Correlation Analysis of Vertical Ground Movement and Climate Using Sentinel-1 InSAR
<p>Combined drought indicators for the first 10-day period of July 2022 in Italy (JRC, 2024). This plot shows drought alert indicators over the northern regions, where a state of emergency was declared for this year. This event was an exceptional incident as, in general, the south of Italy is warmer than the north.</p> "> Figure 2
<p>Flowchart of the methodology.</p> "> Figure 3
<p>Histogram of frequency distribution of Spearman correlation values (<math display="inline"><semantics> <mi>ρ</mi> </semantics></math>) between <math display="inline"><semantics> <mrow> <mi>D</mi> <msub> <mi>C</mi> <mrow> <mn>1</mn> <mi>km</mi> </mrow> </msub> </mrow> </semantics></math> and SVGM at MPs [<a href="#B1-remotesensing-16-04123" class="html-bibr">1</a>].</p> "> Figure 4
<p>Lag time distribution of best correlations between <math display="inline"><semantics> <mrow> <mi>D</mi> <msub> <mi>C</mi> <mrow> <mn>1</mn> <mi>km</mi> </mrow> </msub> </mrow> </semantics></math> and SVGM [<a href="#B1-remotesensing-16-04123" class="html-bibr">1</a>].</p> "> Figure 5
<p>Lag time distribution of best correlations between temperature derived from calibrated MODIS and SVGM [<a href="#B1-remotesensing-16-04123" class="html-bibr">1</a>].</p> "> Figure 6
<p>(<b>a</b>) Pairwise <math display="inline"><semantics> <mrow> <mi>D</mi> <msub> <mi>C</mi> <mrow> <mi>C</mi> <mi>E</mi> <mi>M</mi> <mi>S</mi> </mrow> </msub> </mrow> </semantics></math>–<math display="inline"><semantics> <mrow> <mi>D</mi> <msub> <mi>C</mi> <mrow> <mn>1</mn> <mi>km</mi> </mrow> </msub> </mrow> </semantics></math> values of correlations with ground motion; (<b>b</b>) temperature vs. <math display="inline"><semantics> <mrow> <mi>D</mi> <msub> <mi>C</mi> <mrow> <mn>1</mn> <mi>km</mi> </mrow> </msub> </mrow> </semantics></math> correlation. Top and bottom rows are negative and positive (<math display="inline"><semantics> <mi>ρ</mi> </semantics></math>) values from correlation testing with SVGM [<a href="#B1-remotesensing-16-04123" class="html-bibr">1</a>].</p> "> Figure 7
<p>Top row shows the spatial distribution of negative and positive correlations (<b>left</b> and <b>right</b>) in terms of the percentage of correlated MPs with respect to the total number of MPs recorded by the European Ground Motion Service. The percentage was calculated over a regular hexagon grid overlaid onto the study area. Bottom row pinpoints areas (red dots) with the highest percentage of correlated MPs, negative (<b>bottom-left</b>) and positive (<b>bottom-right</b>).</p> "> Figure 8
<p>Measurement points with positive (<b>a</b>,<b>b</b>) and negative (<b>c</b>,<b>d</b>) Spearman correlation values.</p> "> Figure 9
<p>Time series plot showing the correlations at the respective measurement points in <a href="#remotesensing-16-04123-f008" class="html-fig">Figure 8</a>.</p> "> Figure 10
<p>“Viadotto Gorsexio” with a central pillar taller than 172 m.</p> "> Figure 11
<p>Display of information related to EGMS and climate correlation values of the area in the WebGIS viewer.</p> "> Figure 12
<p>Time series plot of the corresponding correlation (<b>a</b>) and the same time series with normalized values (<b>b</b>).</p> ">
Abstract
:1. Introduction
- to investigate the correlation between the SAR-derived SVGM and climatic conditions (drought and temperature) in Italy, examining whether drought events coincide with changes in surface elevation and ground motion patterns;
- to identify regions within Italy where SAR-derived land subsidence and drought conditions exhibit cluster patterns;
- to assess the implications of the identified correlation points and areas with specific causes;
- to analyze the influence of the thermal deformation effect on infrastructure due to temperature-induced vertical ground motion.
2. Materials
2.1. Study Area
2.2. Data
3. Methods
3.1. Drought Indices
3.1.1. Air Temperature Estimation
3.1.2. Precipitation
3.1.3. Drought Code (DC)
- DCt
- is the drought code from the rainfall data of the current day;
- DCt−1
- is the drought code of the previous day;
- Qt−1
- is the moisture equivalent of the previous day;
- Qt
- is the moisture equivalent of the current day;
- rt
- is the rainfall of the day in mm from the CHIRP dataset;
- re
- is the effective rainfall.
- T12
- is the temperature at midday—here, it is estimated from the MODIS LST and converted to the air temperature by a factor of 0.74, as documented;
- Lf
- is a day-length factor, which is constant for each month and is −1.6 for the months of November through to March and 0.9, 3.8, 5.8, 6.4, 5.0, 2.4 and 0.4, respectively, for the months from April to October;
- V
- is the potential evapotranspiration.
3.2. Seasonal Vertical Ground Movement Estimation
3.2.1. Basic EGMS Product
3.2.2. Calibrated EGMS Product
3.2.3. Ortho EGMS Product
3.3. Assessment of Correlations Between SVGM and Climate Indices
3.4. Development of WebGIS Application
3.5. Development of Intermediate Data Products
4. Results
4.1. InSAR Seasonal Vertical Ground Movement Correlations
4.1.1. vs.
4.1.2. DC and Temperature
4.2. Spatial Distribution of MPs in Italy
4.3. Data Availability and WebGIS Data Viewer
- grid with daily precipitation (mm);
- grid with daily air temperature interpolated values (°C);
- grid with calculated drought code (no unit);
- point vector with extracted MPs with correlation (|| > 0.7).
- coordinates of MP;
- Spearman’s rank correlation ();
- confidence interval;
- highest at lagged time;
- lag (days).
4.4. Analysis at Selected Measurement Points (MPs)
5. Discussion
5.1. Thermal Deformation of Infrastructure
5.2. Spatial Analysis of the Correlations at the MPs
5.3. Lag Time Analysis
5.4. Infrastructure Monitoring
5.5. Limitations of the Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pirotti, F.; Toffah, F.E. Investigating the Relation Between Seasonal Vertical Ground Movement from InSAR and Environmental Variables. ISPRS, 2024, in press.
- Galloway, D.L.; Jones, D.R.; Ingebritsen, S.E. Land Subsidence in the United States; Number 1182 in USGS Circular; U.S. Geological Survey: Reston, VA, USA, 1999; p. 188. [Google Scholar]
- Kanan, A.H.; Pirotti, F.; Masiero, M.; Rahman, M.M. Mapping inundation from sea level rise and its interaction with land cover in the Sundarbans mangrove forest. Clim. Chang. 2023, 176, 104. [Google Scholar] [CrossRef]
- Bürgmann, R.; Dresen, G. Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations. Annu. Rev. Earth Planet. Sci. 2008, 36, 531–567. [Google Scholar] [CrossRef]
- Galloway, D.L.; Burbey, T.J. Review: Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Dzurisin, D. Volcano Deformation: Geodetic Monitoring Techniques; Springer-Praxis Books in Geophysical Sciences; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Alcoverro, J. The effective stress principle. Math. Comput. Model. 2003, 37, 457–467. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, N. Unified Effective Stress Equation for Soil. J. Eng. Mech. 2020, 146, 04019135. [Google Scholar] [CrossRef]
- Welch, J.; Wang, G.; Bao, Y.; Zhang, S.; Huang, G.; Hu, X. Unveiling the hidden threat: Drought-induced inelastic subsidence in expansive soils. Geophys. Res. Lett. 2024, 51, e2023GL107549. [Google Scholar] [CrossRef]
- Imai, H.; Ito, K.; Aoki, T.; Uemoto, J.; Uratsuka, S. A Method for Observing Seismic Ground Deformation from Airborne SAR Images. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July–2 August 2019; pp. 1506–1509. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, Z.; Burgmann, R.; Hensley, S.; Fielding, E.; Kim, J. P-band SAR for Ground Deformation Surveying: Advantages and Challenges. Remote Sens. Environ. 2023, 287, 113474. [Google Scholar] [CrossRef]
- Ferretti, A.; Passera, E.; Capes, R. End-to-End Implementation and Operation of the European Ground Motion Service (EGMS): Algorithm Theoretical Basis Document. Technical Report, Technical Report EGMS-D3-ALG-SC1-2.0-006. 2021. Available online: https://land.copernicus.eu/user-corner/technical-library/egms-algorithm-theoretical-basis-document (accessed on 10 April 2024).
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Wang, Y.; Guo, Y.; Hu, S.; Li, Y.; Wang, J.; Liu, X.; Wang, L. Ground Deformation Analysis Using InSAR and Backpropagation Prediction with Influencing Factors in Erhai Region, China. Sustainability 2019, 11, 2853. [Google Scholar] [CrossRef]
- Chaussard, E.; Milillo, P.; Bürgmann, R.; Perissin, D.; Fielding, E.J.; Baker, B. Remote Sensing of Ground Deformation for Monitoring Ground-Water Management Practices: Application to the Santa Clara Valley During the 2012–2015 California Drought. J. Geophys. Res. Solid Earth 2017, 122, 8566–8582. [Google Scholar] [CrossRef]
- Tao, T.; Dai, J.; Song, Z.; Li, S.; Qu, X.; Zhu, Y.; Li, Z.; Zhu, M. Spatial-Temporal Dynamic Evolution of Land Deformation Driven by Hydrological Signals around Chaohu Lake. Sensors 2024, 24, 1198. [Google Scholar] [CrossRef] [PubMed]
- Barthelemy, S.; Bonan, B.; Tomas-Burguera, M.; Grandjean, G.; Bernardie, S.; Naulin, J.P.; le Moigne, P.; Boone, A.; Calvet, J.C. Analyzing Past and Future Droughts that Induce Clay Shrinkage in France Using an Index Based on Water Budget Simulation for Trees. EGUsphere, 2024; Preprint. [Google Scholar] [CrossRef]
- Miller, M.M.; Jones, C.E.; Sangha, S.S.; Bekaert, D.P. Rapid Drought-Induced Land Subsidence and its Impact on the California Aqueduct. Remote Sens. Environ. 2020, 251, 112063. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, S.; Zhang, Q.; Liu, Q.; Ma, Z.; Wang, T.; Tian, J.; Li, X. Research of Deformation and Soil Moisture in Loess Landslide Simultaneous Retrieved with Ground-Based GNSS. Remote Sens. 2022, 14, 5687. [Google Scholar] [CrossRef]
- Davydzenka, T.; Tahmasebi, P.; Shokri, N. Unveiling the global extent of land subsidence: The sinking crisis. Geophys. Res. Lett. 2024, 51, e2023GL104497. [Google Scholar] [CrossRef]
- Hasan, M.F.; Smith, R.; Vajedian, S.; Pommerenke, R.; Majumdar, S. Global land subsidence mapping reveals widespread loss of aquifer storage capacity. Nat. Commun. 2023, 14, 6180. [Google Scholar] [CrossRef]
- Confuorto, P.; Soldato, M.D.; Solari, L.; Festa, D.; Bianchini, S.; Raspini, F.; Casagli, N. Sentinel-1-based monitoring services at regional scale in Italy: State of the art and main findings. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102448. [Google Scholar] [CrossRef]
- Rosi, A.; Tofani, V.; Agostini, A.; Tanteri, L.; Tacconi Stefanelli, C.; Catani, F.; Casagli, N. Subsidence mapping at regional scale using persistent scatters interferometry (PSI): The case of Tuscany region (Italy). Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 328–337. [Google Scholar] [CrossRef]
- Ciampalini, A.; Solari, L.; Giannecchini, R.; Galanti, Y.; Moretti, S. Evaluation of subsidence induced by long-lasting buildings load using InSAR technique and geotechnical data: The case study of a Freight Terminal (Tuscany, Italy). Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101925. [Google Scholar] [CrossRef]
- Pirotti, F.; Adedipe, O.; Leblon, B. Sentinel-1 Response to Canopy Moisture in Mediterranean Forests before and after Fire Events. Remote Sens. 2023, 15, 823. [Google Scholar] [CrossRef]
- Turner, J.A. The Drought Code Component of the Canadian Forest Fire Behaviour System; Technical Report; Canadian Forestry Service Headquarters: Ottawa, ON, Canada, 1972. [Google Scholar]
- Charpentier, A.; James, M.; Ali, H. Predicting Drought and Subsidence Risks in France. Nat. Hazards Earth Syst. Sci. 2022, 22, 2401–2417. [Google Scholar] [CrossRef]
- Understanding Italy. Climate of Italy. Available online: https://www.understandingitaly.com/climate.html (accessed on 10 October 2024).
- Tosi, L. Land Subsidence in Italy: From a Few Well-Known Case Studies in the Past to Several Almost Unknown Occurrences at Present. In Proceedings of the Workshop for Land Subsidence Prevention; Institute of Geosciences and Earth Resources—National Research Council: Rome, Italy, 2019; p. 23. [Google Scholar]
- Crosetto, M.; Solari, L. Chapter 4—European Ground Motion Service. In Satellite Interferometry Data Interpretation and Exploitation; Crosetto, M., Solari, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 63–87. [Google Scholar] [CrossRef]
- Wan, Z.; Hook, S.; Hulley, G. MOD11A1 MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid V061. 2015. Available online: https://lpdaac.usgs.gov/products/mod11a1v061/ (accessed on 1 February 2024).
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- CEMS. CEMS Fire Historical v1. 2024. Available online: https://www.copernicus.eu/en/access-data/copernicus-services-catalogue (accessed on 6 September 2024).
- Beall, H.W. Canadian Forest Fire Danger Rating System; Information Report FF-X-8; Canadian Forestry Service: Ottawa, ON, Canada, 1947. [Google Scholar]
- Van Wagner, C.; Pickett, T. Equations and FORTRAN Program for the Canadian Forest Fire Weather Index System; Technical Report; Canadian Forest Service: Ottawa, ON, Canada, 1985. [Google Scholar]
- Mutiibwa, D.; Strachan, S.; Albright, T. Land Surface Temperature and Surface Air Temperature in Complex Terrain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4762–4774. [Google Scholar] [CrossRef]
- Benali, A.; Carvalho, A.C.; Nunes, J.P.; Carvalhais, N.; Santos, A. Estimating Air Surface Temperature in Portugal Using MODIS LST Data. Remote Sens. Environ. 2012, 124, 108–121. [Google Scholar] [CrossRef]
- Pirotti, F.; Toffah, F.E. Temperature, precipitation and drought code at 1 km resolution over Italy from start of 2017 to end of 2022 (6 years). Zenodo 2024. [Google Scholar] [CrossRef]
- Di Giuseppe, F.; Vitolo, C.; Barnard, C.; Libertá, G.; Maciel, P.; San-Miguel-Ayanz, J.; Villaume, S.; Wetterhall, F. Global seasonal prediction of fire danger. Sci. Data 2024, 11, 128. [Google Scholar] [CrossRef]
- Van Wagner, C.E. Development and Structure of the Canadian Forest Fire Weather Index System; Canadian Forest Service: Ottawa, ON, Canada, 1987. [Google Scholar]
- Ferretti, A.; Passera, E.; Capes, R. End-to-End Implementation and Operation of the European Ground Motion Service (EGMS): Product Description and Format Specification; Technical Report EGMS-D3-PDF-SC1-2.0-007; European Environment Agency, Copernicus Land Monitoring Service: Copenhagen, Denmark, 2021. [Google Scholar]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Luzi, G.; Crippa, B. Measuring Thermal Expansion Using X-Band Persistent Scatterer Interferometry. ISPRS J. Photogramm. Remote Sens. 2015, 100, 84–91. [Google Scholar] [CrossRef]
- Abdollahipour, A.; Ahmadi, H.; Aminnejad, B. A review of downscaling methods of satellite-based precipitation estimates. Earth Sci. Inform. 2022, 15, 1–20. [Google Scholar] [CrossRef]
- Lockart, N.; Kavetski, D.; Franks, S.W. On the role of soil moisture in daytime evolution of temperatures. Hydrol. Process. 2013, 27, 3896–3904. [Google Scholar] [CrossRef]
- Cook, B.I.; Mankin, J.S.; Anchukaitis, K.J. Climate Change and Drought: From Past to Future. Curr. Clim. Chang. Rep. 2018, 4, 164–179. [Google Scholar] [CrossRef]
- Ma, P.; Lin, H.; Lan, H.; Chen, F. Multi-dimensional SAR tomography for monitoring the deformation of newly built concrete buildings. ISPRS J. Photogramm. Remote Sens. 2015, 106, 118–128. [Google Scholar] [CrossRef]
- Bao, L.; Xing, X.; Chen, L.; Yuan, Z.; Liu, B.; Xia, Q.; Peng, W. Time Series Deformation Monitoring over Large Infrastructures around Dongting Lake Using X-Band PSI with a Combined Thermal Expansion and Seasonal Model. J. Sens. 2021, 2021, 6664933. [Google Scholar] [CrossRef]
- Dal Moro, G.; Zadro, M. Subsurface deformations induced by rainfall and atmospheric pressure: Tilt/strain measurements in the NE-Italy seismic area. Earth Planet. Sci. Lett. 1998, 164, 193–203. [Google Scholar] [CrossRef]
- Tanaka, T.; Shimojima, E.; Mitamura, K.; Hoso, Y.; Ishihara, Y. Precipitation, groundwater and ground deformation. In Proceedings of the Global and Regional Geodynamics: Symposium No. 101, Edinburgh, Scotland, 3–5 August 1989; Springer: New York, NY, USA, 1990; pp. 132–139. [Google Scholar]
- Pavlyk, V.; Kutnyi, A.; Kalnyk, O. Features of the influence of seasonal variation of soil moisture on vertical movements of the earth’s surface. Geodynamics 2019, 2, 16–23. [Google Scholar] [CrossRef]
- Mimeau, L.; Tramblay, Y.; Brocca, L.; Massari, C.; Camici, S.; Finaud-Guyot, P. Modeling the response of soil moisture to climate variability in the Mediterranean region. Hydrol. Earth Syst. Sci. 2021, 25, 653–669. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, L.; Yang, M.; Luo, H.; Liao, M.; Ding, X. Mapping surface deformation and thermal dilation of arch bridges by structure-driven multi-temporal DInSAR analysis. Remote Sens. Environ. 2018, 216, 71–90. [Google Scholar] [CrossRef]
Source | Original Data | Spatial Resolution | Temporal Resolution | Reference |
---|---|---|---|---|
EGMS | Sentinel-1 | 100 m | 6 days | [30] |
MODIS product | MODIS Terra/Aqua | 1000 m | Daily | [31] |
CHIRP | Interpolation of precipitation stations | 5566 m | Daily | [32] |
CEMS Drought Code | Copernicus Service catalog | 0.25° × 0.25° | Daily | [33] |
Climatic Factor | Positive | Negative | Total |
---|---|---|---|
5868 | 13,511 | 19,379 | |
220 | 1529 | 1749 | |
12,142 | 20,684 | 32,826 | |
1275 | 2594 | 3869 | |
6819 | 3538 | 10,357 | |
3727 | 548 | 4275 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pirotti, F.; Toffah, F.E.; Guarnieri, A. Correlation Analysis of Vertical Ground Movement and Climate Using Sentinel-1 InSAR. Remote Sens. 2024, 16, 4123. https://doi.org/10.3390/rs16224123
Pirotti F, Toffah FE, Guarnieri A. Correlation Analysis of Vertical Ground Movement and Climate Using Sentinel-1 InSAR. Remote Sensing. 2024; 16(22):4123. https://doi.org/10.3390/rs16224123
Chicago/Turabian StylePirotti, Francesco, Felix Enyimah Toffah, and Alberto Guarnieri. 2024. "Correlation Analysis of Vertical Ground Movement and Climate Using Sentinel-1 InSAR" Remote Sensing 16, no. 22: 4123. https://doi.org/10.3390/rs16224123