Detection of Complex Formations in an Inland Lake from Sentinel-2 Images Using Atmospheric Corrections and a Fully Connected Deep Neural Network
<p>Schematic showing the work flow of our methodology.</p> "> Figure 2
<p>North–south cross-section of the 18 January 2021 formation, showing the remote sensing reflectance in all available bands after atmospheric corrections have been applied. For ACOLITE, all corrected bands are displayed, and for iCOR, only the 10 m bands are displayed.</p> "> Figure 3
<p>Visualization of the 18 January 2021 formation with B5 (560 nm) after C2RCC, iCOR, Polymer, and ACOLITE corrections have been implemented. Note that the color bar is not the same for all images to improve the direct comparison of formation characteristics after different atmospheric corrections have been applied.</p> "> Figure 4
<p>Visualization of the 18 January 2021 formation with NIR (833 nm) after C2RCC, iCOR, Polymer, and ACOLITE corrections have been implemented. Note that for C2RCC, we plot the 865 nm band, given that the NIR band is not available. Lack of data in the polymer illustration indicates that the polymer algorithm overestimates the correction resulting in a negative <math display="inline"><semantics> <msub> <mi>R</mi> <mrow> <mi>r</mi> <mi>s</mi> </mrow> </msub> </semantics></math>, and therefore is masked out.</p> "> Figure 5
<p>Visualization of the 30 December 2017 formation with B4 (665 nm) after C2RCC, iCOR, Polymer, and ACOLITE corrections have been implemented. Note that the color bar scale is lower for C2RCC. The feature in the upper right corner represents land.</p> "> Figure 6
<p>(<b>a</b>) False color image where three patches of different sizes (30 December 2017) are “puzzled together” to form one of the patches that is chosen for annotation, (<b>b</b>) formation annotation, (<b>c</b>) DNN prediction after ACOLITE is applied, and (<b>d</b>) DNN prediction without ACOLITE. For (<b>b</b>–<b>d</b>) oil spill pixels appear with yellow.</p> "> Figure 7
<p>(<b>a</b>) False color image of one of the formations (18 January 2021) chosen for annotation, (<b>b</b>) formation annotation, (<b>c</b>) DNN prediction after ACOLITE is applied, and (<b>d</b>) DNN prediction without ACOLITE. For (<b>b</b>–<b>d</b>) oil spill pixels appear with yellow.</p> "> Figure 8
<p>Red–NIR <math display="inline"><semantics> <msub> <mi>R</mi> <mrow> <mi>r</mi> <mi>s</mi> </mrow> </msub> </semantics></math> scatterplot for the formation and clear water pixels that are annotated and used for the DNN training.</p> "> Figure 9
<p>Schematic showing the DNN in three different configurations corresponding to the three types of experiments: (<b>a</b>) Red-NIR, (<b>b</b>) Green-NIR, and (<b>c</b>) 4-Bands.</p> "> Figure 10
<p>(<b>a</b>) Sentinel-2 false color image (green–red–NIR) showing the oil spill case for the 27 February 2017, (<b>b</b>) zoomed area in yellow box, (<b>c</b>) DNN prediction.</p> ">
Abstract
:1. Introduction
2. Data and Location
3. Methodology
3.1. Atmospheric Corrections
3.2. Parameter Learning and Optimization
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NIR | Near Infrared |
SAR | Synthetic Aperture Radar |
DNN | Deep Neural Network |
References
- Brekke, C.; Solberg, A.H. Oil spill detection by satellite remote sensing. Remote Sens. Environ. 2005, 95, 1–13. [Google Scholar] [CrossRef]
- Solberg, A.H.; Brekke, C.; Husoy, P.O. Oil spill detection in Radarsat and Envisat SAR images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 746–755. [Google Scholar] [CrossRef]
- Topouzelis, K. Oil spill detection by SAR images: Dark formation detection, feature extraction and classification algorithms. Sensors 2008, 8, 6642–6659. [Google Scholar] [CrossRef] [PubMed]
- Solberg, A.H. Remote sensing of ocean oil-spill pollution. Proc. IEEE 2012, 100, 2931–2945. [Google Scholar] [CrossRef]
- Sun, S.; Hu, C.; Feng, L.; Swayze, G.A.; Holmes, J.; Graettinger, G.; MacDonald, I.; Garcia, O.; Leifer, I. Oil slick morphology derived from AVIRIS measurements of the Deepwater Horizon oil spill: Implications for spatial resolution requirements of remote sensors. Mar. Pollut. Bull. 2016, 103, 276–285. [Google Scholar] [CrossRef]
- Fingas, M.F.; Brown, C.E. Review of oil spill remote sensing. Mar. Pollut. Bull. 2014, 83, 9–23. [Google Scholar] [CrossRef]
- Fingas, M.F.; Brown, C.E. A review of oil spill remote sensing. Sensors 2017, 18, 91. [Google Scholar] [CrossRef]
- Minchew, B.; Jones, C.E.; Holt, B. Polarimetric analysis of backscatter from the Deemwater Horizon oil spills using L-band synthetic aperture radar. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3812–3830. [Google Scholar] [CrossRef]
- Singha, S.; Ressel, R.; Velloto, D.; Lehner, S. A combination of traditional and polarimetrric features for oil spill detection using TerraSAR-X. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4979–4990. [Google Scholar] [CrossRef]
- Fingas, M.F.; Brown, C.E. Review of oil spill remote sensing. Spill Sci. Technol. Bull. 1997, 4, 199–208. [Google Scholar] [CrossRef]
- Espedal, H.A.; Johannessen, O.M. Cover: Detection of oil spills near offshore installations using synthetic aperture radar (SAR). Int. J. Remote Sens. 1997, 21, 2141–2144. [Google Scholar] [CrossRef]
- Kapustin, I.A.; Shomina, O.V.; Ermoshkin, A.V.; Bogatov, N.A.; Kupaev, A.V.; Molkov, A.A.; Ermakov, S.A. On capabilities of tracking marine surface currents using artificial film slicks. Remote Sens. 2019, 11, 840. [Google Scholar] [CrossRef]
- Solberg, A.S.; Storvik, G.; Solberg, R.; Volden, E. Automatic detection of oil spills in ERS SAR images. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1916–1924. [Google Scholar] [CrossRef]
- Liu, P.; Zhao, C.; Li, X.; He, M.; Pichel, W. Identification of ocean oil spills in SAR imagery based on fuzzy logic algorithm. Int. J. Remote Sens. 2010, 31, 4819–4833. [Google Scholar] [CrossRef]
- Guo, H.; Wu, D.; An, J. Discrimination of oil slicks and lookalikes in polarimetric SAR images using CNN. Sensors 2017, 17, 1837. [Google Scholar] [CrossRef]
- Konstantinidou, E.E.; Kolokoussis, P.; Topouzelis, K.; Moutzouris-Sidiris, I. An open source approach for oil spill detection using Sentinel-1 SAR images. In Proceedings of the 7th International Conference on Remote Sensing and Geoinformation of the Environment, Paphos, Cyprus, 18–21 March 2019. [Google Scholar]
- Singha, S.; Vespe, M.; Trieschmann, O. Automatic Synthetic Aperture Radar based oil spill detection and performance estimation via a semi-automatic operation service benchmark. Mar. Pollut. Bull. 2013, 73, 199–209. [Google Scholar] [CrossRef]
- Topouzelis, K.; Psyllos, A. Oil spill feature selection and classification using decision tree forest on SAR image data. J. Photogramm. Remote Sens. 2012, 68, 135–143. [Google Scholar] [CrossRef]
- Cantorna, D.; Dafonte, C.; Inglesias, A.; Arcay, B. Oil spill segmentation in SAR images using convolutional neural networks: A comparative analysis with clustering and logistic regression algorithms. Appl. Soft Comput. J. 2019, 84, 105716. [Google Scholar] [CrossRef]
- Zeng, K.; Wang, Y. A deep convolutional neural network for oil spill detection from spaceborne SAR images. Remote Sens. 2020, 12, 1015. [Google Scholar] [CrossRef]
- Ma, X.; Xu, J.; Wu, P.; Kong, P. Oil spill detection based on deep convolutional neural network using polarimetric scattering information from Sentinel-1 images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4204713. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhang, Y.; Li, Z.; Yan, X.; Guan, Q.; Zhong, Y.; Li, D. Oil spill contextual and boundary-supervised detection network based on marine SAR images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5213910. [Google Scholar] [CrossRef]
- Daeseong, K.; Jung, H.-S. Mapping oil spills from dual-polarized SAR images using an artificial neural network: Application to oil spill in the Kerch Strait in November 2007. Sensors 2018, 18, 2237. [Google Scholar] [CrossRef] [PubMed]
- Lioumbas, J.; Christodoulou, A.; Katsiapi, M.; Xanthopoulou, N.; Stournara, P.; Spahos, T.; Seretoudi, G.; Mentes, A.; Theodoridou, N. Satellite remote sensing to improve source water quality monitoring: A water utility’s perspective. Remote Sens. Appl. Soc. Environ. 2023, 10, 101561. [Google Scholar] [CrossRef]
- Laneve, G.; Bruno, M.; Mukherjee, A.; Messineo, V.; Giuseppetti, R.; De Pace, R.; D’Ugo, E. Remote sensing detection of algal blooms in a lake impacted by petroleum hydrocarbons. Remote Sens. 2017, 14, 121. [Google Scholar] [CrossRef]
- Zakzouk, M.; El-Magd, I.A.; Ali, E.M.; Abdulaziz, A.M.; Rehman, A.; Saba, T. Novel oil spill indices for Sentinel-2 imagery: A case study of natural seepage in Qaruh Island, Kuwait. MethodsX 2024, 12, 102520. [Google Scholar] [CrossRef]
- Rajendran, S.; Vethamony, P.; Sadooni, F.N.; Al-Kuwari, H.A.S.; Al-Khayat, J.A.; Govil, H.; Nasir, S. Sentinel-2 image transfromation methods for mapping oil spill-A case study with Wakashio oil spill in the Indian Ocean, off Mauritius. MethodsX 2021, 8, 101327. [Google Scholar] [CrossRef]
- Kolokoussis, P.; Karathanassi, V. Oil spill detection and mapping using Sentinel-2 imagery. J. Mar. Sci. Eng. 2018, 6, 4. [Google Scholar] [CrossRef]
- De Keukelaere, L.; Sterckx, S.; Adriaensen, S.; Knaeps, E.; Reusen, I.; Giardino, C.; Bresciani, M.; Hunter, P.; Neil, C.; Van der Zande, D.; et al. Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data using iCOR algorithm: Validation for coastal and inland waters. Eur. J. Remote Sens. 2018, 51, 525–542. [Google Scholar] [CrossRef]
- Brockmann, C.; Doerffer, R.; Peters, M.; Kerstin, S.; Embacher, S.; Ruescas, A. Evolution of the C2RCC neural network for Sentinel-2 and 3 for the retrieval of ocean color products in normal and extreme optically complex waters. In Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]
- Vanhellemeont, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
4 Bands | Green–NIR | Red–NIR | ||||
---|---|---|---|---|---|---|
LR | IoU | FPR | IoU | FPR | IoU | FPR |
0.1 | 7.48 | 30.5 | 7.41 | 28.03 | 1.48 | 32 |
0.05 | 12.7 | 30.43 | 15.83 | 30.13 | 18 | 18.26 |
0.01 | 43.08 | 1.79 | 54.64 | 0.74 | 54.37 | 0.82 |
0.005 | 46.84 | 1.8 | 62.94 | 0.63 | 58.15 | 0.93 |
0.001 | 60.43 | 0.93 | 69.82 | 0.42 | 63.09 | 0.8 |
0.0005 | 71.18 | 0.4 | 68.76 | 0.27 | 58.41 | 0.65 |
0.0001 | 33.78 | 0.05 | 40.88 | 0.05 | 31.09 | 0.21 |
0.00005 | 26.44 | 0.03 | 29.92 | 0.05 | 28.31 | 0.04 |
4 Bands | Green–NIR | Red–NIR | ||||
---|---|---|---|---|---|---|
LR | IoU | FPR | IoU | FPR | IoU | FPR |
0.1 | 25.11 | 10.74 | 30.43 | 5.21 | 25.24 | 8.84 |
0.05 | 32.1 | 11.07 | 37.9 | 5.48 | 30.81 | 7.16 |
0.01 | 40.48 | 2.22 | 38.5 | 2.23 | 29.43 | 4.06 |
0.005 | 38.52 | 2.59 | 38.92 | 2.09 | 30.66 | 4 |
0.001 | 41.19 | 2.21 | 39.04 | 2.13 | 31.98 | 3.34 |
0.0005 | 40.67 | 2.12 | 38.43 | 2.07 | 32.48 | 3.33 |
0.0001 | 46.73 | 1.67 | 44.62 | 1.74 | 44.01 | 2.37 |
0.00005 | 46.72 | 1.55 | 46.78 | 1.64 | 42.61 | 2.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantsis, D.F.; Moumtzidou, A.; Lioumbas, I.; Gialampoukidis, I.; Christodoulou, A.; Mentes, A.; Vrochidis, S.; Kompatsiaris, I. Detection of Complex Formations in an Inland Lake from Sentinel-2 Images Using Atmospheric Corrections and a Fully Connected Deep Neural Network. Remote Sens. 2024, 16, 3913. https://doi.org/10.3390/rs16203913
Mantsis DF, Moumtzidou A, Lioumbas I, Gialampoukidis I, Christodoulou A, Mentes A, Vrochidis S, Kompatsiaris I. Detection of Complex Formations in an Inland Lake from Sentinel-2 Images Using Atmospheric Corrections and a Fully Connected Deep Neural Network. Remote Sensing. 2024; 16(20):3913. https://doi.org/10.3390/rs16203913
Chicago/Turabian StyleMantsis, Damianos F., Anastasia Moumtzidou, Ioannis Lioumbas, Ilias Gialampoukidis, Aikaterini Christodoulou, Alexandros Mentes, Stefanos Vrochidis, and Ioannis Kompatsiaris. 2024. "Detection of Complex Formations in an Inland Lake from Sentinel-2 Images Using Atmospheric Corrections and a Fully Connected Deep Neural Network" Remote Sensing 16, no. 20: 3913. https://doi.org/10.3390/rs16203913
APA StyleMantsis, D. F., Moumtzidou, A., Lioumbas, I., Gialampoukidis, I., Christodoulou, A., Mentes, A., Vrochidis, S., & Kompatsiaris, I. (2024). Detection of Complex Formations in an Inland Lake from Sentinel-2 Images Using Atmospheric Corrections and a Fully Connected Deep Neural Network. Remote Sensing, 16(20), 3913. https://doi.org/10.3390/rs16203913