Enhancing Algal Bloom Level Monitoring with CYGNSS and Sentinel-3 Data
<p>Distribution of averaged CYGNSS reflection points in the Hongze Lake.</p> "> Figure 2
<p>Flowchart of the study.</p> "> Figure 3
<p>Flowchart of MPH to obtain <span class="html-italic">chl_a</span> concentration.</p> "> Figure 4
<p>Results of <span class="html-italic">chl_a</span> concentration retrieval based on MPH algorithm.</p> "> Figure 5
<p>The map of retrieved <span class="html-italic">chl_a</span> concentration results and in situ measurements.</p> "> Figure 6
<p>Relationship between retrieval results of <span class="html-italic">chl_a</span> concentration on 9 May and 14 May and measured <span class="html-italic">chl_a</span> concentration on May 11.</p> "> Figure 7
<p><span class="html-italic">chl_a</span> concentration values corresponding to CYGNSS reflection points, the colors (blue to red) represent increasing concentration.</p> "> Figure 8
<p>Accuracy of predicted <span class="html-italic">chl_a</span> concentration category by XGBoost at 1 KM resolution.</p> "> Figure 9
<p>Model classification confusion matrix for 2 Classes (<b>a</b>) and 3 Classes (<b>b</b>) classification criterion.</p> "> Figure 10
<p>Model classification confusion matrix for 4 Classes (<b>a</b>) and 5 Classes (<b>b</b>) classification criterion.</p> "> Figure 11
<p>Model classification confusion matrix of Guangdong local classification criterion.</p> "> Figure 12
<p>Accuracy of 5-fold CV of different classification methods at different spatial resolutions.</p> ">
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Study Area
2.2. CYGNSS Data
2.3. Auxiliary Data
2.3.1. Sentinel-3 OLCI Data
2.3.2. ERA5-Land Data
3. Algal Bloom Level Monitoring Method
3.1. MPH Retrieval of chl_a Concentration
3.2. Classification Method for Algal Blooms
3.3. Calculation of CYGNSS Surface Reflectivity
3.4. XGBoost Algorithm and Accuracy Evaluation
4. Results and Analysis
4.1. chl_a Retrieval Results and Validation
4.2. Algal Bloom Level Monitoring Based on CYGNSS Data
4.3. Impact of Different Scales on the Effectiveness of Algal Bloom Monitoring Models
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, R.; Pang, Y.; Bao, K. Spatiotemporal Distribution of Water Environmental Capacity—A Case Study on the Western Areas of Taihu Lake in Jiangsu Province, China. Environ. Sci. Pollut. Res. 2014, 21, 5465–5473. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Li, S. An analysis on the Evolvement Processes of Lake Eutrophication and Their Characteristics of the Typical Lakes in the Middle and Lower Reaches of Yangtze River. Chin. Sci. Bull. 2006, 51, 1603–1613. [Google Scholar] [CrossRef]
- Zou, H.; Pan, G.; Chen, H.; Yuan, X. Removal of cyanobacterial blooms in Taihu Lake using local soils. II. Effective removal of Microcystis aeruginosa using local soils and sediments modified by chitosan. Environ. Pollut. 2006, 141, 201–205. [Google Scholar] [CrossRef]
- Wu, J.; Xu, Q.; Gao, G.; Shen, J. Evaluating Genotoxicity Associated with Microcystin-LR and Its Risk to Source Water Safety in Meiliang Bay, Taihu Lake. Environ. Toxicol. 2006, 21, 250–255. [Google Scholar] [CrossRef]
- Hu, C.; Lee, Z.; Ma, R.; Yu, L.; Li, D.; Shang, S. Moderate Resolution Imaging Spectroradiometer (MODIS) Observations of Cyanobacteria Blooms in Taihu Lake, China. J. Geophys. Res. Ocean. 2010, C4, 115. [Google Scholar] [CrossRef]
- Zhou, B.; Cai, X.; Wang, S.; Yang, X. Analysis of the Causes of Cyanobacteria Bloom: A Review. J. Resour. Ecol. 2020, 11, 405–413. [Google Scholar]
- Zhang, T.; Hu, H.; Ma, X.; Zhang, Y. Long-term Spatiotemporal Variation and Environmental Driving Forces Analyses of Algal Blooms in Taihu Lake based on Multi-source Satellite and Land Observations. Water 2020, 12, 1035. [Google Scholar] [CrossRef]
- Dhillon, M.S.; Dahms, T.; Kübert-Flock, C.; Steffan-Dewenter, I.; Zhang, J.; Ullmann, T. Spatiotemporal Fusion Modelling Using STARFM: Examples of Landsat 8 and Sentinel-2 NDVI in Bavaria. Remote Sens. 2022, 14, 677. [Google Scholar] [CrossRef]
- Wang, L.; Xu, X.; Yu, Y.; Gui, R.; Xu, Z.; Pu, F. SAR-to-optical Image Translation Using Supervised Cycle-consistent Adversarial Networks. IEEE Access 2019, 7, 129136–129149. [Google Scholar] [CrossRef]
- Papale, D.; Belli, C.; Gioli, B.; Miglietta, E.; Ronchi, C.; Vaccari, F.P.; Valentini, R. ASPlS, A Flexible Multispectral System for Airborne Remote Sensing Environmental Applications. Sensors 2008, 8, 3240–3256. [Google Scholar] [CrossRef]
- Wang, G.; Li, J.; Zhang, B.; Shen, Q.; Zhang, F. Monitoring Cyanobacteria-dominant Algal Blooms in Eutrophicated Taihu Lake in China with Synthetic Aperture Radar Images. Chin. J. Oceanol. Limnol. 2015, 33, 139–148. [Google Scholar] [CrossRef]
- Bresciani, M.; Adamo, M.; Carolis, G.D.; Matta, E.; Pasquariello, G.; Vaičiūtė, D.; Giardino, C. Monitoring Blooms and Surface Accumulation of Cyanobacteria in the Curonian Lagoon by Combining MERIS and ASAR Data. Remote Sens. Environ. 2014, 146, 124–135. [Google Scholar] [CrossRef]
- Landuyt, L.; Van Wesemael, A.; Schumann, G.J.P.; Hostache, R.; Verhoest, N.E.; Van Coillie, F.M. Flood Mapping based on Synthetic Aperture Radar: An Assessment of Established Approaches. IEEE Trans. Geosci. Remote Sens. 2018, 57, 722–739. [Google Scholar] [CrossRef]
- Chew, C.C.; Small, E.E. Soil Moisture Sensing Using Spaceborne GNSS Reflections: Comparison of CYGNSS Reflectivity to SMAP Soil Moisture. Geophys. Res. Lett. 2018, 45, 4049–4057. [Google Scholar] [CrossRef]
- Njoku, E.G.; Entekhabi, D. Passive Microwave Remote Sensing of Soil Moisture. J. Hydrol. 1996, 184, 101–129. [Google Scholar] [CrossRef]
- Darrozes, J.; Roussel, N.; Zribi, M. The Reflected Global Navigation Satellite System (GNSS-R): From Theory to Practice. In Microwave Remote Sensing of Land Surface; Elsevier: Amsterdam, The Netherlands, 2016; pp. 303–355. [Google Scholar]
- Li, L.; Elhajj, M.; Feng, Y.; Ochieng, W.Y. Machine learning based GNSS signal classification and weighting scheme design in the built environment: A comparative experiment. Satell. Navig. 2023, 4, 12. [Google Scholar] [CrossRef]
- Li, W.; Cardellach, E.; Fabra, F.; Rius, A.; Ribó, S.; Martín-Neira, M. First spaceborne phase altimetry over sea ice using TechDemoSat-1 GNSS-R signals. Geophys. Res. Lett. 2017, 44, 8369–8376. [Google Scholar] [CrossRef]
- Xie, Y.; Yan, Q. Stand-alone retrieval of sea ice thickness from FY-3E GNOS-R data. IEEE Geosci. Remote Sens. Lett. 2024, 21, 2000305. [Google Scholar] [CrossRef]
- Kucwaj, J.C.; Reboul, S.; Stienne, G.; Choquel, J.B.; Benjelloun, M. Circular regression applied to GNSS-R phase altimetry. Remote Sens. 2017, 9, 651. [Google Scholar] [CrossRef]
- Ghasemigoudarzi, P.; Huang, W.; Silva, O.D.; Yan, Q.; Power, D.T. Flash flood detection from CYGNSS data using the RUSBoostalgorithm. IEEE Access 2020, 8, 171864–171881. [Google Scholar] [CrossRef]
- Wei, H.; Yu, T.; Tu, J.; Ke, F. Detection and Evaluation of Flood Inundation Using CYGNSS Data during Extreme Precipitation in 2022 in Guangdong Province, China. Remote Sens. 2023, 15, 297. [Google Scholar] [CrossRef]
- Yan, Q.; Liu, S.; Chen, T.; Jin, S.; Xie, T.; Huang, W. Mapping Surface Water Fraction Over the Pan-tropical Region Using CyGNSS Data. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5800914. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, Q. Unlocking the potential of CYGNSS for pan-tropical inland water mapping through multi-source data and transformer. Int. J. Appl. Earth Obs. Geoinf. 2024, 133, 104122. [Google Scholar] [CrossRef]
- Jin, S.; Camps, A.; Jia, Y.; Wang, F.; Martin-Neira, M.; Huang, F.; Yan, Q.; Zhang, S.; Li, Z.; Edokossi, K.; et al. Remote sensing and its applications using GNSS reflected signals: Advances and prospects. Satell. Navig. 2024, 5, 19. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W.; Jin, S.; Jia, Y. Pan-tropical soil moisture mapping based on a three-layer model from CYGNSS GNSS-R data. Remote Sens. Environ. 2020, 247, 111944. [Google Scholar] [CrossRef]
- Rodriguez-Alvarez, N.; Oudrhiri, K. The Bistatic Radar as An Effective Tool for Detecting Andnonitoring the Presence Phytoplankton on the Ocean Surface. Remote Sens. 2021, 13, 2248. [Google Scholar] [CrossRef]
- Ban, W.; Zhang, K.; Yu, K.; Zheng, N.; Chen, S. Detection of Red Tide over Sea Surface Using GNSS-R Spaceborne Observations. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5802911. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Zhou, S.; Meng, W.; Han, Y.; Yang, S. Analysis on Feasibility of Detecting Water Blooms in Taihu Lake with Spaceborne GNSS-R. J. Beijing Univ. Aeronaut. Astronaut. 2024, 50, 695–705. [Google Scholar]
- Zhen, Y.; Yan, Q. Improving Spaceborne GNSS-R Algal Bloom Detection with Meteorological Data. Remote Sens. 2023, 15, 3122. [Google Scholar] [CrossRef]
- Wu, Y.; Dai, R.; Xu, Y.; Han, J.; Li, P. Statistical assessment of water quality issues in Hongze Lake, China, related to the operation of a water diversion project. Sustainability 2018, 10, 1885. [Google Scholar] [CrossRef]
- Ruf, C.S.; Atlas, R.; Chang, P.; Clarizia, M.P.; Garrison, J.L.; Gleason, S.; Zavorotny, V.U. New Ocean Winds Satellite Mission to Probe Hurricanes and Tropical Convection. Bull. Am. Meteorol. Soc. 2016, 97, 385–395. [Google Scholar] [CrossRef]
- Eroglu, O.; Kurum, M.; Boyd, D.; Gurbuz, A.C. High Spatio-Temporal Resolution CyGNSS Soil Moisture Estimates Using Artificial Neural Networks. Remote Sens. 2019, 11, 2272. [Google Scholar] [CrossRef]
- Egido, A.; Paloscia, S.; Motte, E.; Guerriero, L.; Pierdicca, N.; Caparrini, M.; Floury, N. Airborne GNSS-R Polarimetric Measurements for Soil Moisture and Above-Ground Biomass Estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1522–1532. [Google Scholar] [CrossRef]
- Mograne, M.A.; Jamet, C.; Loisel, H.; Vantrepotte, V.; Mériaux, X.; Cauvin, A. Evaluation of Five Atmospheric Correction Algorithms over French Optically-complex Waters for the Sentinel-3A OLCI Ocean Color Sensor. Remote Sens. 2019, 11, 668. [Google Scholar] [CrossRef]
- Bai, X.; Hu, W.; Hu, Z.; Li, X. Importation of Wind-driven Drift of Mat-like Algae Bloom into Meiliang Bay of Taihu Lake in 2004 Summer. Environ. Sci. 2005, 26, 57–60. [Google Scholar]
- Matthews, M.W.; Bernard, S.; Robertson, L. An Algorithm for Detecting Trophic Status (chlorophyll-a), Cyanobacterial-Dominance, Surface Scums and Floating Vegetation in Inland and Coastal Waters. Remote Sens. Environ. 2012, 124, 637–652. [Google Scholar] [CrossRef]
- Matthews, M.W.; Odermatt, D. Improved Algorithm for Routine Monitoring of Cyanobacteria and Eutrophication in Inland and Near-coastal Waters. Remote Sens. Environ. 2015, 156, 374–382. [Google Scholar] [CrossRef]
- DB44/T 2261-2020; Technical Specification for Classification and Monitoring of Algal Blooms. Market Supervision Administration of Guangdong Province: Guangzhou, China, 2020.
- MacQueen, J. Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: Oakland, CA, USA, 1967; Volume 1, pp. 281–297. [Google Scholar]
- Carreno-Luengo, H.; Luzi, G.; Crosetto, M. Sensitivity of CyGNSS Bistatic Reflectivity and SMAP Microwave Radiometry Brightness Temperature to Geophysical Parameters over Land Surfaces. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 12, 107–122. [Google Scholar] [CrossRef]
- Senyurek, V.; Lei, F.; Boyd, D.; Kurum, M.; Gurbuz, A.C.; Moorhead, R. Machine Learning-based CYGNSS Soil Moisture Estimates over ISMN Sites in CONUS. Remote Sens. 2020, 12, 1168. [Google Scholar] [CrossRef]
- Senyurek, V.; Lei, F.; Boyd, D.; Gurbuz, A.C.; Kurum, M.; Moorhead, R. Evaluations of Machine Learning-based CYGNSS Soil Moisture Estimates Against SMAP Observations. Remote Sens. 2020, 12, 3503. [Google Scholar] [CrossRef]
- Yang, T.; Wan, W.; Sun, Z.; Liu, B.; Li, S.; Chen, X. Comprehensive Evaluation of Using TechDemoSat-1 and CYGNSS Data to Estimate Soil Moisture over Mainland China. Remote Sens. 2020, 12, 1699. [Google Scholar] [CrossRef]
- Ruf, C.S.; Gleason, S.; McKague, D.S. Assessment of CYGNSS Wind Speed Retrieval Uncertainty. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 12, 87–97. [Google Scholar] [CrossRef]
- Ruf, C.S.; Posselt, J.D.; Majumdar, S.; Gleason, S.; Clarizia, M.P.; Starkenburg, D.; Provost, D.; Zavorotny, V.U.; Murray, J.; Musko, S.; et al. CYGNSS Handbook, Cyclone Global Navigation Satellite System: Deriving Surface Wind Speeds in Tropical Cyclones; University of Michigan: Ann Arbor, MI, USA, 2016. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Douzas, G.; Bacao, F.; Fonseca, J.; Khudinyan, M. Imbalanced learning in land cover classification: Improving minority classes’ prediction accuracy using the geometric SMOTE algorithm. Remote Sens. 2019, 11, 3040. [Google Scholar] [CrossRef]
- Kravitz, J.; Matthews, M.; Bernard, S.; Griffith, D. Application of Sentinel 3 OLCI for chl-a retrieval over small inland water targets: Successes and challenges. Remote Sens. Environ. 2020, 237, 111562. [Google Scholar] [CrossRef]
Algal Bloom Classification | Cyanobacterial Density (Cells/L) | chl_a Concentration (μg/L) |
---|---|---|
no algal bloom | 0 < D < 2 × 106 | C < 10 |
no visible algal bloom | 2 × 106 < D < 1 × 107 | 10 < C < 15 |
mild algal bloom | 1 × 107 < D < 5 × 107 | 15 < C < 50 |
moderate algal bloom | 5 × 107 < D < 1 × 108 | 50 < C < 100 |
heavy algal bloom | D > 1 × 108 | C > 100 |
Date | Amount of Data Pre-Filter | Amount of Data After Filter |
---|---|---|
2 May 2023 | 18 | 17 |
3 May 2023 | 19 | 14 |
9 May 2023 | 21 | 11 |
13 May 2023 | 23 | 6 |
14 May 2023 | 35 | 12 |
16 May 2023 | 24 | 10 |
19 May 2023 | 29 | 15 |
20 May 2023 | 32 | 14 |
3 Jun 2023 | 31 | 21 |
7 Jun 2023 | 22 | 8 |
8 Jun 2023 | 21 | 5 |
9 Jun 2023 | 11 | 8 |
10 Jun 2023 | 35 | 22 |
14 Jun 2023 | 16 | 7 |
3 Aug 2023 | 9 | 8 |
12 Aug 2023 | 25 | 13 |
31 Aug 2023 | 13 | 4 |
1 Sep 2023 | 36 | 21 |
7 Sep 2023 | 41 | 30 |
8 Sep 2023 | 32 | 17 |
9 Sep 2023 | 25 | 10 |
10 Sep 2023 | 19 | 6 |
Algal Bloom Classification | chl_a Concentration (μg/L) | 2Class | 3Class | 4Class | 5Class |
---|---|---|---|---|---|
No Bloom | <200 | 0 | 0 | 0 | 0 |
Light | 200–600 | 1 | 1 | 1 | |
Mild | 600–1000 | 1 | 2 | 2 | |
Moderate | 1000–1500 | 2 | 3 | 3 | |
Heavy | >1500 | 4 |
Classification | Average Accuracy (AA) | ||
---|---|---|---|
3 KM | 2 KM | 1 KM | |
2 Classes | 0.893 | 0.940 | 0.895 |
3 Classes | 0.905 | 0.949 | 0.955 |
4 Classes | 0.861 | 0.854 | 0.890 |
5 Classes | 0.774 | 0.814 | 0.842 |
GD Classes | 0.667 | 0.646 | 0.698 |
Wavelength of the Band | MERIS Bands | OLCI Bands |
---|---|---|
619 | 6 | Oa7 |
664 | 7 | Oa8 |
681 | 8 | Oa10 |
709 | 9 | Oa11 |
753 | 10 | Oa12 |
885 | 14 | Oa18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Y.; Xiao, Z.; Yang, L.; Liu, Q.; Jin, S.; Lv, Y.; Yan, Q. Enhancing Algal Bloom Level Monitoring with CYGNSS and Sentinel-3 Data. Remote Sens. 2024, 16, 3915. https://doi.org/10.3390/rs16203915
Jia Y, Xiao Z, Yang L, Liu Q, Jin S, Lv Y, Yan Q. Enhancing Algal Bloom Level Monitoring with CYGNSS and Sentinel-3 Data. Remote Sensing. 2024; 16(20):3915. https://doi.org/10.3390/rs16203915
Chicago/Turabian StyleJia, Yan, Zhiyu Xiao, Liwen Yang, Quan Liu, Shuanggen Jin, Yan Lv, and Qingyun Yan. 2024. "Enhancing Algal Bloom Level Monitoring with CYGNSS and Sentinel-3 Data" Remote Sensing 16, no. 20: 3915. https://doi.org/10.3390/rs16203915
APA StyleJia, Y., Xiao, Z., Yang, L., Liu, Q., Jin, S., Lv, Y., & Yan, Q. (2024). Enhancing Algal Bloom Level Monitoring with CYGNSS and Sentinel-3 Data. Remote Sensing, 16(20), 3915. https://doi.org/10.3390/rs16203915