Characterization of Multi-Decadal Beach Changes in Cartagena Bay (Valparaíso, Chile) from Satellite Imagery
<p>(<b>a</b>) Study site of Playa Grande Beach in Cartagena Bay (Valparaiso Region), located between Punta Lacho and Punta Vera Capes. Green point wave node and (<b>b</b>) location of Valparaíso Region in Central Chile.</p> "> Figure 2
<p>Methodological workflow.</p> "> Figure 3
<p>Number of SDS obtained per year over the period studied. In 1985, there was a single image available, while in 2019, there were 52.</p> "> Figure 4
<p>Variability of height and period of the waves throughout the year, from January (month 1) to December (12).</p> "> Figure 5
<p>Seasonal variability of wave direction according to wave height percentile. The highest (lowest) waves are defined as those presenting a Hs ≥ P90 (≤P10), from January (month 1) to December (12).</p> "> Figure 6
<p>Annual mean wave climate conditions (1985–2019) described by the Hs (m) and Tp (s).</p> "> Figure 7
<p>Spatiotemporal model of beach width changes. The colors show the displacements of the shoreline landward (erosion represented by reddish colors) or seaward (recovery, blueish colors). Black horizontal lines divide into four sectors according to shoreline behavior.</p> "> Figure 8
<p>Variability of the mean shoreline position on Playa Grande beach (1985–2019) and the highest waves registered. Changes in mean beach width between 1985 and 2019 and their relationship to the moments with more energetic swells (Hs > 3.12 m, i.e., the 95th percentile of the series analyzed).</p> "> Figure 9
<p>Comparison of the average beach width in sectors 2 and 4. Seasonal beach width variability is much higher (sometimes up to 80 m) in S2 than in S4.</p> "> Figure 10
<p>Seasonal beach width variability in sectors 2 and 4 (in blue and red respectively) during the years 1995–1996 (dashed line) and 2017–2018 (solid line). Both series present the width changes relative to the position at the start of the year.</p> "> Figure 11
<p>Temporal series monthly average wave energy flux.</p> "> Figure 12
<p>Conceptual model of the dynamics and sediment redistribution of Playa Grande (Cartagena Bay). The direction and energy of the waves and the orientation of the four beach sectors are considered. The size and direction of the most common waves are shown as those with the highest energy (green, from 233°), medium (yellow, 241°), and lowest (red, 255°). These wave types are translated into longshore transport with different magnitudes (represented by the various lengths of the arrows) in each beach sector.</p> "> Figure 13
<p>Comparison of beach width changes and the Oceanic Niño Index (ONI) is the difference between a three-month average SST over an ocean region from 120W to 170W along the equator and the long-term average for the same three months. Data from the US National Weather Service (<a href="https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php" target="_blank">https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php</a>, accessed on 17 February 2024).</p> "> Figure 14
<p>Time series of monthly ONI averages in black, significant height in blue, mean period in red, and mean direction in green.</p> "> Figure 15
<p>The relationship between the mean annual Hs and beach width (both in m) is described by a linear correlation (expressed as R<sup>2</sup>). To establish the linear correlation, the 2010–2012 data associated with earthquakes (highlighted in green) have been removed.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Wave Conditions
3.2. Definition of Satellite-Derived Shorelines and Spatial-Temporal Model of Beach Width Changes
4. Results
4.1. Wave Climate Analysis
4.2. Shoreline Changes
5. Discussion
5.1. Seasonality
5.2. Sediment Redistribution and Shoreline Dynamism
5.3. Influence of Interannual Climate Variability on the Shoreline Position
5.4. Mid and Long-Term Trends
5.5. The Role of Punctual Disruptive Events: Earthquakes, Tsunamis
6. Limitations and Future Research
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jeanson, M.; Dolique, F.; Anthony, E.J. A GIS-based coastal monitoring and surveillance observatory on tropical islands exposed to climate change and extreme events: The example of Mayotte Island, Indian Ocean. J. Coast. Conserv. 2014, 18, 567–580. [Google Scholar] [CrossRef]
- Fernandino, G.; Elliff, C.I.; Silva, I.R. Ecosystem-based management of coastal zones in face of climate change impacts: Challenges and inequalities. J. Environ. Manag. 2018, 215, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Reimann, L.; Vafeidis, A.T.; Brown, S.; Hinkel, J.; Tol, R.S.J. Mediterranean UNESCO World Heritage at risk from coastal flooding and erosion due to sea-level rise. Nat. Commun. 2018, 9, 4161. [Google Scholar] [CrossRef] [PubMed]
- Mclachlan, A.; Defeo, O. The Ecology of Sandy Shores; Elsevier Inc.: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Grez, P.W.; Aguirre, C.; Farías, L.; Contreras-López, M.; Masotti, Í. Evidence of climate-driven changes on atmospheric, hydrological, and oceanographic variables along the Chilean coastal zone. Clim. Change 2020, 163, 633–652. [Google Scholar] [CrossRef]
- Jara, F.E.I.; Breuer, W.A.; Contreras-López, M.; Martínez, C. Efectos del cambio climático en la zona urbana turística y costera de Viña del Mar: Levantamiento de daños para una inundación por marejadas y percepción de seguridad. Revista 180 2019, 44, 120–133. [Google Scholar] [CrossRef]
- Boak, E.H.; Turner, I.L. Shoreline definition and detection: A review. J. Coast. Res. 2005, 21, 688–703. [Google Scholar] [CrossRef]
- Maiti, S.; Bhattacharya, A.K. Shoreline change analysis and its application to prediction: A remote sensing and statistics based approach. Mar. Geol. 2009, 257, 11–23. [Google Scholar] [CrossRef]
- Cabezas-Rabadán, C.; Pardo-Pascual, J.E.; Palomar-Vázquez, J.; Roch-Talens, A.; Guillén, J. Satellite observations of storm erosion and recovery of the Ebro Delta coastline. Coast. Eng. 2024, 188, 104451. [Google Scholar] [CrossRef]
- Calkoen, F.; Luijendijk, A.; Rivero, C.R.; Kras, E.; Baart, F. Traditional vs. Machine-learning methods for forecasting sandy shoreline evolution using historic satellite-derived shorelines. Remote Sens. 2021, 13, 934. [Google Scholar] [CrossRef]
- Bishop-Taylor, R.; Nanson, R.; Sagar, S.; Lymburner, L. Mapping Australia’s dynamic coastline at mean sea level using three decades of Landsat imagery. Remote Sens. Environ. 2021, 267, 112734. [Google Scholar] [CrossRef]
- Palomar-Vázquez, J.; Almonacid-Caballer, J.; Pardo-Pascual, J.E.; Sanchez-García, E. SHOREX: A new tool for automatic and massive extraction of shorelines from Landsat and Sentinel 2 imagery. In Proceedings of the 7th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab), Santander, Spain, 22–26 May 2018. [Google Scholar]
- Sánchez-García, E.; Palomar-Vázquez, J.M.; Pardo-Pascual, J.E.; Almonacid-Caballer, J.; Cabezas-Rabadán, C.; Gómez-Pujol, L. An efficient protocol for accurate and massive shoreline definition from mid-resolution satellite imagery. Coast. Eng. 2020, 160, 103732. [Google Scholar] [CrossRef]
- Vos, K.; Splinter, K.D.; Harley, M.D.; Simmons, J.A.; Turner, I.L. CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environ. Model. Softw. 2019, 122, 104528. [Google Scholar] [CrossRef]
- Almeida, L.P.; de Oliveira, I.E.; Lyra, R.; Dazzi, R.L.S.; Martins, V.G.; da Fontoura Klein, A.H. Coastal Analyst System from Space Imagery Engine (CASSIE): Shoreline management module. Environ. Model. Softw. 2021, 140, 105033. [Google Scholar] [CrossRef]
- Palomar-Vázquez, J.; Pardo-Pascual, J.E.; Almonacid-Caballer, J.; Cabezas-Rabadán, C. Shoreline Analysis and Extraction Tool (SAET): A New Tool for the Automatic Extraction of Satellite-Derived Shorelines with Subpixel Accuracy. Remote Sens. 2023, 15, 3198. [Google Scholar] [CrossRef]
- Vos, K.; Splinter, K.D.; Palomar-Vázquez, J.; Pardo-Pascual, J.E.; Almonacid-Caballer, J.; Cabezas-Rabadán, C.; Kras, E.C.; Luijendijk, A.P.; Calkoen, F.; Almeida, L.P.; et al. Benchmarking satellite-derived shoreline mapping algorithms. Commun. Earth Environ. 2023, 4, 345. [Google Scholar] [CrossRef]
- Vitousek, S.; Buscombe, D.; Vos, K.; Barnard, P.L.; Ritchie, A.C.; Warrick, J.A. The future of coastal monitoring through satellite remote sensing. Camb. Prism. Coast. Futures 2023, 1, e10. [Google Scholar] [CrossRef]
- Masselink, G.; Castelle, B.; Scott, T.; Konstantinou, A. Role of Atmospheric Indices in Describing Shoreline Variability Along the Atlantic Coast of Europe. Geophys. Res. Lett. 2023, 50, e2023GL106019. [Google Scholar] [CrossRef]
- Almar, R.; Boucharel, J.; Graffin, M.; Abessolo, G.O.; Thoumyre, G.; Papa, F.; Ranasinghe, R.; Montano, J.; Bergsma, E.W.J.; Baba, M.W.; et al. Influence of El Niño on the variability of global shoreline position. Nat. Commun. 2023, 14, 3133. [Google Scholar] [CrossRef]
- Vos, K.; Harley, M.D.; Turner, I.L.; Splinter, K.D. Pacific shoreline erosion and accretion patterns controlled by El Niño/Southern Oscillation. Nat. Geosci. 2023, 16, 140–146. [Google Scholar] [CrossRef]
- Cabezas-Rabadán, C.; Pardo-Pascual, J.E.; Palomar-Vázquez, J.; Fernández-Sarría, A. Characterizing beach changes using high-frequency Sentinel-2 derived shorelines on the Valencian coast (Spanish Mediterranean). Sci. Total Environ. 2019, 691, 216–231. [Google Scholar] [CrossRef]
- Ruiz, S.; Madariaga, R. Historical and recent large megathrust earthquakes in Chile. Tectonophysics 2018, 733, 37–56. [Google Scholar] [CrossRef]
- Montecinos, A.; Aceituno, P. Seasonality of the ENSO-Related Rainfall Variability in Central Chile and Associated Circulation Anomalies. J. Clim. 2003, 16, 281–296. [Google Scholar] [CrossRef]
- Carvajal, M.; Contreras-López, M.; Winckler, P.; Sepúlveda, I. Meteotsunamis Occurring along the Southwest Coast of South America during an Intense Storm. Pure Appl. Geophys. 2017, 174, 3313–3323. [Google Scholar] [CrossRef]
- Martínez, C.; Contreras, M.; Winckler, P.; Hidalgo, H.; Godoy, E.; Agredano, R. Coastal erosion in central Chile: A new hazard? Ocean Coast. Manag. 2018, 156, 141–155. [Google Scholar] [CrossRef]
- Martínez, C.; Salinas, S. Morfodinámica y evolución reciente de playa Tunquén, Chile central. (Morphodynamics and recent evolution in Tunquen beach, central Chile). Rev. Biol. Mar. Oceanogr. 2009, 44, 203–215. [Google Scholar] [CrossRef]
- Martinez, C. Shoreline changes in Concón and Algarrobo bays, central Chile, using an adjustment model. Investig. Mar. 2007, 35, 99–112. [Google Scholar] [CrossRef]
- Martínez, C. Análisis comparativo de cambios históricos de la línea litoral en bahías chilenas: Orientaciones al manejo costero. Rev. Geográfica América Cent. 2011, 2, 1. [Google Scholar]
- Contreras, M.; Winckler, P. Pérdidas de vidas, viviendas, infraestructura y embarcaciones por el tsunami del 27 de Febrero de 2010 en la costa central de Chile. Obras Y Proy. 2013, 14, 6–19. [Google Scholar] [CrossRef]
- Winckler, P.; Contreras-López, M.; Campos-Caba, R.; Beyá, J.F.; Molina, M. El temporal del 8 de agosto de 2015 en las regiones de Valparaíso y Coquimbo, Chile central. Lat. Am. J. Aquat. Res. 2017, 45, 622–648. [Google Scholar] [CrossRef]
- Kalligeris, N.; Smit, P.B.; Ludka, B.C.; Guza, R.T.; Gallien, T.W. Calibration and assessment of process-based numerical models for beach profile evolution in southern California. Coast. Eng. 2020, 158, 103650. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, N.; Wang, J. Satellite-Observed Evolution Dynamics of the Yellow River Delta in 1984–2018. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6044–6050. [Google Scholar] [CrossRef]
- Aránguiz, R.; Catalán, P.A. Overview of the methods for tsunami hazard analysis in Chile. In Hacia una Ley de Costas en Chile: Bases Para Una Gestión Integrada de Áreas Costeras; Serie GEOLIBROS (38); Martínez, C., Cienfuegos, R., Barragán, J.M., Navarrete, S., Hidalgo, R., Arenas, F., Fuentes, L., Eds.; Pontificia Universidad Católica de Chile: Santiago, Chile, 2022; pp. 159–176. [Google Scholar]
- Martínez, C.; Cienfuegos, R.; Inzunza, S.; Urrutia, A.; Guerrero, N. Worst-case tsunami scenario in Cartagena Bay, central Chile: Challenges for coastal risk management. Ocean Coast. Manag. 2020, 185, 105060. [Google Scholar] [CrossRef]
- Dirección General de Aeronáutica Civil; Dirección Meteorológica de Chile. Anuario Meteorológico; Dirección General de Aeronáutica Civil: Santiago, Chile, 2022; pp. 1–129. [Google Scholar]
- Beyá, J.; Álvarez, M.; Gallardo, A.; Hidalgo, H.; Winckler, P. Generation and validation of the Chilean Wave Atlas database. Ocean Model. 2017, 116, 16–32. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Muñoz, R.C. The Low-Level Jet off the West Coast of Subtropical South America: Structure and Variability. 2005. Available online: www.ssmi.com (accessed on 16 March 2024).
- Aguirre, C.; Rutllant, J.A.; Falvey, M. Wind waves climatology of the Southeast Pacific Ocean. Int. J. Climatol. 2017, 37, 4288–4301. [Google Scholar] [CrossRef]
- Del Canto, S.M.; Paskoff, R.P. Características y evolución geomorfológica actual de algunas playas de Chile central, entre Valparaíso y San Antonio (V Región). Rev. Geogr. Norte Gd. 1983, 10, 31–45. Available online: https://revistadelaconstruccion.uc.cl/index.php/RGNG/article/view/39665/31539 (accessed on 5 February 2024).
- Perez, J.; Menendez, M.; Losada, I.J. GOW2: A global wave hindcast for coastal applications. Coast. Eng. 2017, 124, 1–11. [Google Scholar] [CrossRef]
- Amante, C.; Eakins, B.W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis; NOAA Technical Memorandum NESDIS NGDC-24; National Geophysical Data Center, Marine Geology and Geophysics Division: Boulder, CO, USA, 2009. [Google Scholar]
- Cabezas-Rabadán, C.; Pardo-Pascual, J.E.; Palomar-Vázquez, J. Characterizing the Relationship between the Sediment Grain Size and the Shoreline Variability Defined from Sentinel-2 Derived Shorelines. Remote Sens. 2021, 13, 2829. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Cabezas-Rabadán, C.; Pardo-Pascual, J.E.; Almonacid-Caballer, J.; Rodilla, M. Detecting problematic beach widths for the recreational function along the Gulf of Valencia (Spain) from Landsat 8 subpixel shorelines. Appl. Geogr. 2019, 110, 102047. [Google Scholar] [CrossRef]
- Pethick, J.S. An Introduction to Coastal Geomorphology; Department of Geography, University of Hull: Hull, UK, 1984. [Google Scholar]
- Bujan, N.; Cox, R.; Masselink, G. From fine sand to boulders: Examining the relationship between beach-face slope and sediment size. Mar. Geol. 2019, 417, 106012. [Google Scholar] [CrossRef]
- Odériz, I.; Silva, R.; Mortlock, T.R.; Mori, N. El Niño-Southern Oscillation Impacts on Global Wave Climate and Potential Coastal Hazards. J. Geophys. Res. Ocean. 2020, 125, e2020JC016464. [Google Scholar] [CrossRef]
- Troup, A.J. The ‘southern oscillation’. Q. J. R. Meteorol. Soc. 1965, 91, 490–506. [Google Scholar] [CrossRef]
- Warrick, J.A.; Buscombe, D.; Vos, K.; Bryan, K.R.; Castelle, B.; Cooper, J.A.G.; Harley, M.D.; Jackson, D.W.T.; Ludka, B.C.; Masselink, G.; et al. Coastal shoreline change assessments at global scales. Nat. Commun. 2024, 15, 2316. [Google Scholar] [CrossRef] [PubMed]
- Martínez, C.; Grez, P.W.; Martín, R.A.; Acuña, C.E.; Torres, I.; Contreras-López, M. Coastal erosion in sandy beaches along a tectonically active coast: The Chile study case. Prog. Phys. Geogr. 2022, 46, 250–271. [Google Scholar] [CrossRef]
- Vos, K.; Harley, M. Large regional variability in coastal erosion caused by ENSO. Prog. Phys. Geogr. 2021. preprint. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Alvarez-Garreton, C.; Barichivich, J.; Boisier, J.P.; Christie, D.; Galleguillos, M.; LeQuesne, C.; McPhee, J.; Zambrano-Bigiarini, M. The 2010–2015 megadrought in central Chile: Impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci. 2017, 21, 6307–6327. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Boisier, J.P.; Rondanelli, R.; Montecinos, A.; Sepúlveda, H.H.; Veloso-Aguila, D. The Central Chile Mega Drought (2010–2018): A climate dynamics perspective. Int. J. Climatol. 2020, 40, 421–439. [Google Scholar] [CrossRef]
- Willis, C.M.; Griggs, G.B. Reductions in fluvial sediment discharge by coastal dams in California and implications for beach sustainability. J. Geol. 2003, 111, 167–182. [Google Scholar] [CrossRef]
- Baubekova, A.; Akbari, M.; Etemadi, H.; Ashraf, F.B.; Hekmatzadeh, A.; Haghighi, A.T. Causes & effects of upstream-downstream flow regime alteration over Catchment-Estuary-Coastal systems. Sci. Total Environ. 2023, 858, 160045. [Google Scholar] [CrossRef]
- Quezada, J.; Jaque, E.; Fernandez, A.; Vasquez, D. Cambios en el relieve generados como consecuencia del terremoto Mw = 8.8 del 27 de febrero de 2010 en el centro-sur de Chile. Rev. Geogr. Norte Gd. 2012, 53, 35–55. [Google Scholar] [CrossRef]
- Grandin, R.; Klein, E.; Métois, M.; Vigny, C. Three-dimensional displacement field of the 2015 Mw8.3 Illapel earthquake (Chile) from across- and along-track Sentinel-1 TOPS interferometry. Geophys. Res. Lett. 2016, 43, 2552–2561. [Google Scholar] [CrossRef]
- Vigny, C.; Socquet, A.; Peyrat, S.; Ruegg, J.-C.; Métois, M.; Madariaga, R.; Morvan, S.; Lancieri, M.; Lacassin, R.; Campos, J.; et al. The 2010 Mw 8.8 Maule megathrust earthquake of Central Chile, monitored by GPS. Science (1979) 2011, 332, 1417–1421. [Google Scholar] [CrossRef]
- Vargas, D.; Farías, G.; Carretier, M.; Tassara, S.; Baize, A.; Melnick, S. Coastal uplift and tsunami effects associated to the 2010 M. Andean Geol. 2011, 38, 219–238. [Google Scholar]
- Fritz, H.M.; Petroff, C.M.; Catalán, P.A.; Cienfuegos, R.; Winckler, P.; Kalligeris, N.; Weiss, R.; Barrientos, S.E.; Meneses, G.; Valderas-Bermejo, C.; et al. Field Survey of the 27 February 2010 Chile Tsunami. Pure Appl. Geophys. 2011, 168, 1989–2010. [Google Scholar] [CrossRef]
- Contreras-López, M. Efectos del terremoto y tsunami del 27 de febrero de 2010 en la Reserva Nacional El Yali. An. Mus. Hist. Nat. Valparaíso 2014, 27, 79–92. [Google Scholar]
Annual | Winter | |||||
---|---|---|---|---|---|---|
Hs (m) | Tp (s) | Direction (°) | Hs (m) | Tp (s) | Direction (°) | |
Mean | 2.02 | 13.87 | 241.15 | 2.11 | 13.51 | 243.40 |
Standard dev. | 0.60 | 2.29 | 9.98 | 0.73 | 2.10 | 12.52 |
Minimum | 0.54 | 5.21 | 209.00 | 0.54 | 5.48 | 209.00 |
5th Percentile | 1.19 | 10.26 | 230.45 | 1.11 | 10.20 | 229.60 |
25th Percentile | 1.60 | 12.42 | 234.65 | 1.57 | 12.20 | 235.25 |
Median | 1.95 | 13.70 | 238.80 | 2.00 | 13.51 | 240.55 |
75th Percentile | 2.36 | 15.04 | 244.85 | 2.53 | 14.81 | 248.00 |
95th Percentile | 3.12 | 18.18 | 259.85 | 3.48 | 16.81 | 267.40 |
Maximum | 6.26 | 24.39 | 327.45 | 6.26 | 24.39 | 327.45 |
Average Width | Rate Change (m/yr) | R2 | |
---|---|---|---|
Sector 1 | 26.05 | −0.85 | 0.09 |
Sector 2 | 43.06 | −0.36 | 0.02 |
Sector 3 | 43.44 | −0.47 | 0.04 |
Sector 4 | 88.95 | +0.73 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Briceño de Urbaneja, I.C.; Pardo-Pascual, J.E.; Cabezas-Rabadán, C.; Aguirre, C.; Martínez, C.; Pérez-Martínez, W.; Palomar-Vázquez, J. Characterization of Multi-Decadal Beach Changes in Cartagena Bay (Valparaíso, Chile) from Satellite Imagery. Remote Sens. 2024, 16, 2360. https://doi.org/10.3390/rs16132360
Briceño de Urbaneja IC, Pardo-Pascual JE, Cabezas-Rabadán C, Aguirre C, Martínez C, Pérez-Martínez W, Palomar-Vázquez J. Characterization of Multi-Decadal Beach Changes in Cartagena Bay (Valparaíso, Chile) from Satellite Imagery. Remote Sensing. 2024; 16(13):2360. https://doi.org/10.3390/rs16132360
Chicago/Turabian StyleBriceño de Urbaneja, Idania C., Josep E. Pardo-Pascual, Carlos Cabezas-Rabadán, Catalina Aguirre, Carolina Martínez, Waldo Pérez-Martínez, and Jesús Palomar-Vázquez. 2024. "Characterization of Multi-Decadal Beach Changes in Cartagena Bay (Valparaíso, Chile) from Satellite Imagery" Remote Sensing 16, no. 13: 2360. https://doi.org/10.3390/rs16132360
APA StyleBriceño de Urbaneja, I. C., Pardo-Pascual, J. E., Cabezas-Rabadán, C., Aguirre, C., Martínez, C., Pérez-Martínez, W., & Palomar-Vázquez, J. (2024). Characterization of Multi-Decadal Beach Changes in Cartagena Bay (Valparaíso, Chile) from Satellite Imagery. Remote Sensing, 16(13), 2360. https://doi.org/10.3390/rs16132360