Interferometric Synthetic Aperture Radar Phase Linking with Level 2 Coregistered Single Look Complexes: Enhancing Infrastructure Monitoring Accuracy at Algeciras Port
<p>(<b>a</b>) Three swaths from the interferometric wide swath mode ascending Track 74. Algeciras port is located in the IW1 and burst t074-157011-iw1 (Blue rectangle) was processed (<b>b</b>) AOI processed with PSDS software.</p> "> Figure 2
<p>Proposed workflow schema.</p> "> Figure 3
<p>Coregistered SLC timing corrections for the whole burst on 24 March 2020. (<b>a</b>) Slant range geometrical Doppler, (<b>b</b>) azimuth bistatic delay, (<b>c</b>) azimuth FM rate mismatch, (<b>d</b>) slant range solid Earth tides, (<b>e</b>) azimuth time solid Earth tides, (<b>f</b>) line-of-sight ionospheric delay, (<b>g</b>) wet LOS troposphere, (<b>h</b>) dry LOS troposphere.</p> "> Figure 3 Cont.
<p>Coregistered SLC timing corrections for the whole burst on 24 March 2020. (<b>a</b>) Slant range geometrical Doppler, (<b>b</b>) azimuth bistatic delay, (<b>c</b>) azimuth FM rate mismatch, (<b>d</b>) slant range solid Earth tides, (<b>e</b>) azimuth time solid Earth tides, (<b>f</b>) line-of-sight ionospheric delay, (<b>g</b>) wet LOS troposphere, (<b>h</b>) dry LOS troposphere.</p> "> Figure 4
<p>InSAR network selection. (<b>a</b>) Mask connected components before (purple) and after (yellow) IFG selection. (<b>b</b>) Number of connected components, (<b>c</b>) number of IFGs not connected per pixel, (<b>d</b>) number of unconnected pixels per IFG, discarted IFGs are shown in yellow, (<b>e</b>) IFG network selected.</p> "> Figure 5
<p>(<b>a</b>) Temporal coherence, (<b>b</b>) mean amplitude, (<b>c</b>) scatterer type, (<b>d</b>) amplitude dispersion.</p> "> Figure 6
<p>(<b>a</b>) EGMS velocity for the Algeciras port. (<b>b</b>) Same area processed using CSLCs and phase. (<b>c</b>) Same area processed using ISCE2 and geocoding after phase linking. Reference point used for processing highlighted in white for (<b>b</b>,<b>c</b>).</p> "> Figure 7
<p>(<b>a</b>) Histograms for the velocity in ISCE3-MiaplPy, ISCE2-MiaplPy, and EGMS over the AOI. (<b>b</b>) Histogram of velocity differences between ISCE3-EGMS. (<b>c</b>) Histogram of velocity differences between ISCE2-ISCE3.</p> "> Figure 8
<p>(<b>a</b>) Comparison of a group of time series over EVOS Terminal in ISCE3-MiaPLpy and EGMS. (<b>b</b>) Measurement points over the area based on EGMS colored by velocity. (<b>c</b>) Same for ISCE3-Miaplpy.</p> "> Figure 9
<p>(<b>a</b>) Comparison of a group of time series over Isla Verde Exterior in ISCE3-MiaPLpy and EGMS. (<b>b</b>) Measurement points over the area based on EGMS colored by velocity. (<b>c</b>) Same for ISCE3-Miaplpy.</p> ">
Abstract
:1. Introduction
Area of Study
2. Materials and Methods
2.1. Data Used
2.1.1. EGMS
2.1.2. Sentinel-1A and B Dataset
2.1.3. Copernicus DEM
2.1.4. ETAD Dataset
2.1.5. Tropospheric and Ionospheric Information
2.2. Methods
- ISCE2-MiaPlPy Workflow: Uses ISCE2’s TopStack processor (Version 2.4.2) [10] to generate the coregistered stack. The main difference with the ISCE3 approach is that TopStack uses enhanced spectral diversity to meet the required azimuth misregistration errors, while COMPASS implements a model-adjusted geometrical image coregistration (MAGIC) [18,19] that estimates the residual misregistration using external models and products, e.g., ionosphere, troposphere, solid Earth tides, plate motion, and SAR processing effects. The rest of the process is otherwise identical, using MiaPlPy and MintPy to obtain the displacement time series.
- European Ground Motion Service (EGMS): Provides preprocessed ground motion data derived from Sentinel-1 SAR imagery. It uses a semi-standardized processing chain throughout Europe with slight modifications between different providers [33].
2.2.1. Coregistered CSLC Stack
Timing Corrections
- Range shift due to Doppler: Due to the fact that a single transmitted radar pulse is reflected by different targets with different sensor-to-target geometries, several Doppler shifts are superimposed within one received range line. Therefore, a compensation of the Doppler effect immediately after receiving is not possible. This is translated as a range shift in TOPS interferometry [37]:
- Bistatic Azimuth Effects Mitigation: The IPF applies the stop-and-go approximation in the processing of the S-1 acquisitions that assumes that the satellite is in the same position for the emission and reception. In reality, the motion of the platform between pulses amounts to tens of meters that produces a shift in azimuth. To correct for this effect, we must reverse the original shift and apply the precise one:Here, denotes the reconstructed mid-swath range time, stands for the range time at the correction grid point, and PRI corresponds to the pulse repetition interval for the burst in question. The parameter indicates the number of PRI events between the transmission of the pulse and the reception of its echo.
- Azimuth FM mismatch mitigation: This is a topography-correlated error that stems from a constant effective velocity parameter used in the azimuth FM rate calculation during the processing of extensive azimuth blocks. For stripmap SAR with zero-Doppler steering, the mismatch effect (quadratic phase error) primarily causes image defocusing. However, for TOPS products, it also results in azimuth shifts.
- Solid Earth tides refer to the distortions in the Earth’s crust due to the gravitational influences of the Sun and the Moon. These deformations usually fluctuate by ±25 cm vertically, and there is also notable horizontal movement reaching up to 6 cm. For the calculation, we use Python-based solid Earth tides (PySolid) [19,41].
- Ionosphere delay in line-of-sight direction calculated from the TEC obtained from IONEX NASA product [31].
2.2.2. Phase Linking
- Subsidence analysis: Improved phase coherence and reduced artifacts enable more accurate detection and monitoring of ground deformation over time, facilitating reliable subsidence measurements.
- Coherence analysis: Enhanced image clarity allows for a precise assessment of temporal coherence, which aids in the identification of areas with significant changes or persistent stability.
2.2.3. Phase Unwrapping and Optimization of the InSAR Network
- Temporal baseline: A maximum temporal distance of 220 days between successive acquisitions to balance temporal resolution and coherence.
- Spatial baseline: A perpendicular baseline threshold of 200 m to ensure adequate spatial coverage and minimize decorrelation.
2.2.4. Displacement Inversion
3. Results
3.1. Impact of Timing Corrections on Geocoded SLC Data
3.2. Construction and Optimization of the InSAR Network
3.3. Temporal Coherence and Amplitude Dispersion Analysis
3.4. Comparison of Velocity Estimations Using Different Processing Workflows
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
InSAR | Interferometric Synthetic Aperture Radar |
PSDS | Persistent Scatterer and Distributed Scatterer |
L2-CSLC | Level 2 Coregistered Single Look Complex |
CPL | Combined eigenvalue maximum likelihood Phase Linking |
COMPASS | Coregistered Multi-temporal Sar SLC |
EGMS | European Ground Motion Service |
ISCE | InSAR Scientific Computing Environment |
SLC | Single Look Complex |
DEM | Digital Elevation Model |
PNOA | National Aerial Orthophotography Plan |
SBAS | Small Baseline Subset |
SHP | Statistical Homogeneous Pixels |
CCM | Complex Covariance Matrix |
MLE | Maximum Likelihood Estimation |
PTA | Point Target Analysis |
ALE | Absolute Location Error |
CRS | Coordinate Reference System |
ETAD | Enhanced Timing Annotation Dataset |
ERA5 | ECMWF Reanalysis, 5th Generation |
MiaplPy | Miami InSAR Time-Series Software in Python |
MintPy | Miami Insar Timeseries software in Python |
Raider | Ray-tracing Atmospheric Delay Estimation for InSAR |
OPERA | Open Platform for Earth Observation-Based Radar Applications |
PSI | Persistent Scatterer Interferometry |
PL | Phase Linking |
IFG | Interferogram |
LOS | Line of Sight |
References
- Pavlic, B.; Cepak, F.; Sucic, B.; Peckaj, M.; Kandus, B. Sustainable port infrastructure, practical implementation of the green port concept. Therm. Sci. 2014, 18, 935–948. [Google Scholar] [CrossRef]
- Zhang, Y.; Kim, C.W.; Tee, K.F.; Lam, J.S.L. Optimal sustainable life cycle maintenance strategies for port infrastructures. J. Clean. Prod. 2017, 142, 1693–1709. [Google Scholar] [CrossRef]
- Campos, A.; Molina-Sanchez, R.; Castillo, C. Damage in Rubble Mound Breakwaters. Part II: Review of the Definition, Parameterization, and Measurement of Damage. J. Mar. Sci. Eng. 2020, 8, 306. [Google Scholar] [CrossRef]
- Castillo, C.; Castillo, E.; Fernández-Canteli, A.; Molina, R.; Gómez, R. Stochastic Model for Damage Accumulation in Rubble-Mound Breakwaters Based on Compatibility Conditions and the Central Limit Theorem. J. Waterw. Port Coastal Ocean. Eng. 2012, 138, 451–463. [Google Scholar] [CrossRef]
- de Almeida, E.; van Gent, M.R.A.; Hofland, B. Damage Characterization of Rock Slopes. J. Mar. Sci. Eng. 2019, 7, 10. [Google Scholar] [CrossRef]
- Tomás, R.; Romero, R.; Mulas, J.; Marturià, J.J.; Mallorquí, J.J.; Lopez-Sanchez, J.M.; Herrera, G.; Gutiérrez, F.; González, P.J.; Fernández, J.; et al. Radar interferometry techniques for the study of ground subsidence phenomena: A review of practical issues through cases in Spain. Environ. Earth Sci. 2014, 71, 163–181. [Google Scholar] [CrossRef]
- Seidel, M.; Marzahn, P.; Ludwig, R. Monitoring of Sea Dike Structures by the Means of Combined StaMPS Multi-temporal InSAR Approach. Procedia Comput. Sci. 2016, 100, 1147–1154. [Google Scholar] [CrossRef]
- Özer, I.E.; Rikkert, S.J.; van Leijen, F.J.; Jonkman, S.N.; Hanssen, R.F. Sub-seasonal Levee Deformation Observed Using Satellite Radar Interferometry to Enhance Flood Protection. Sci. Rep. 2019, 9, 2646. [Google Scholar] [CrossRef]
- Mirzaee, S.; Amelung, F.; Fattahi, H. Non-linear phase linking using joined distributed and persistent scatterers. Comput. Geosci. 2023, 171, 105291. [Google Scholar] [CrossRef]
- Fattahi, H.; Agram, P.; Simons, M. A Network-Based Enhanced Spectral Diversity Approach for TOPS Time-Series Analysis. IEEE Trans. Geosci. Remote Sens. 2017, 55, 777–786. [Google Scholar] [CrossRef]
- Wu, Z.; Ellingsen, P.G.; Jia, H.; ÅDland, R.O. Tracking Volume Change of the Bulk Commodities with Interferometric SAR. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 8242–8245. [Google Scholar] [CrossRef]
- Tirmizi, O.; Khan, S.D. Factors of Subsidence in Katy, Texas, USA. Remote Sens. 2023, 15, 4424. [Google Scholar] [CrossRef]
- Zhang, G.; Yu, Z.; Zhang, Z.; Jiang, W.; Zhang, Y. Deformation monitoring of Shuangwangcheng Reservoir based on time-series InSAR method. In Proceedings of the Fifth International Conference on Geoscience and Remote Sensing Mapping (ICGRSM 2023), Lianyungang, China, 13–15 October 2023; p. 103. [Google Scholar] [CrossRef]
- Fattahi, H.; Bekaert, D.P.; Brancato, V.; Yunjun, Z.; Lu, Z.; Bato, M.G.; Kim, J.W.; Jeong, S.; Liang, K.; Sangha, S. OPERA Coregistered Single Look Complex products from Sentinel-1 data. In Proceedings of the AGU Fall Meeting, Chicago, IL, USA, 12–16 December 2022; Volume 2022, p. G45A–03. [Google Scholar]
- NASA; JPL; OPERA. OPERA OPERA Level-2 Coregistered Single-Look Complex Static Layers from Sentinel-1; NASA Alaska Satellite Facility Distributed Active Archive Center: Fairbanks, AK, USA, 2023. [Google Scholar] [CrossRef]
- NASA; JPL; OPERA. OPERA Level-2 Coregistered Single-Look Complex from Sentinel-1; NASA Alaska Satellite Facility Distributed Active Archive Center: Fairbanks, AK, USA, 2023. [Google Scholar] [CrossRef]
- Rosen, P.A.; Gurrola, E.M.; Agram, P.; Cohen, J.; Lavalle, M.; Riel, B.V.; Fattahi, H.; Aivazis, M.A.; Simons, M.; Buckley, S.M. The InSAR Scientific Computing Environment 3.0: A Flexible Framework for NISAR Operational and User-Led Science Processing. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 4897–4900. [Google Scholar] [CrossRef]
- Yunjun, Z.; Fattahi, H.; Brancato, V.; Liu, Y.K.; Simons, M. Azimuth Geolocation of Sentinel-1 and Its Implications for Stack Coregistration and Intra-Burst Phase Discontinuity. In Proceedings of the AGU Fall Meeting, Chicago, IL, USA, 12–16 December 2022. [Google Scholar]
- Yunjun, Z.; Fattahi, H.; Pi, X.; Rosen, P.; Simons, M.; Agram, P.; Aoki, Y. Range Geolocation Accuracy of C-/L-Band SAR and its Implications for Operational Stack Coregistration. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–19. [Google Scholar] [CrossRef]
- Ansorena, I.L. Analysing the maritime network of the port of Algeciras Bay. World Rev. Intermodal Transp. Res. 2020, 9, 245–263. [Google Scholar] [CrossRef]
- Alfonso, C. “Gateway” City and Nexus Between Two Continents: The Port City of Algeciras. In Port Cities as Areas of Transition; Transcript Verlag: Bielefeld, Germany, 2008. [Google Scholar] [CrossRef]
- Acosta, M.; Coronado, D.; Mar Cerban, M. Port competitiveness in container traffic from an internal point of view: The experience of the Port of Algeciras Bay. Marit. Policy Manag. 2007, 34, 501–520. [Google Scholar] [CrossRef]
- Gil-Ropero, A.; Cerban, M.; Turias, I.J. Analysis of the Global and Technical Efficiencies of Major Spanish Container Ports. Int. J. Transp. Econ./Riv. Internazionale Econ. Dei Trasp. 2015, 42, 377–407. [Google Scholar]
- Costantini, M.; Minati, F.; Trillo, F.; Ferretti, A.; Novali, F.; Passera, E.; Dehls, J.; Larsen, Y.; Marinkovic, P.; Eineder, M.; et al. European Ground Motion Service (EGMS). In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 3293–3296. [Google Scholar] [CrossRef]
- European Environment Agency. European Ground Motion Service: Basic 2018–2022 (Vector), Europe, Yearly, Oct. 2023. 2023. Available online: https://sdi.eea.europa.eu/catalogue/srv/api/records/1b2eb0d6-8c3a-4de2-b99d-10a30079f3cc (accessed on 22 October 2024). [CrossRef]
- European Space Agency; Airbus. Copernicus DEM; European Space Agency: Paris, France, 2022. [Google Scholar] [CrossRef]
- Gisinger, C.; Schubert, A.; Breit, H.; Garthwaite, M.; Balss, U.; Willberg, M.; Small, D.; Eineder, M.; Miranda, N. In-Depth Verification of Sentinel-1 and TerraSAR-X Geolocation Accuracy Using the Australian Corner Reflector Array. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1154–1181. [Google Scholar] [CrossRef]
- Gisinger, C.; Libert, L.; Marinkovic, P.; Krieger, L.; Larsen, Y.; Valentino, A.; Breit, H.; Balss, U.; Suchandt, S.; Nagler, T.; et al. The Extended Timing Annotation Dataset for Sentinel-1—Product Description and First Evaluation Results. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–22. [Google Scholar] [CrossRef]
- Maurer, J.; Bekaert, D.; Sangha, S.; Hamlington, B.; Marshak, C.; Lei, Y.; Kumar, P.; Fattahi, H. RAiDER: Raytracing Atmospheric Delay Estimation for RADAR. In Proceedings of the AGU Fall Meeting, New Orleans, LA, USA, 13–17 December 2021; Volume 2021, p. G44A–07. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Noll, C.E. The crustal dynamics data information system: A resource to support scientific analysis using space geodesy. Adv. Space Res. 2010, 45, 1421–1440. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Ferretti, A. End-to-End Implementation and Operation of the European Ground Motion Service (EGMS). 2023. Available online: https://land.copernicus.eu/en/technical-library/egms-algorithm-theoretical-basis-document/@@download/file (accessed on 22 October 2024).
- Agram, P.S.; Warren, M.S.; Calef, M.T.; Arko, S.A. An Efficient Global Scale Sentinel-1 Radar Backscatter and Interferometric Processing System. Remote Sens. 2022, 14, 3524. [Google Scholar] [CrossRef]
- Zebker, H.A.; Goldstein, R.M. Topographic mapping from interferometric synthetic aperture radar observations. J. Geophys. Res. 1986, 91, 4993. [Google Scholar] [CrossRef]
- OPERA CSLC-S1 Static Layers Product Description. 2023. Available online: https://asf.alaska.edu/wp-content/uploads/2023/11/OPERA-CSLC-S1-ProductSpec-v1.0.0-D-108278-Initial-2023-09-11-URS321269.pdf (accessed on 22 October 2024).
- Prats-Iraola, P.; Scheiber, R.; Marotti, L.; Wollstadt, S.; Reigber, A. TOPS Interferometry with TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3179–3188. [Google Scholar] [CrossRef]
- Bara, M.; Moreira, A. Interferometric SAR Signal Analysis in the Presence of Squint. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2164–2178. [Google Scholar] [CrossRef]
- Rodriguez-Cassola, M.; Prats-Iraola, P.; De Zan, F.; Scheiber, R.; Reigber, A.; Geudtner, D.; Moreira, A. Doppler-Related Distortions in TOPS SAR Images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 25–35. [Google Scholar] [CrossRef]
- De Zan, F.; Prats-Iraola, P.; Scheiber, R.; Rucci, A. Interferometry with TOPS: Coregistration and azimuth shifts. In Proceedings of the EUSAR 2014, 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 3–5 June 2014. [Google Scholar]
- Milbert, D. Solid: Solid Earth Tide. 2018. Available online: http://geodesyworld.github.io/SOFTS/solid.htm (accessed on 22 October 2024).
- De Zan, F.; Lopez-Dekker, P. SAR Image Stacking for the Exploitation of Long-Term Coherent Targets. IEEE Geosci. Remote Sens. Lett. 2011, 8, 502–506. [Google Scholar] [CrossRef]
- Guarnieri, A.M.; Tebaldini, S. On the Exploitation of Target Statistics for SAR Interferometry Applications. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3436–3443. [Google Scholar] [CrossRef]
- Guarnieri, A.; Tebaldini, S. Hybrid CramÉr–Rao Bounds for Crustal Displacement Field Estimators in SAR Interferometry. IEEE Signal Process. Lett. 2007, 14, 1012–1015. [Google Scholar] [CrossRef]
- Ansari, H.; Adam, N.; Brcic, R. Amplitude time series analysis in detection of persistent and temporal coherent scatterers. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 2213–2216. [Google Scholar] [CrossRef]
- Ansari, H. Synthetic Aperture Radar Interferometry. Ph.D. Thesis, Technische Universität München, Munich, Germany, 2018. [Google Scholar]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorqui, J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Ansari, H.; De Zan, F.; Bamler, R. Efficient Phase Estimation for Interferogram Stacks. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4109–4125. [Google Scholar] [CrossRef]
- Ansari, H.; De Zan, F.; Bamler, R. Sequential Estimator: Toward Efficient InSAR Time Series Analysis. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5637–5652. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Navneet, S.; Kim, J.W.; Lu, Z. A New InSAR Persistent Scatterer Selection Technique Using Top Eigenvalue of Coherence Matrix. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1969–1978. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Network approaches to two-dimensional phase unwrapping: Intractability and two new algorithms. J. Opt. Soc. Am. A 2000, 17, 401. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, 2004GL021737. [Google Scholar] [CrossRef]
- Yunjun, Z.; Fattahi, H.; Amelung, F. Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. Comput. Geosci. 2019, 133, 104331. [Google Scholar] [CrossRef]
- Observational Products for End-Users from Remote Sensing Analysis (OPERA)—Product Validation Plan. V1.5. Available online: https://d2pn8kiwq2w21t.cloudfront.net/documents/OPERA_Validation_Plan.pdf (accessed on 22 October 2024).
- Bekaert, D. OPERA Analysis-Ready SAR and Optical Products for Mapping Water Extent, Disturbance, and Displacement at Continental to Near-Global Scales. 2023. Available online: https://fringe2023.esa.int/iframe-agenda/files/presentation-262.pdf (accessed on 22 October 2024).
- Dheenathayalan, P. Optimizing the Exploitation of Persistent Scatterers in Satellite Radar Interferometry. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2019. [Google Scholar] [CrossRef]
Satellite | Ndates | First Date | Last Date | Geometry | Track |
---|---|---|---|---|---|
Sentinel-1A | 150 | 10 January 2018 | 27 December 2022 | Ascending | 74 |
Sentinel-1B | 120 | 4 January 2018 | 14 December 2021 | Ascending | 74 |
Workflows | Measurement Points | Mean Vel (mm/year) | STD (mm/year) |
---|---|---|---|
ISCE3-MiaPLPy | 33,142 | −0.63 | 1.59 |
ISCE2-MiaPLPy | 14,061 | −0.67 | 1.62 |
EGMS | 8041 | −0.95 | 2.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Fernández, J.; Fernández-Landa, A.; Hernández Cabezudo, Á.; Molina Sánchez, R. Interferometric Synthetic Aperture Radar Phase Linking with Level 2 Coregistered Single Look Complexes: Enhancing Infrastructure Monitoring Accuracy at Algeciras Port. Remote Sens. 2024, 16, 3966. https://doi.org/10.3390/rs16213966
Sánchez-Fernández J, Fernández-Landa A, Hernández Cabezudo Á, Molina Sánchez R. Interferometric Synthetic Aperture Radar Phase Linking with Level 2 Coregistered Single Look Complexes: Enhancing Infrastructure Monitoring Accuracy at Algeciras Port. Remote Sensing. 2024; 16(21):3966. https://doi.org/10.3390/rs16213966
Chicago/Turabian StyleSánchez-Fernández, Jaime, Alfredo Fernández-Landa, Álvaro Hernández Cabezudo, and Rafael Molina Sánchez. 2024. "Interferometric Synthetic Aperture Radar Phase Linking with Level 2 Coregistered Single Look Complexes: Enhancing Infrastructure Monitoring Accuracy at Algeciras Port" Remote Sensing 16, no. 21: 3966. https://doi.org/10.3390/rs16213966
APA StyleSánchez-Fernández, J., Fernández-Landa, A., Hernández Cabezudo, Á., & Molina Sánchez, R. (2024). Interferometric Synthetic Aperture Radar Phase Linking with Level 2 Coregistered Single Look Complexes: Enhancing Infrastructure Monitoring Accuracy at Algeciras Port. Remote Sensing, 16(21), 3966. https://doi.org/10.3390/rs16213966