An Improved Velocity-Aided Method for Smartphone Single-Frequency Code Positioning in Real-World Driving Scenarios
<p>Flowchart of the KFSPP-P processing procedure.</p> "> Figure 2
<p>Installation method of smartphones in the vehicle. From left to right are S21, CL8, and AD11. The dashcam is shown in the upper left corner.</p> "> Figure 3
<p>The experimental route trajectory is shown on the left, with blue, red, green, and yellow corresponding to open-sky road, suburban, tree-lined road, and urban environments, respectively. The right image depicts the actual environments corresponding to open-sky road (<b>A</b>), suburban (<b>B</b>), tree-lined road (<b>C</b>), and urban (<b>D</b>).</p> "> Figure 4
<p>The schematic diagram of the in-vehicle experimental setup. The lever arm of the smartphone to GNSS antenna is front = 2.78 m, right = 0.43 m, and up = 0.66 m; the lever arm of the smartphone to ISA100C is front = 3.48 m, right = 0.13 m, and up = 0.3 m.</p> "> Figure 5
<p>Number of satellites and PDOP values for the S21 on the test route. The color blocks located at the bottom of the image represent changes in environmental scenes: blue, red, green, and yellow correspond to open-sky road (A), suburban (B), tree-lined road (C), and urban (D), respectively.</p> "> Figure 6
<p>The number of code (red), Doppler (blue), and phase (green) observations recorded by the S21 smartphone along the experimental trajectory (<b>left</b>); the average number of each observation type in open-sky road (A), suburban (B), tree-lined road (C), and urban (D) environments (<b>right</b>).</p> "> Figure 7
<p>TDCMC statistics for GPS, Galileo, BDS, and GLONASS systems recorded by the S21 smartphone along the experimental trajectory, with different colors representing individual satellites.</p> "> Figure 8
<p>Distribution of post-fit residuals during Doppler-based velocity estimation using the S21, showing results without (<b>top</b>) and with (<b>bottom</b>) robust estimation algorithms applied, with different colors representing different satellites. Notably, the y-axis scale range is −4 to 4 m/s (<b>top</b>) and −0.4 to 0.4 m/s (<b>bottom</b>). The color blocks located at the bottom of the image represent changes in environmental scenes: blue, red, green, and yellow correspond to open-sky road (A), suburban (B), tree-lined road (C), and urban (D), respectively.</p> "> Figure 9
<p>Doppler velocity estimation errors for the S21, without (red) and with (blue) the robust estimation algorithm applied. The color blocks located at the bottom of the image represent changes in environmental scenes: blue, red, green, and yellow correspond to open-sky road (A), suburban (B), tree-lined road (C), and urban (D), respectively.</p> "> Figure 10
<p>Time series of velocity errors for the S21, CL8, and AD11 using LS-D, LS-T, LS-DT, KF-DT1, and KF-DT2 solutions. The red, blue, and green lines represent the velocity errors in the E, N, and U directions, respectively. Here, the velocity errors in the E and U directions are presented with y = 2.5 and y = −2.5 as the respective reference baselines for the vertical axis.</p> "> Figure 11
<p>Error plots for the S21, CL8, and AD11 in the E, N, and U directions using the SPP (red), KFSPP-V (blue), and KFSPP-P (green) solutions.</p> "> Figure 12
<p>Four typical environments, with real routes (<b>a</b>–<b>d</b>) corresponding to open-sky road (A—blue), suburban (B—red), tree-lined road (C—green), and urban (D—yellow).</p> "> Figure 13
<p>Positioning errors in the E, N, and U directions for the S21 smartphone across four routes (<b>a</b>–<b>d</b>). The red, blue, and green lines represent the SPP, KFSPP-V, and KFSPP-P solutions, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Algorithms for Detecting Outliers in GNSS Observations (Data Preprocessing)
2.2. Improved Doppler and TDCP Kalman Filter-Based Velocity Estimation Model (KF-DT2)
2.3. Improved Kalman Filter Position Estimation Model (KFSPP-P)
3. Data Collection and Experimental Design
4. Results
4.1. Analysis of the Quality of Raw Smartphone Observations in Different Scenarios
4.2. Velocity Performance Evaluation
4.3. Positioning Performance Evaluation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Ge, M.; Dai, X.; Ren, X.; Fritsche, M.; Wickert, J.; Schuh, H. Accuracy and Reliability of Multi-GNSS Real-Time Precise Positioning: GPS, GLONASS, BeiDou, and Galileo. J. Geod. 2015, 89, 607–635. [Google Scholar] [CrossRef]
- Paziewski, J.; Fortunato, M.; Mazzoni, A.; Odolinski, R. An Analysis of Multi-GNSS Observations Tracked by Recent Android Smartphones and Smartphone-Only Relative Positioning Results. Measurement 2021, 175, 109162. [Google Scholar] [CrossRef]
- Zhang, X.; Tao, X.; Zhu, F.; Shi, X.; Wang, F. Quality Assessment of GNSS Observations from an Android N Smartphone and Positioning Performance Analysis Using Time-Differenced Filtering Approach. GPS Solut. 2018, 22, 70. [Google Scholar] [CrossRef]
- Paziewski, J.; Sieradzki, R.; Baryla, R. Signal Characterization and Assessment of Code GNSS Positioning with Low-Power Consumption Smartphones. GPS Solut. 2019, 23, 98. [Google Scholar] [CrossRef]
- Håkansson, M. Characterization of GNSS Observations from a Nexus 9 Android Tablet. GPS Solut. 2018, 23, 21. [Google Scholar] [CrossRef]
- Chen, B.; Gao, C.; Liu, Y.; Sun, P. Real-Time Precise Point Positioning with a Xiaomi MI 8 Android Smartphone. Sensors 2019, 19, 2835. [Google Scholar] [CrossRef]
- Realini, E.; Caldera, S.; Pertusini, L.; Sampietro, D. Precise GNSS Positioning Using Smart Devices. Sensors 2017, 17, 2434. [Google Scholar] [CrossRef]
- Dabove, P.; Di Pietra, V. Towards High Accuracy GNSS Real-Time Positioning with Smartphones. Adv. Space Res. 2019, 63, 94–102. [Google Scholar] [CrossRef]
- Laurichesse, D.; Rouch, C.; Marmet, F.-X.; Pascaud, M. Smartphone Applications for Precise Point Positioning. In Proceedings of the 30th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2017), Portland, OR, USA, 25–29 September 2017; pp. 171–187. [Google Scholar]
- Wu, Q.; Zhang, P.; Sun, M.; Liu, S.; Wang, H.; Chen, S. Performance Evaluation of GIMs Released by Different IGS Ionosphere Associate Analysis Centers in Ionospheric Constrained Single-Frequency Precise Point Positioning. Adv. Space Res. 2021, 68, 4834–4856. [Google Scholar] [CrossRef]
- Li, M.; Huang, T.; Li, W.; Zhao, Q.; Jiang, K. Precise Point Positioning with Mixed Single- and Dual-Frequency GNSS Observations from Android Smartphones Considering Code-Carrier Inconsistency. Adv. Space Res. 2024, 74, 2664–2679. [Google Scholar] [CrossRef]
- Zhang, K.; Jiao, W.; Wang, L.; Li, Z.; Li, J.; Zhou, K. Smart-RTK: Multi-GNSS Kinematic Positioning Approach on Android Smart Devices with Doppler-Smoothed-Code Filter and Constant Acceleration Model. Adv. Space Res. 2019, 64, 1662–1674. [Google Scholar] [CrossRef]
- Shinghal, G.; Bisnath, S. Conditioning and PPP Processing of Smartphone GNSS Measurements in Realistic Environments. Satell. Navig. 2021, 2, 10. [Google Scholar] [CrossRef] [PubMed]
- Yi, D.; Bisnath, S.; Naciri, N.; Vana, S. Effects of Ionospheric Constraints in Precise Point Positioning Processing of Geodetic, Low-Cost and Smartphone GNSS Measurements. Measurement 2021, 183, 109887. [Google Scholar] [CrossRef]
- Fortunato, M.; Critchley-Marrows, J.; Siutkowska, M.; Ivanovici, M.L.; Benedetti, E.; Roberts, W. Enabling High Accuracy Dynamic Applications in Urban Environments Using PPP and RTK on Android Multi-Frequency and Multi-GNSS Smartphones. In Proceedings of the 2019 European Navigation Conference (ENC), Warsaw, Poland, 9–12 April 2019; pp. 1–9. [Google Scholar]
- Aggrey, J.; Bisnath, S.; Naciri, N.; Shinghal, G.; Yang, S. Multi-GNSS Precise Point Positioning with next-Generation Smartphone Measurements. J. Spat. Sci. 2020, 65, 79–98. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Yuan, H. Best Integer Equivariant Estimation Based on Unsupervised Machine Learning for GNSS Precise Positioning and Navigation in Complex Environments. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 2672–2682. [Google Scholar] [CrossRef]
- Bahadur, B.; Schön, S. Improving the Stochastic Model for Code Pseudorange Observations from Android Smartphones. GPS Solut. 2024, 28, 148. [Google Scholar] [CrossRef]
- Bahadur, B. A Study on the Real-Time Code-Based GNSS Positioning with Android Smartphones. Measurement 2022, 194, 111078. [Google Scholar] [CrossRef]
- Li, L.; Zhong, J.; Zhao, M. Doppler-Aided GNSS Position Estimation with Weighted Least Squares. IEEE Trans. Veh. Technol. 2011, 60, 3615–3624. [Google Scholar] [CrossRef]
- Hatch, R. The Synergism of GPS Code and Carrier Measurements. 1983, Volume 2, pp. 1213–1231. Available online: https://ui.adsabs.harvard.edu/abs/1983igss.conf.1213H%2F/abstract (accessed on 23 September 2024).
- Wang, R.; Hu, C.; Wang, Z.; Yuan, F.; Wang, Y. Performance of Smartphone BDS-3/GPS/Galileo Multi-Frequency Ionosphere-Free Precise Code Positioning. Remote Sens. 2023, 15, 5371. [Google Scholar] [CrossRef]
- Geng, J.; Jiang, E.; Li, G.; Xin, S.; Wei, N. An Improved Hatch Filter Algorithm towards Sub-Meter Positioning Using Only Android Raw GNSS Measurements without External Augmentation Corrections. Remote Sens. 2019, 11, 1679. [Google Scholar] [CrossRef]
- Mazher, K.; Tahir, M.; Ali, K. GNSS Pseudorange Smoothing: Linear vs Non-Linear Filtering Paradigm. In Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2016; pp. 1–10. [Google Scholar]
- Bai, S.; Lai, J.; Lyu, P.; Cen, Y.; Sun, X.; Wang, B. Performance Enhancement of Tightly Coupled GNSS/IMU Integration Based on Factor Graph with Robust TDCP Loop Closure. IEEE Trans. Intell. Transp. Syst. 2024, 25, 2437–2449. [Google Scholar] [CrossRef]
- Liu, W.; Shi, X.; Zhu, F.; Tao, X.; Wang, F. Quality Analysis of Multi-GNSS Raw Observations and a Velocity-Aided Positioning Approach Based on Smartphones. Adv. Space Res. 2019, 63, 2358–2377. [Google Scholar] [CrossRef]
- Robustelli, U.; Paziewski, J.; Pugliano, G. Observation Quality Assessment and Performance of GNSS Standalone Positioning with Code Pseudoranges of Dual-Frequency Android Smartphones. Sensors 2021, 21, 2125. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Gao, C.; Peng, Z.; Zhang, R.; Shang, R. Smartphone Positioning and Accuracy Analysis Based on Real-Time Regional Ionospheric Correction Model. Sensors 2021, 21, 3879. [Google Scholar] [CrossRef]
- Li, G.; Geng, J.; Chu, B. High-Precision Velocity Determination Using Mass-Market Android GNSS Measurements in the Case of Anomalous Clock Variations. GPS Solut. 2023, 27, 98. [Google Scholar] [CrossRef]
- Zangenehnejad, F.; Jiang, Y.; Gao, Y. GNSS Observation Generation from Smartphone Android Location API: Performance of Existing Apps, Issues and Improvement. Sensors 2023, 23, 777. [Google Scholar] [CrossRef]
- Xie, W.; Huang, G.; Fu, W.; Shu, B.; Cui, B.; Li, M.; Yue, F. A Quality Control Method Based on Improved IQR for Estimating Multi-GNSS Real-Time Satellite Clock Offset. Measurement 2022, 201, 111695. [Google Scholar] [CrossRef]
- Vinutha, H.P.; Poornima, B.; Sagar, B.M. Detection of Outliers Using Interquartile Range Technique from Intrusion Dataset. In Information and Decision Sciences; Satapathy, S.C., Tavares, J.M.R.S., Bhateja, V., Mohanty, J.R., Eds.; Springer: Singapore, 2018; pp. 511–518. [Google Scholar]
- Gioia, C.; Angrisano, A.; Gaglione, S. Galileo-Based Doppler Shifts and Time Difference Carrier Phase: A Static Case Demonstration. Sensors 2023, 23, 6828. [Google Scholar] [CrossRef]
- Agarwal, N.; O’Keefe, K. Use of GNSS Doppler for Prediction in Kalman Filtering for Smartphone Positioning. IEEE J. Indoor Seamless Position. Navig. 2023, 1, 151–160. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; Wang, N.; Wang, Z. Real-Time GNSS Precise Point Positioning for Low-Cost Smart Devices. GPS Solut. 2021, 25, 69. [Google Scholar] [CrossRef]
- Yi, D.; Hu, J.; Bisnath, S. Improving PPP Smartphone Processing with Adaptive Quality Control Method in Obstructed Environments When Carrier-Phase Measurements Are Missing. GPS Solut. 2024, 28, 56. [Google Scholar] [CrossRef]
- Xin, S.; Wang, X.; Zhang, J.; Zhou, K.; Chen, Y. A Comparative Study of Factor Graph Optimization-Based and Extended Kalman Filter-Based PPP-B2b/INS Integrated Navigation. Remote Sens. 2023, 15, 5144. [Google Scholar] [CrossRef]
- Caamano, M.; Crespillo, O.G.; Gerbeth, D.; Grosch, A. Detection of GNSS Multipath with Time-Differenced Code-Minus-Carrier for Land-Based Applications. In Proceedings of the 2020 European Navigation Conference (ENC), Dresden, Germany, 23–24 November 2020; pp. 1–12. [Google Scholar]
- Mi, X.; Zhang, B.; Odolinski, R.; Yuan, Y. On the Temperature Sensitivity of Multi-GNSS Intra- and Inter-System Biases and the Impact on RTK Positioning. GPS Solut. 2020, 24, 112. [Google Scholar] [CrossRef]
- Demyanov, V.V.; Yasyukevich, Y.V. Space weather: Risk factors for global navigation satellite systems. Sol.-Terr. Phys. 2021, 7, 28–47. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Wang, N.; Li, R.; Liu, A. Real-Time GNSS Precise Point Positioning with Smartphones for Vehicle Navigation. Satell. Navig. 2022, 3, 19. [Google Scholar] [CrossRef]
- Yong, C.Z.; Odolinski, R.; Zaminpardaz, S.; Moore, M.; Rubinov, E.; Er, J.; Denham, M. Instantaneous, Dual-Frequency, Multi-GNSS Precise RTK Positioning Using Google Pixel 4 and Samsung Galaxy S20 Smartphones for Zero and Short Baselines. Sensors 2021, 21, 8318. [Google Scholar] [CrossRef]
- Mohanty, A.; Gao, G. Learning GNSS Positioning Corrections for Smartphones Using Graph Convolution Neural Networks. Navig. J. Inst. Navig. 2023, 70, navi.622. [Google Scholar] [CrossRef]
- Jiang, Y.; Gao, Y.; Ding, W.; Gao, Y. GNSS Precise Positioning for Smartphones Based on the Integration of Factor Graph Optimization and Solution Separation. Measurement 2022, 203, 111924. [Google Scholar] [CrossRef]
- Bisnath, S.; Aggrey, J. Current Limitations and Prospects for Smartphone GNSS Precise Positioning. In Proceedings of the 2024 International Technical Meeting of The Institute of Navigation, Long Beach, CA, USA, 23–25 January 2024; pp. 1–24. [Google Scholar]
Strategy | Observation | Description |
---|---|---|
LS-D | Doppler | Velocity for each epoch estimated using least squares method |
LS-T | TDCP | Velocity for each epoch estimated using least squares method |
LS-DT | TDCP + Doppler | Velocity for each epoch estimated using least squares method |
KF-DT1 | TDCP + Doppler | Velocity for each epoch estimated using Kalman filer method with traditional constant acceleration model |
KF-DT2 | TDCP + Doppler | Velocity for each epoch estimated using Kalman filer method with enhanced constant acceleration model |
Item | Model |
---|---|
GNSS measurements | GPS (L1), BDS (B1I), Galileo (E1), GLONASS (G1) |
System weighting | GPS:BDS:Galileo:GLONASS = 1:1:1:1.5 |
Sampling interval | 1 s |
C/N0 | 20 dB-Hz |
Functional model | SPP model |
Elevation cut-off angle | 10° |
Ionospheric delay | BRDC model |
Tropospheric delay | Saastamoinen model |
Kalman filter | Kinematic |
Stochastic model | C/N0 and elevation weighting |
Ephemeris | Broadcast ephemeris |
Satellite and Receiver antenna Phase center | PCO and PCV values from igs14.atx |
Type | Definition |
---|---|
(A) open-sky road | Main roads with relatively open views, with obstructions from trees on one side in most cases |
(B) suburban | Side roads with obstructions from buildings or trees on one side |
(C) tree-lined road | Main roads with significant obstructions from trees on both sides |
(D) urban | Main roads with obstructions from buildings on both sides, and continuous passage through five urban overpasses, each 5–10 m wide |
Scenario | S21 (%) | CL8 (%) | AD11 (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | A | B | C | D | A | B | C | D | |
Code | 23.71 | 20.65 | 19.73 | 20.9 | 39.45 | 39.22 | 37.57 | 34.58 | 38.46 | 36.81 | 36.03 | 29.66 |
Dopler | 22.54 | 19.66 | 18.78 | 19.76 | 32.12 | 33.58 | 30.37 | 27.28 | 33.08 | 33.62 | 30.01 | 25.19 |
Phase | 21.01 | 13.40 | 7.93 | 5.14 | 24.15 | 22.61 | 18.12 | 15.04 | 19.80 | 10.72 | 6.48 | 2.66 |
Scenario | S21 (%) | CL8 (%) | AD11 (%) | |||
---|---|---|---|---|---|---|
Doppler | TDCP | Doppler | TDCP | Doppler | TDCP | |
A | 11.93 | 7.48 | 27.66 | 16.08 | 22.94 | 2.25 |
B | 21.12 | 8.25 | 30.10 | 18.06 | 27.39 | 6.45 |
C | 19.48 | 14.3 | 34.86 | 17.28 | 30.63 | 7.45 |
D | 29.90 | 15.5 | 36.69 | 23.97 | 38.38 | 8.97 |
S21 | Direction | A (cm/s) | B (cm/s) | C (cm/s) | D (cm/s) | ALL (cm/s) |
---|---|---|---|---|---|---|
Without robust algorithm | E | 5.03 | 27.47 | 55.01 | 48.80 | 27.01 |
N | 12.26 | 33.56 | 62.16 | 125.61 | 41.34 | |
U | 17.95 | 56.73 | 118.34 | 137.02 | 61.98 | |
With robust algorithm | E | 2.58 | 18.82 | 30.18 | 32.16 | 17.38 |
N | 4.45 | 22.91 | 38.84 | 92.74 | 30.59 | |
U | 8.87 | 38.86 | 72.11 | 82.44 | 40.70 |
Scenario | S21 (%) | CL8 (%) | AD11 (%) | |||
---|---|---|---|---|---|---|
Doppler | TDCP | Doppler | TDCP | Doppler | TDCP | |
A | 100 | 100 | 100 | 100 | 100 | 99.18 |
B | 100 | 97.79 | 100 | 100 | 100 | 64.31 |
C | 100 | 88.65 | 100 | 100 | 100 | 57.14 |
D | 100 | 75.32 | 100 | 97.40 | 100 | 41.42 |
Strategy | S21 (cm/s) | CL8 (cm/s) | AD11 (cm/s) | ||||||
---|---|---|---|---|---|---|---|---|---|
E | N | U | E | N | U | E | N | U | |
LS-D | 17.3 | 30.5 | 40.7 | 17.3 | 24.0 | 43.5 | 12.7 | 24.8 | 33.7 |
LS-T | 23.3 | 22.9 | 16.5 | 26.6 | 27.5 | 44.9 | 30.1 | 28.6 | 32.6 |
LS-DT | 17.2 | 30.3 | 40.6 | 17.5 | 24.0 | 43.6 | 12.6 | 25.0 | 33.8 |
KF-DT1 | 16.7 | 24.6 | 17.3 | 16.8 | 19.4 | 32.5 | 11.6 | 24.1 | 26.6 |
KF-DT2 | 15.8 | 22.7 | 16.8 | 15.6 | 18.5 | 33.9 | 11.4 | 23.9 | 26.0 |
Smartphone | S21 (m) | CL8 (m) | AD11 (m) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
E | N | U | E | N | U | E | N | U | ||
SPP | RMS | 4.99 | 5.62 | 16.93 | 3.52 | 4.81 | 11.63 | 3.03 | 4.48 | 11.35 |
Max | 41.14 | 46.69 | 115.74 | 24.31 | 25.90 | 79.73 | 25.51 | 31.57 | 87.15 | |
KFSPP-V | RMS | 3.69 | 5.57 | 6.65 | 2.38 | 3.77 | 6.84 | 2.00 | 3.53 | 6.17 |
Max | 28.27 | 49.90 | 41.14 | 20.31 | 39.08 | 45.31 | 21.39 | 39.82 | 50.34 | |
KFSPP-P | RMS | 1.37 | 2.03 | 3.58 | 1.76 | 3.02 | 5.34 | 1.30 | 2.82 | 3.55 |
Max | 5.56 | 19.04 | 12.86 | 8.65 | 12.76 | 27.95 | 5.08 | 18.05 | 16.19 |
Route | Strategy | S21 (m) | CL8 (m) | AD11 (m) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
E | N | U | E | N | U | E | N | U | ||
a | SPP | 2.32 | 2.02 | 5.22 | 2.27 | 2.39 | 4.40 | 1.43 | 2.59 | 2.94 |
KF-V | 1.29 | 2.02 | 2.12 | 0.96 | 2.43 | 3.86 | 0.90 | 2.48 | 2.22 | |
KF-P | 0.90 | 1.54 | 1.44 | 0.77 | 2.42 | 4.29 | 0.87 | 2.66 | 2.56 | |
b | SPP | 2.85 | 4.96 | 6.43 | 3.48 | 5.49 | 5.14 | 1.94 | 4.66 | 3.37 |
KF-V | 2.18 | 3.00 | 4.61 | 2.37 | 4.44 | 3.39 | 1.22 | 3.50 | 2.64 | |
KF-P | 1.65 | 2.67 | 3.07 | 2.40 | 4.97 | 3.62 | 0.99 | 3.48 | 1.95 | |
c | SPP | 10.35 | 9.04 | 30.70 | 6.99 | 9.03 | 24.72 | 7.25 | 9.58 | 24.23 |
KF-V | 5.51 | 13.65 | 12.18 | 3.46 | 8.57 | 12.22 | 4.26 | 4.50 | 9.10 | |
KF-P | 2.24 | 1.39 | 4.79 | 2.74 | 4.64 | 7.19 | 1.97 | 2.15 | 6.31 | |
d | SPP | 6.35 | 13.41 | 47.73 | 5.86 | 10.59 | 33.70 | 4.99 | 8.25 | 35.27 |
KF-V | 12.68 | 12.31 | 24.57 | 4.82 | 6.06 | 22.98 | 4.71 | 8.62 | 26.86 | |
KF-P | 3.51 | 4.14 | 15.27 | 2.32 | 3.95 | 19.98 | 1.91 | 3.99 | 6.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Z.; Wang, X.; Zhang, J.; Xin, S.; Huang, Q.; Shen, S. An Improved Velocity-Aided Method for Smartphone Single-Frequency Code Positioning in Real-World Driving Scenarios. Remote Sens. 2024, 16, 3988. https://doi.org/10.3390/rs16213988
Han Z, Wang X, Zhang J, Xin S, Huang Q, Shen S. An Improved Velocity-Aided Method for Smartphone Single-Frequency Code Positioning in Real-World Driving Scenarios. Remote Sensing. 2024; 16(21):3988. https://doi.org/10.3390/rs16213988
Chicago/Turabian StyleHan, Zhaowei, Xiaoming Wang, Jinglei Zhang, Shiji Xin, Qiuying Huang, and Sizhe Shen. 2024. "An Improved Velocity-Aided Method for Smartphone Single-Frequency Code Positioning in Real-World Driving Scenarios" Remote Sensing 16, no. 21: 3988. https://doi.org/10.3390/rs16213988
APA StyleHan, Z., Wang, X., Zhang, J., Xin, S., Huang, Q., & Shen, S. (2024). An Improved Velocity-Aided Method for Smartphone Single-Frequency Code Positioning in Real-World Driving Scenarios. Remote Sensing, 16(21), 3988. https://doi.org/10.3390/rs16213988