loess Plateau in China. Sci. China Earth Sci. 2021, 64, 920–931. [Google Scholar] [CrossRef]
- Zhang, R.; Ouyang, Z.; Xie, X.; Guo, H.; Tan, D.; Xiao, X.; Qi, J.; Zhao, B. Impact of Climate Change on Vegetation Growth in Arid Northwest of China from 1982 to 2011. Remote Sens. 2016, 8, 364. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2019, 1, 14–27. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, Y.; Wu, C.; Li, G.; Ma, M.; Fan, L.; Zheng, H.; Song, L.; Tang, X. Exploring the contribution of environmental factors to evapotranspiration dynamics in the Three-River-Source region, China. J. Hydrol. 2023, 626, 130222. [Google Scholar] [CrossRef]
- Huo, Z.; Dai, X.; Feng, S.; Kang, S.; Huang, G. Effect of climate change on reference evapotranspiration and aridity index in arid region of China. J. Hydrol. 2013, 492, 24–34. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Shen, Y.; Liu, Y.; Zhang, S. Analysis of changing pan evaporation in the arid region of Northwest China. Water Resour. Res. 2013, 49, 2205–2212. [Google Scholar] [CrossRef]
- Xing, W.; Wang, W.; Shao, Q.; Yu, Z.; Yang, T.; Fu, J. Periodic fluctuation of reference evapotranspiration during the past five decades: Does Evaporation Paradox really exist in China? Sci. Rep. 2016, 6, 39503. [Google Scholar] [CrossRef]
- Deng, X.; Liu, Y.; Liu, Z.; Yao, J. Temporal-spatial dynamic change characteristics of evapotranspiration in arid region of Northwest China. Acta Ecol. Sin. 2017, 37, 2994–3008. [Google Scholar] [CrossRef]
- Yang, Y.; Roderick, M.L.; Guo, H.; Miralles, D.G.; Zhang, L.; Fatichi, S.; Luo, X.; Zhang, Y.; McVicar, T.R.; Tu, Z.; et al. Evapotranspiration on a greening Earth. Nat. Rev. Earth Environ. 2023, 4, 626–641. [Google Scholar] [CrossRef]
- Li, D. Aksu, Xinjiang: Continuously building ecological projects to expand three major benefits. Farmers’ Daily, 26 April 2022; No. 003. [Google Scholar] [CrossRef]
- Stuart-Haëntjens, E.; De Boeck, H.J.; Lemoine, N.P.; Mänd, P.; Kröel-Dulay, G.; Schmidt, I.K.; Jentsch, A.; Stampfli, A.; Anderegg, W.R.L.; Bahn, M.; et al. Mean annual precipitation predicts primary production resistance and resilience to extreme drought. Sci. Total Environ. 2018, 636, 360–366. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef]
- Fahrig, L. Ecological Responses to Habitat Fragmentation Per Se. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 1–23. [Google Scholar] [CrossRef]
- Kleijn, D.; Rundlöf, M.; Scheper, J.; Smith, H.G.; Tscharntke, T. Does conservation on farmland contribute to halting the biodiversity decline? Trends Ecol. Evol. 2011, 26, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, J.; Li, M. Analysis on spatial and temporal changes of regional habitat quality based on the spatial pattern reconstruction of land use. Acta Geogr. Sin. 2020, 75, 01000160. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, Y.; Li, J. Quantifying the spatial impact of landscape fragmentation on habitat quality: A multi-temporal dimensional comparison between the Yangtze River Economic Belt and Yellow River Basin of China. Land Use Policy 2023, 125, 106463. [Google Scholar] [CrossRef]
Class | Type | SPEI |
---|---|---|
1 | Normal | SPEI > −0.5 |
2 | Abnormal drought | −1.0 < SPEI ≤ −0.5 |
3 | Moderate drought | −1.5 < SPEI ≤ −1.0 |
4 | Severe drought | −2.0 < SPEI ≤ −1.5 |
5 | Extreme drought | SPEI ≤ −2.0 |
χ2/d.f. | p | RMSEA | RMR | GFI | AGFI | |
---|---|---|---|---|---|---|
SEM | 17.958 | 0.01 | 0.036 | 0.042 | 0.983 | 0.946 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, T.; Zhu, P.; Yang, R.; Sun, Y.; Sun, M.; Zhang, L.; Li, X. Ecosystem Stability in the Ugan–Kuqa River Basin, Xinjiang, China: Investigation of Spatial and Temporal Dynamics and Driving Forces. Remote Sens. 2024, 16, 4272. https://doi.org/10.3390/rs16224272
Zhou T, Zhu P, Yang R, Sun Y, Sun M, Zhang L, Li X. Ecosystem Stability in the Ugan–Kuqa River Basin, Xinjiang, China: Investigation of Spatial and Temporal Dynamics and Driving Forces. Remote Sensing. 2024; 16(22):4272. https://doi.org/10.3390/rs16224272
Chicago/Turabian StyleZhou, Ting, Peiyue Zhu, Rongjin Yang, Yilin Sun, Meiying Sun, Le Zhang, and Xiuhong Li. 2024. "Ecosystem Stability in the Ugan–Kuqa River Basin, Xinjiang, China: Investigation of Spatial and Temporal Dynamics and Driving Forces" Remote Sensing 16, no. 22: 4272. https://doi.org/10.3390/rs16224272
APA StyleZhou, T., Zhu, P., Yang, R., Sun, Y., Sun, M., Zhang, L., & Li, X. (2024). Ecosystem Stability in the Ugan–Kuqa River Basin, Xinjiang, China: Investigation of Spatial and Temporal Dynamics and Driving Forces. Remote Sensing, 16(22), 4272. https://doi.org/10.3390/rs16224272