Deep Learning-Based Detection of Oil Spills in Pakistan’s Exclusive Economic Zone from January 2017 to December 2023
"> Figure 1
<p>Our study area in the Arabian sea, showing the extent of Pakistan’s Area of Responsibility (AOR). It contains 240,000 km<sup>2</sup> of Exclusive Economic Zone and 50,000 km<sup>2</sup> of extended continental shelf. Background: Google Maps.</p> "> Figure 2
<p>The flowchart illustrates the steps followed for the processing of Ground Range Detected High-resolution (GRDH) Sentinel-1 acquisitions, including orbit correction, thermal noise removal, radiometric calibration, conversion to decibels, terrain correction and speckle filtering.</p> "> Figure 3
<p>Schematic representation of ReU-Net architecture for semantic segmentation. The encoder features a ResNet-101 backbone with a <math display="inline"><semantics> <mrow> <mn>7</mn> <mo>×</mo> <mn>7</mn> </mrow> </semantics></math> convolutional layer, two batch normalization layers, ReLU activation, max-pooling and 33 residual blocks. In the decoder, adhering to a UNet framework, multi-scale features are integrated via skip connections (shown in dark-blue color). The number presented on the <span class="html-italic">Res-x</span> blocks represents the number of residual blocks cascaded within. The functionalities of the residual block (<span class="html-italic">Res-B</span>) and convolutional block (<span class="html-italic">Conv-B</span>) are expanded at the bottom-right and bottom-left corners of the figure, respectively. Each layer’s function is color-coded as per the legend.</p> "> Figure 4
<p>Three SAR images (<b>left</b>) from 110 test SAR images, with ground truth masks (<b>center</b>) and predicted class labels (<b>right</b>) detected by ReU-Net. In columns 2 and 3, black color shows the sea surface, green color shows land area, cyan color shows an oil spill area, red color is assigned to look-alikes and brown color shows ships. The dataset was prepared by Krestenitis et al. [<a href="#B20-remotesensing-16-02432" class="html-bibr">20</a>] from the MKLab ITI-CERTH, Greece.</p> "> Figure 5
<p>Three SAR images (<b>top row</b>) from the test set prepared by acquiring imagery over the Arabian sea along with predicted class labels (<b>bottom row</b>) containing potential oil spills in Pakistan territorial waters. Black color shows sea surface, cyan color shows oil spill and brown color shows ships.</p> "> Figure 6
<p>Yearly breakdown of the oil spill incidents in Pakistan’s Exclusive Economic Zone (EEZ) from January 2017 to December 2023. Overall, 92 incidents were identified. The yearly figure for each year is stated above each bar.</p> "> Figure 7
<p>(<b>Top</b>): Spatial spread of the oil spills detected in Pakistan’s EEZ from January 2017 to December 2023. (<b>Bottom</b>): The size of the spills (in terms of their length) and their distance from the shoreline.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Benchmark Dataset for Model Training
2.2. Dataset for Oil Spill Monitoring in Pakistan’s EEZ
2.3. Model Development and Training
2.4. Experimental Setup
3. Results
3.1. Performance on the Benchmark Dataset
3.2. Classification and Detection of Spills in Pakistan EEZ
3.3. Discussion
4. Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
S. No. | Date | Path | Coordinates (WGS84) | Number of Incidents |
---|---|---|---|---|
2017 (14 Spills) | ||||
1 | 2017-03-05 | 78 | [24.3169, 66.7555] | 1 |
2 | 2017-05-04 | 78 | [24.2858, 66.2583], [24.4053, 66.9847], [24.0394, 66.7847], [23.8022, 67.0305] | 4 |
3 | 2017-05-11 | 13 | [24.1792, 62.9417], [24.1425, 62.4361] | 2 |
4 | 2017-06-04 | 13 | [24.2325, 62.9889] | 1 |
5 | 2017-07-20 | 151 | [24.4461, 65.7611] | 1 |
6 | 2017-12-01 | 13 | [24.6647, 62.9944] | 1 |
7 | 2017-10-19 | 78 | [24.5922, 66.7583], [24.4469, 66.3347], [23.9892, 66.6514] | 3 |
8 | 2017-11-29 | 151 | [24.3205, 66.2861] | 1 |
2018 (10 Spills) | ||||
9 | 2018-02-21 | 151 | [24.2958, 65.2139], [24.4261, 65.5778], [24.0186, 64.7555] | 3 |
10 | 2018-02-23 | 13 | [25.0233, 63.3139] | 1 |
11 | 2018-03-29 | 151 | [24.2533, 66.0441] | 1 |
12 | 2018-08-10 | 13 | [24.7872, 62.6139], [24.5764, 62.8305] | 2 |
13 | 2018-08-15 | 78 | [24.2008, 66.7055], [23.9567, 66.8555] | 2 |
14 | 2018-10-31 | 151 | [24.3519, 65.2444] | 1 |
2019 (8 Spills) | ||||
15 | 2019-04-19 | 13 | [24.0975, 63.4583] | 1 |
16 | 2019-04-24 | 78 | [23.5711, 67.2555] | 1 |
17 | 2019-07-22 | 151 | [24.3488, 66.4689] | 1 |
18 | 2019-09-10 | 13 | [23.8886, 62.8639] | 1 |
19 | 2019-10-09 | 78 | [24.4777, 66.6381] | 1 |
20 | 2019-10-26 | 151 | [24.1598, 65.4277] | 1 |
21 | 2019-11-21 | 13 | [24.1736, 63.6305] | 1 |
22 | 2019-11-21 | 13 | [24.1822, 63.9514] | 1 |
2020 (26 Spills) | ||||
23 | 2020-01-20 | 13 | [24.8733, 63.5694] | 1 |
24 | 2020-02-11 | 151 | [24.3139, 66.1694], [24.0161, 66.0347], [24.1733, 64.4055] | 3 |
25 | 2020-02-13 | 13 | [24.6655, 63.2905] | 1 |
26 | 2020-02-23 | 151 | [24.0033, 65.5408] | 1 |
27 | 2020-03-18 | 151 | [24.4411, 65.6094], [24.4867, 64.9242], [24.4269, 64.6389] | 3 |
28 | 2020-05-07 | 13 | [24.5325, 62.2674] | 1 |
29 | 2020-07-04 | 151 | [24.3853, 66.1525], [24.3753, 64.2628] | 2 |
30 | 2020-07-06 | 13 | [24.6755, 62.5472] | 1 |
31 | 2020-08-09 | 151 | [24.1944, 66.1111] | 1 |
32 | 2020-08-11 | 13 | [24.3414, 63.6542], [23.9822, 62.8253] | 2 |
33 | 2020-08-16 | 78 | [24.3367, 66.9125] | 1 |
34 | 2020-08-23 | 13 | [24.0058, 62.3439], [23.9517, 62.7297], [24.2905, 62.8128] | 3 |
35 | 2020-09-28 | 13 | [24.7536, 62.4608] | 1 |
36 | 2020-10-27 | 78 | [23.9186, 66.2994] | 1 |
37 | 2020-11-13 | 151 | [24.3208, 65.6036], [24.1358, 64.9664], [23.9945, 64.7707], [24.1219, 64.1414] | 4 |
2021 (17 Spills) | ||||
38 | 2021-03-20 | 78 | [24.0194, 66.2194] | 1 |
39 | 2021-04-08 | 13 | [24.1764, 62.7389], [24.0278, 62.4278] | 2 |
40 | 2021-06-17 | 151 | [24.1528, 65.3222] | 1 |
41 | 2021-07-13 | 13 | [24.7898, 62.6745] | 1 |
42 | 2021-08-30 | 13 | [24.3047, 64.0105], [24.1545, 63.1124] | 2 |
43 | 2021-09-16 | 78 | [23.4344, 66.9339], [23.7128, 66.9778], [23.9253, 66.9417] | 3 |
44 | 2021-10-05 | 13 | [24.1861, 62.4472] | 1 |
45 | 2021-11-08 | 151 | [24.2494, 65.9083], [24.7214, 65.1139] | 2 |
46 | 2021-12-02 | 151 | [24.1895, 65.1448], [24.2017, 64.4854] | 2 |
47 | 2021-10-15 | 151 | [24.6078, 65.1223] | 1 |
48 | 2021-10-29 | 13 | [24.2594, 64.3555] | 1 |
2022 (8 Spills) | ||||
49 | 2022-01-26 | 78 | [23.8578, 66.2361] | 1 |
50 | 2022-02-12 | 151 | [24.3292, 66.3419], [24.1939, 66.0361], [23.8705, 65.8861] | 3 |
51 | 2022-04-08 | 78 | [24.4353, 66.6417] | 1 |
52 | 2022-04-25 | 151 | [24.0372, 64.7234] | 1 |
53 | 2022-09-30 | 13 | [24.3568, 62.7278], [24.1051, 63.5195] | 2 |
2023 (9 Spills) | ||||
54 | 2023-01-09 | 78 | [24.3839, 66.3492], [24.2508, 66.2019] | 2 |
55 | 2023-01-28 | 13 | [24.2831, 64.0927] | 1 |
56 | 2023-02-07 | 151 | [24.2656, 65.2757], [24.0235, 64.7783], [25.0051, 65.2108] | 3 |
57 | 2023-09-06 | 78 | [24.3249, 66.4118], [24.1834, 66.2328] | 2 |
58 | 2023-11-22 | 151 | [24.5032, 66.4192] | 1 |
References
- Solberg, A.H.S. Remote Sensing of Ocean Oil Spill Pollution. Proc. IEEE 2012, 100, 2931–2945. [Google Scholar] [CrossRef]
- Solberg, A.H.S.; Storvik, G.; Solberg, R.; Volden, E. Automatic detection of oil spills in ERS SAR images. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1916–1924. [Google Scholar] [CrossRef]
- Fiscella, B.; Giancaspro, A.; Nirchio, F.; Pavese, P.; Trivero, P. Oil spill detection using marine SAR images. Int. J. Remote Sens. 2000, 21, 3561–3566. [Google Scholar] [CrossRef]
- Karantzalos, K.; Argialas, D. Automatic detection and tracking of oil spills in SAR imagery with level set segmentation. Int. J. Remote Sens. 2008, 29, 6281–6296. [Google Scholar] [CrossRef]
- Ghosh, A.; Ehrlich, M.; Shah, S.; Davis, L.S.; Chellappa, R. Stacked U-Nets for Ground Material Segmentation in Remote Sensing Imagery. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Li, R.; Liu, W.; Yang, L.; Sun, S.; Hu, W.; Zhang, F.; Li, W. DeepUNet: A Deep Fully Convolutional Network for Pixel-Level Sea-Land Segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3954–3962. [Google Scholar] [CrossRef]
- Bianchi, F.M.; Grahn, J.; Eckerstorfer, M.; Malnes, E.; Vickers, H. Snow Avalanche Segmentation in SAR Images with Fully Convolutional Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 75–82. [Google Scholar] [CrossRef]
- Chen, L.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Del Frate, F.; Petrocchi, A.; Lichtenegger, J.; Calabresi, G. Neural networks for oil spill detection using ERS-SAR data. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2282–2287. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Available online: http://www.deeplearningbook.org (accessed on 18 February 2024).
- Singha, S.; Bellerby, T.J.; Trieschmann, O. Satellite Oil Spill Detection Using Artificial Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2355–2363. [Google Scholar] [CrossRef]
- Garcia-Pineda, O.; MacDonald, I.R.; Li, X.; Jackson, C.R.; Pichel, W.G. Oil Spill Mapping and Measurement in the Gulf of Mexico with Textural Classifier Neural Network Algorithm (TCNNA). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2517–2525. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Wei, G.; An, J. Dark Spot Detection in SAR Images of Oil Spill Using Segnet. Appl. Sci. 2018, 8, 2670. [Google Scholar] [CrossRef]
- Krestenitis, M.; Orfanidis, G.; Ioannidis, K.; Avgerinakis, K.; Vrochidis, S.; Kompatsiaris, I. Early Identification of Oil Spills in Satellite Images Using Deep CNNs. In MultiMedia Modeling, Proceedings of the 25th International Conference, MMM 2019, Thessaloniki, Greece, 8–11 January 2019; Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W.H., Vrochidis, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 424–435. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar] [CrossRef]
- Chollet, F. Xception: Deep Learning With Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- EMSA. CleanSeaNet Service: Detections and Feedback Data 2022; Technical Report; European Maritime Security Agency: Lisboa, Portugal, 2023. [Google Scholar]
- Krestenitis, M.; Orfanidis, G.; Ioannidis, K.; Avgerinakis, K.; Vrochidis, S.; Kompatsiaris, I. Oil Spill Identification from Satellite Images Using Deep Neural Networks. Remote Sens. 2019, 11, 1762. [Google Scholar] [CrossRef]
- Karpathy, A.; Li, F.-F. Deep Visual-Semantic Alignments for Generating Image Descriptions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Vinyals, O.; Toshev, A.; Bengio, S.; Erhan, D. Show and tell: A neural image caption generator. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3156–3164. [Google Scholar] [CrossRef]
- Solórzano, J.V.; Mas, J.F.; Gao, Y.; Gallardo-Cruz, J.A. Land use land cover classification with U-net: Advantages of combining sentinel-1 and sentinel-2 imagery. Remote Sens. 2021, 13, 3600. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Basit, A.; Siddique, M.A.; Bhatti, M.K.; Sarfraz, M.S. Comparison of CNNs and vision transformers-based hybrid models using gradient profile loss for classification of oil spills in SAR images. Remote Sens. 2022, 14, 2085. [Google Scholar] [CrossRef]
- Ding, J.; Chen, B.; Liu, H.; Huang, M. Convolutional Neural Network With Data Augmentation for SAR Target Recognition. IEEE Geosci. Remote Sens. Lett. 2016, 13, 364–368. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Duque-Arias, D.; Velasco-Forero, S.; Deschaud, J.E.; Goulette, F.; Serna, A.; Decencière, E.; Marcotegui, B. On power Jaccard losses for semantic segmentation. In Proceedings of the VISAPP 2021: 16th International Conference on Computer Vision Theory and Applications, Vienna, Austria, 8–12 February 2021. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basit, A.; Siddique, M.A.; Bashir, S.; Naseer, E.; Sarfraz, M.S. Deep Learning-Based Detection of Oil Spills in Pakistan’s Exclusive Economic Zone from January 2017 to December 2023. Remote Sens. 2024, 16, 2432. https://doi.org/10.3390/rs16132432
Basit A, Siddique MA, Bashir S, Naseer E, Sarfraz MS. Deep Learning-Based Detection of Oil Spills in Pakistan’s Exclusive Economic Zone from January 2017 to December 2023. Remote Sensing. 2024; 16(13):2432. https://doi.org/10.3390/rs16132432
Chicago/Turabian StyleBasit, Abdul, Muhammad Adnan Siddique, Salman Bashir, Ehtasham Naseer, and Muhammad Saquib Sarfraz. 2024. "Deep Learning-Based Detection of Oil Spills in Pakistan’s Exclusive Economic Zone from January 2017 to December 2023" Remote Sensing 16, no. 13: 2432. https://doi.org/10.3390/rs16132432
APA StyleBasit, A., Siddique, M. A., Bashir, S., Naseer, E., & Sarfraz, M. S. (2024). Deep Learning-Based Detection of Oil Spills in Pakistan’s Exclusive Economic Zone from January 2017 to December 2023. Remote Sensing, 16(13), 2432. https://doi.org/10.3390/rs16132432