Removing Instrumental Noise in Distributed Acoustic Sensing Data: A Comparison Between Two Deep Learning Approaches
<p>(<b>a</b>) Noise recorded on an acoustically isolated coil of fiber; (<b>b</b>) corresponding strain rate spectral density.</p> "> Figure 2
<p>Flowchart for constructing semi-synthetic DAS data using synthetic data and recorded instrumental noise.</p> "> Figure 3
<p>Schematics of the borehole optic cable used for the acquisition of the Noise2Noise training dataset. The cable is looped at the bottom of the well; the downgoing and upgoing parts of the cable are depicted in red and orange, respectively.</p> "> Figure 4
<p>Illustration of the data preparation workflow and neural network training for the N2N approach.</p> "> Figure 5
<p>Denoising performance of the SL neural network trained on semi-synthetic data. (<b>a</b>) Clean data, (<b>b</b>) input semi-synthetic data, (<b>c</b>) denoised result and (<b>d</b>) removed noise. To quantitatively assess the denoising performance, SNR sections are computed for (<b>e</b>) the input data, (<b>f</b>) the denoised result and (<b>g</b>) the removed noise. SNR values at the top of the plots indicate the average SNR value for the corresponding section.</p> "> Figure 6
<p>Comparison of strain rate spectral densities calculated for the input data (blue line), clean data (red line) and the data denoised using the SL network trained on semi-synthetic data (orange line). The removed noise (green dotted line) and the noise recorded on an acoustically isolated coil (black dotted line) are also displayed. The corresponding gathers for the data are shown in <a href="#remotesensing-16-04150-f004" class="html-fig">Figure 4</a>.</p> "> Figure 7
<p>Denoising performance of the N2N-trained neural network on the Otway semi-synthetic dataset: (<b>a</b>) clean data, (<b>b</b>) input gather, (<b>c</b>) denoised result and (<b>d</b>) removed noise. Corresponding SNR attribute sections are shown in panels (<b>e</b>–<b>g</b>). The average SNR values are displayed on top of each section.</p> "> Figure 8
<p>Strain rate spectral densities of the noisy input (blue line), N2N-denoised (orange line), and clean input (red lines) data for the Otway semi-synthetic record example. The spectral densities of the removed noise (dotted green line) and the recorded noise (dotted black line) that were originally added to the clean synthetic data are also compared.</p> "> Figure 9
<p>SL neural network application to the DAS-VSP data acquired with a low-power active source: (<b>a</b>) raw DAS shot record, (<b>b</b>) denoised result and (<b>c</b>) removed noise. The corresponding SNR sections are shown in figures (<b>d</b>–<b>f</b>). SNR values at the top of the plots indicate the average SNR value for the corresponding section.</p> "> Figure 10
<p>Comparison of strain rate spectral densities calculated for the input data (blue line), the data denoised using the SL supervised network (orange line) and the removed noise (dotted green line). The corresponding gathers for the input data, denoised data and removed noise data are shown in <a href="#remotesensing-16-04150-f009" class="html-fig">Figure 9</a>.</p> "> Figure 11
<p>N2N neural network application to the DAS VSP data example used in training: (<b>a</b>) raw DAS shot record, (<b>b</b>) denoised result and (<b>c</b>) removed noise. The corresponding SNR sections are shown in figures (<b>d</b>–<b>f</b>). SNR values at the top of the plots indicate the average SNR value for the corresponding section.</p> "> Figure 12
<p>Comparison of strain rate spectral densities calculated for the input data (blue line), the data denoised using the N2N approach (orange line) and the removed noise (green dotted line). The corresponding gathers for the input data, denoised data and removed noise data are shown in <a href="#remotesensing-16-04150-f011" class="html-fig">Figure 11</a>.</p> "> Figure 13
<p>Denoising performance of the SL neural network on an example of the microseismic DAS data: (<b>a</b>) input data, (<b>b</b>) denoised result and (<b>c</b>) removed noise. To quantitatively assess denoising ability, SNR sections are computed for (<b>d</b>) input data, (<b>e</b>) denoising results and (<b>f</b>) removed noise. The average SNR values are displayed at the top of each section.</p> "> Figure 14
<p>Denoising performance of the N2N-trained neural network on a microseismic event recorded in Otway CRC-7 well: (<b>a</b>) input, (<b>b</b>) denoised result and (<b>c</b>) removed noise. The black rectangles delineate the magnified sections shown in <a href="#remotesensing-16-04150-f011" class="html-fig">Figure 11</a>. Corresponding SNR attribute sections are shown in panels (<b>d</b>–<b>f</b>). The average SNR values are displayed at the top of each section.</p> "> Figure 15
<p>Magnified sections of denoising results of the N2N-trained neural network on a microseismic event recorded in Otway CRC-7 well: (<b>a</b>) input, (<b>b</b>) denoised result and (<b>c</b>) removed noise.</p> "> Figure 16
<p>Comparison of the denoising results obtained for the microseismic event recorded in Otway CRC-7 well using (<b>a</b>,<b>e</b>) the SL approach, (<b>b</b>,<b>f</b>) N2N trained neural network, (<b>c</b>,<b>g</b>) bandpass filtering and (<b>d</b>,<b>h</b>) FCDNet. The upper row shows the denoised sections, while the lower row shows the removed noise sections. The black rectangles in panels (<b>a</b>–<b>d</b>) delineate the magnified sections shown in <a href="#remotesensing-16-04150-f017" class="html-fig">Figure 17</a>.</p> "> Figure 17
<p>Magnified sections of the denoised results obtained using (<b>a</b>) the SL-trained neural network, (<b>b</b>) the N2N-trained neural network, (<b>c</b>) bandpass filtering and (<b>d</b>) FCDNet for the microseismic event recorded in Otway CRC-7 well.</p> "> Figure 18
<p>Comparison between (<b>a</b>,<b>d</b>) N2N trained with high-frequency semi-synthetic data, (<b>b</b>,<b>e</b>) the SL approach trained with high-frequency semi-synthetic data (160 Hz Ricker wavelet) and (<b>c</b>,<b>f</b>) the SL approach trained with lower frequency band semi-synthetic data (100 Hz Ricker wavelet). The upper row shows the denoised sections, while the lower row shows the removed noise sections.</p> "> Figure 19
<p>Comparison between the current N2N-trained network (<b>a</b>,<b>c</b>) and the original DAS-N2N network trained by Lapins et al. [<a href="#B23-remotesensing-16-04150" class="html-bibr">23</a>] (<b>b</b>,<b>d</b>). Figure (<b>a</b>,<b>b</b>) show the denoised sections, while figure (<b>c</b>,<b>d</b>) show the removed noise sections.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Hardware Noise Characteristics
2.2. Training Datasets
2.2.1. Semi-Synthetic Training Dataset
2.2.2. Noise2Noise Training Dataset
2.3. Neural Network Architecture and Training
2.4. Neural Network Application
2.5. Performance of the Network: SNR Computation
3. Results
3.1. Application to Synthetic Dataset
3.1.1. Neural Network Trained on Semi-Synthetic Dataset
3.1.2. Noise2Noise Trained Neural Network
3.2. Application to Low-Power Active-Source DAS-VSP Dataset
3.2.1. Neural Network Trained on Semi-Synthetic Dataset
3.2.2. Noise2Noise Trained Neural Network
3.3. Application to Microseismic Events
3.3.1. Neural Network Trained on Semi-Synthetic Dataset
3.3.2. Noise2Noise Trained Neural Network
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hartog, A.H. An Introduction to Distributed Optical Fibre Sensors; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Ajo-Franklin, J.B.; Dou, S.; Lindsey, N.J.; Monga, I.; Tracy, C.; Robertson, M.; Rodriguez Tribaldos, V.; Ulrich, C.; Freifeld, B.; Daley, T.; et al. Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection. Sci. Rep. 2019, 9, 1328. [Google Scholar] [CrossRef] [PubMed]
- Correa, J.; Pevzner, R.; Freifeld, B.M.; Robertson, M.; Daley, T.M.; Wood, T.; Tertyshnikov, K.; Yavuz, S.; Glubokovskikh, S. Continuous Downhole Seismic Monitoring Using Surface Orbital Vibrators and Distributed Acoustic Sensing at the CO2CRC Otway Project: Field Trial for Optimum Configuration. Geophys. Monogr. Ser. 2021, 268, 175–189. [Google Scholar] [CrossRef]
- Daley, T.M.; Freifeld, B.M.; Ajo-Franklin, J.; Dou, S.; Pevzner, R.; Shulakova, V.; Kashikar, S.; Miller, D.E.; Goetz, J.; Henninges, J.; et al. Field testing of fiber-optic distributed acoustic sensing (DAS) for subsurface seismic monitoring. Lead. Edge 2013, 32, 699–706. [Google Scholar] [CrossRef]
- Lellouch, A.; Lindsey, N.J.; Ellsworth, W.L.; Biondi, B.L. Comparison between distributed acoustic sensing and geophones: Downhole microseismic monitoring of the FORGE geothermal experiment. Seismol. Soc. Am. 2020, 91, 3256–3268. [Google Scholar] [CrossRef]
- Klaasen, S.; Paitz, P.; Lindner, N.; Dettmer, J.; Fichtner, A. Distributed Acoustic Sensing in Volcano-Glacial Environments—Mount Meager, British Columbia. J. Geophys. Res. Solid Earth 2021, 126, e2021JB022358. [Google Scholar] [CrossRef]
- Bellefleur, G.; Schetselaar, E.; Wade, D.; White, D.; Enkin, R.; Schmitt, D.R. Vertical seismic profiling using distributed acoustic sensing with scatter-enhanced fibre-optic cable at the Cu–Au New Afton porphyry deposit, British Columbia, Canada. Geophys. Prospect. 2020, 68, 313–333. [Google Scholar] [CrossRef]
- Correa, J.; Egorov, A.; Tertyshnikov, K.; Bona, A.; Pevzner, R.; Dean, T.; Freifeld, B.; Marshall, S. Analysis of signal to noise and directivity characteristics of DAS VSP at near and far offsets—A CO2CRC Otway Project data example. Lead. Edge 2017, 36, 994a1–994a7. [Google Scholar] [CrossRef]
- Lindsey, N.J.; Rademacher, H.; Ajo-Franklin, J.B. On the broadband instrument response of fiber-optic DAS arrays. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018145. [Google Scholar] [CrossRef]
- Lellouch, A.; Schultz, R.; Lindsey, N.J.; Biondi, B.; Ellsworth, W.L. Low-magnitude seismicity with a downhole distributed acoustic sensing array—Examples from the FORGE geothermal experiment. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020462. [Google Scholar] [CrossRef]
- Atterholt, J.; Zhan, Z.; Shen, Z.; Li, Z. A unified wavefield-partitioning approach for distributed acoustic sensing. Geophys. J. Int. 2022, 228, 1410–1418. [Google Scholar] [CrossRef]
- Ibrahim, A.D.A.; Lin, S.; Xiong, J.; Jiang, J.; Fu, Y.; Wang, Z. Integrated principal component analysis denoising technique for phase-sensitive optical time domain reflectometry vibration detection. Appl. Opt. 2020, 59, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ning, J.; Chen, W.; Wang, X.; Wang, W.; Zhang, G. Distributed acoustic sensing coupling noise removal based on sparse optimization. Interpretation 2019, 7, T373–T382. [Google Scholar] [CrossRef]
- Chen, Y.; Savvaidis, A.; Fomel, S.; Chen, Y.; Saad, O.M.; Wang, H.; Oboué, Y.A.S.I.; Yang, L.; Chen, W. Denoising of distributed acoustic sensing seismic data using an integrated framework. Seismol. Soc. Am. 2023, 94, 457–472. [Google Scholar] [CrossRef]
- Huang, G.; Bai, M.; Zhao, Q.; Chen, W.; Chen, Y. Erratic noise suppression using iterative structure-oriented space-varying median filtering with sparsity constraint. Geophys. Prospect. 2021, 69, 101–121. [Google Scholar] [CrossRef]
- Guo, Y.; Peng, S.; Du, W.; Li, D. Denoising and wavefield separation method for DAS VSP via deep learning. J. Appl. Geophys. 2023, 210, 104946. [Google Scholar] [CrossRef]
- Yang, L.; Fomel, S.; Wang, S.; Chen, X.; Chen, W.; Saad, O.M.; Chen, Y. Denoising of distributed acoustic sensing data using supervised deep learning. Geophysics 2023, 88, WA91–WA104. [Google Scholar] [CrossRef]
- Batson, J.; Royer, L. Noise2self: Blind denoising by self-supervision. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 524–533. [Google Scholar]
- Birnie, C.; Ravasi, M.; Liu, S.; Alkhalifah, T. The potential of self-supervised networks for random noise suppression in seismic data. Artif. Intell. Geosci. 2021, 2, 47–59. [Google Scholar] [CrossRef]
- Krull, A.; Buchholz, T.-O.; Jug, F. Noise2void-learning denoising from single noisy images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2129–2137. [Google Scholar]
- van den Ende, M.; Lior, I.; Ampuero, J.-P.; Sladen, A.; Ferrari, A.; Richard, C. A self-supervised deep learning approach for blind denoising and waveform coherence enhancement in distributed acoustic sensing data. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 3371–3384. [Google Scholar] [CrossRef] [PubMed]
- Lehtinen, J.; Munkberg, J.; Hasselgren, J.; Laine, S.; Karras, T.; Aittala, M.; Aila, T. Noise2Noise: Learning Image Restoration without Clean Data. In Proceedings of the 35th International Conference on Machine Learning, ICML, Stockholm, Sweden, 10–15 July 2018; pp. 4620–4631. [Google Scholar]
- Lapins, S.; Butcher, A.; Kendall, J.-M.; Hudson, T.S.; Stork, A.L.; Werner, M.J.; Gunning, J.; Brisbourne, A.M. DAS-N2N: Machine learning distributed acoustic sensing (DAS) signal denoising without clean data. Geophys. J. Int. 2024, 236, 1026–1041. [Google Scholar] [CrossRef]
- Welch, P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef]
- Pevzner, R.; Glubokovskikh, S.; Isaenkov, R.; Shashkin, P.; Tertyshnikov, K.; Yavuz, S.; Gurevich, B.; Correa, J.; Wood, T.; Freifeld, B. Monitoring subsurface changes by tracking direct-wave amplitudes and traveltimes in continuous distributed acoustic sensor VSP data. Geophysics 2022, 87, A1–A6. [Google Scholar] [CrossRef]
- Schmidt, H.; Jensen, F.B. Efficient numerical solution technique for wave propagation in horizontally stratified environments. Comput. Math. Appl. 1985, 11, 699–715. [Google Scholar] [CrossRef]
- Pielawski, N.; Wählby, C. Introducing Hann windows for reducing edge-effects in patch-based image segmentation. PLoS ONE 2020, 15, e0229839. [Google Scholar] [CrossRef] [PubMed]
- Pevzner, R.; Tertyshnikov, K. DAS facilitates High Quality Offset VSP Data Acquisition with Low Energy Sources. In Proceedings of the 2nd EAGE Workshop on Fiber Optic Sensing for Energy Applications in Asia Pacific, Kuala Lumpur, Malaysia, 5–7 December 2022; pp. 1–5. [Google Scholar]
- Zulic, S.; Tertyshnikov, K.; Yurikov, A.; Sidenko, E.; Isaenkov, R.; Pevzner, R. Curtin Geolab Research Facility: Walkaway VSP with DAS and Geophones. In Proceedings of the EAGE Workshop on Fiber Optic Sensing for Energy Applications in Asia Pacific, Online, 9–11 November 2020; pp. 1–5. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. pp. 234–241. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar] [CrossRef]
- Pang, T.; Zheng, H.; Quan, Y.; Ji, H. Recorrupted-to-recorrupted: Unsupervised deep learning for image denoising. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 2043–2052. [Google Scholar]
- Hatton, L.; Worthington, M.H.; Makin, J. Seismic Data Processing: Theory and Practice; Merlin Profiles Ltd.: Vienna, VA, USA, 1986. [Google Scholar]
- Glubokovskikh, S.; Shashkin, P.; Shapiro, S.; Gurevich, B.; Pevzner, R. Multiwell Fiber Optic Sensing Reveals Effects of CO2 Flow on Triggered Seismicity. Seismol. Res. Lett. 2023, 94, 2215–2230. [Google Scholar] [CrossRef]
- Glubokovskikh, S.; Pevzner, R.; Sidenko, E.; Tertyshnikov, K.; Gurevich, B.; Shatalin, S.; Slunyaev, A.; Pelinovsky, E. Downhole Distributed Acoustic Sensing Provides Insights Into the Structure of Short-Period Ocean-Generated Seismic Wavefield. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021463. [Google Scholar] [CrossRef]
- Ardhuin, F.; Gualtieri, L.; Stutzmann, E.; Nakata, N.; Fichtner, A. Physics of ambient noise generation by ocean waves. Seism. Ambient. Noise 2019, 69–108. [Google Scholar] [CrossRef]
- Birnie, C.; Alkhalifah, T. Transfer learning for self-supervised, blind-spot seismic denoising. Front. Earth Sci. 2022, 10, 1053279. [Google Scholar] [CrossRef]
Layer (Type) | Output Shape | Param # | Connected to |
---|---|---|---|
input_1 (InputLayer) | (128, 96) | 0 | [] |
reshape (Reshape) | (128, 96, 1) | 0 | [input_1] |
conv2d (Conv2D) | (128, 96, 24) | 240 | [reshape] |
leaky_re_lu (LeakyReLU) | (128, 96, 24) | 0 | [conv2d] |
max_pooling2d (MaxPooling2D) | (64, 48, 24) | 0 | [leaky_re_lu] |
conv2d_1 (Conv2D) | (64, 48, 48) | 10,416 | [max_pooling2d] |
leaky_re_lu_1 (LeakyReLU) | (64, 48, 48) | 0 | [conv2d_1] |
up_sampling2d (UpSampling2D) | (128, 96, 48) | 0 | [leaky_re_lu_1] |
concatenate (Concatenate) | (128, 96, 72) | 0 | [up_sampling2d] |
conv2d_2 (Conv2D) | (128, 96, 48) | 31,152 | [concatenate] |
leaky_re_lu_2 (LeakyReLU) | (128, 96, 48) | 0 | [conv2d_2] |
conv2d_3 (Conv2D) | (128, 96, 24) | 10,392 | [leaky_re_lu_2] |
leaky_re_lu_3 (LeakyReLU) | (128, 96, 24) | 0 | [conv2d_3] |
conv2d_4 (Conv2D) | (128, 96, 1) | 25 | [leaky_re_lu_3] |
reshape_1 (Reshape) | (128, 96) | 0 | [conv2d_4] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, X.; Collet, O.; Tertyshnikov, K.; Pevzner, R. Removing Instrumental Noise in Distributed Acoustic Sensing Data: A Comparison Between Two Deep Learning Approaches. Remote Sens. 2024, 16, 4150. https://doi.org/10.3390/rs16224150
Gu X, Collet O, Tertyshnikov K, Pevzner R. Removing Instrumental Noise in Distributed Acoustic Sensing Data: A Comparison Between Two Deep Learning Approaches. Remote Sensing. 2024; 16(22):4150. https://doi.org/10.3390/rs16224150
Chicago/Turabian StyleGu, Xihao, Olivia Collet, Konstantin Tertyshnikov, and Roman Pevzner. 2024. "Removing Instrumental Noise in Distributed Acoustic Sensing Data: A Comparison Between Two Deep Learning Approaches" Remote Sensing 16, no. 22: 4150. https://doi.org/10.3390/rs16224150
APA StyleGu, X., Collet, O., Tertyshnikov, K., & Pevzner, R. (2024). Removing Instrumental Noise in Distributed Acoustic Sensing Data: A Comparison Between Two Deep Learning Approaches. Remote Sensing, 16(22), 4150. https://doi.org/10.3390/rs16224150