Diurnal Asymmetry Effects of Photovoltaic Power Plants on Land Surface Temperature in Gobi Deserts
"> Figure 1
<p>Study area. (<b>a</b>) Location of the Gobi region and photovoltaic power plants in China; (<b>b</b>) Dunhuang PV power plant; (<b>c</b>) Google Earth satellite imagery of Dunhuang PV power plant. The green line and blue line in (<b>b</b>,<b>c</b>) indicate in (1 km buffer) and out (15 km buffer) of the Dunhuang plant.</p> "> Figure 2
<p>Workflow of this study. In the top left image, the red rectangle represents the PV panel, the green and blue lines represent the buffer, and the orange color represents the Gobi surface. In the top right image, the colored image represents LST data. In the lower image, ***: statistically significant at <span class="html-italic">p</span> < 0.001 levels.</p> "> Figure 3
<p>Effects of photovoltaic power plant on LST of (<b>a</b>) daytime period and (<b>b</b>) nighttime period.</p> "> Figure 4
<p>The PV power plant effects on the annual means of LST of (<b>a</b>) daytime period and (<b>b</b>) nighttime period in all photovoltaic power plants, the black line represents the extent of the PV plant.</p> "> Figure 5
<p>Effect of photovoltaic power plants on LST across all plants. (<b>a</b>) Diurnal variations in effects (ΔLST); the background violin plot characterizes the distribution of plants in each diurnal period effect, while white dots represent the mean value. Statistical difference was tested by one-sample <span class="html-italic">t</span>-test between each period effect and zero (μ = 0) and independent two-sample <span class="html-italic">t</span>-test between daytime and nighttime period. ***: statistically significant at <span class="html-italic">p</span> < 0.001 levels, respectively. Seasonal variation in effects (ΔLST) separated into (<b>b</b>) daily mean, (<b>c</b>) daytime period, and (<b>d</b>) nighttime period. Statistical difference was tested by Kruskal–Wallis analysis and Dunn’s test as a post hoc analysis to investigate pairwise differences between seasons. The boxes represent the interquartile range, the lines inside the boxes represent the medians, and the whiskers denote the lowest and highest values within 1.5 times the interquartile range. Lowercase letters denote significant differences between seasons. Colored dots represent each plant data.</p> "> Figure 6
<p>Effects of PV power plant on monthly LSTs across all plants, separated into (<b>a</b>) daily mean and (<b>b</b>) daytime and nighttime period.</p> "> Figure 7
<p>Factors that influenced the effects of PV power plant on LST, include area, mean annual temperature (MAT), mean annual precipitation (MAP), solar radiation (Rs), wind speed (Ws), and water vapor pressure (Vp). Estimate effect sizes with 95% confidence intervals are derived from the weighted average standardized coefficients of models with ΔAICc < 4. The relative importance of factors on (<b>a</b>) daily mean, (<b>b</b>) daytime period, and (<b>c</b>) nighttime period, as estimated by linear models. Blue lines indicate negative effects, and red lines indicate positive effects. *: statistically significant at <span class="html-italic">p</span> < 0.05 level. Model-averaged importance of the predictors and the <span class="html-italic">p</span>-value of each factor are shown in <a href="#remotesensing-16-01711-f008" class="html-fig">Figure 8</a> and <a href="#app1-remotesensing-16-01711" class="html-app">Table S3</a>.</p> "> Figure 8
<p>Importance of each predictor of the PV power plant effects, (<b>a</b>) daily mean, (<b>b</b>) daytime period, and (<b>c</b>) nighttime period. The importance value is based on the sum of Akaike weights derived from model selection using corrected Akaike’s information criteria. Cutoff is set at 0.8 (dash line) to differentiate between essential and nonessential predictors.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Sources
2.2. Selection of PV Power Plants in Gobi Deserts
2.3. Quantifying the Impact of PV Plants on LST
2.4. Effects of Different Factors on the LST of PV Power Plant
3. Results
3.1. Diurnal Fluctuations in PV Power Plants Effects on LST
3.2. Seasonal Fluctuations in PV Power Plants Effects on LST
3.3. Factors Influencing the PV Power Plant Effects on LST
4. Discussion
4.1. PV Power Plant Effects on LST Vary between Day and Night
4.2. PV Power Plant Effects on LSTs Vary between Seasons
4.3. Implications for the Management of PV Systems in Gobi Desert
4.4. Uncertainties of Impact Analysis of PV on LST in Our Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Ar6 Synthesis Report: Climate Change 2023; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Tawalbeh, M.; Al-Othman, A.; Kafiah, F.; Abdelsalam, E.; Almomani, F.; Alkasrawi, M. Environmental Impacts of Solar Photovoltaic Systems: A Critical Review of Recent Progress and Future Outlook. Sci. Total. Environ. 2020, 759, 143528. [Google Scholar] [CrossRef]
- Hu, A.; Levis, S.; Meehl, G.A.; Han, W.; Washington, W.M.; Oleson, K.W.; van Ruijven, B.J.; He, M.; Strand, W.G. Impact of Solar Panels on Global Climate. Nat. Clim. Chang. 2015, 6, 290–294. [Google Scholar] [CrossRef]
- Li, Z. Prospects of Photovoltaic Technology. Engineering 2023, 21, 28–31. [Google Scholar] [CrossRef]
- Kruitwagen, L.; Story, K.T.; Friedrich, J.; Byers, L.; Skillman, S.; Hepburn, C. A Global Inventory of Photovoltaic Solar Energy Generating Units. Nature 2021, 598, 604–610. [Google Scholar] [CrossRef]
- Dong, H.; Zeng, B.; Wang, Y.; Liu, Y.; Zeng, M. China’s Solar Subsidy Policy: Government Funding Yields to Open Markets. IEEE Power Energy Mag. 2020, 18, 49–60. [Google Scholar] [CrossRef]
- Zhang, N.; Duan, H.; Shan, Y.; Miller, T.R.; Yang, J.; Bai, X. Booming Solar Energy is Encroaching on Cropland. Nat. Geosci. 2023, 16, 932–934. [Google Scholar] [CrossRef]
- Hernandez, R.R.; Armstrong, A.; Burney, J.; Ryan, G.; Moore-O’leary, K.; Diédhiou, I.; Grodsky, S.M.; Saul-Gershenz, L.; Davis, R.; Macknick, J.; et al. Techno–Ecological Synergies of Solar Energy for Global Sustainability. Nat. Sustain. 2019, 2, 560–568. [Google Scholar] [CrossRef]
- Chang, R.; Luo, Y.; Zhu, R. Simulated Local Climatic Impacts of Large-Scale Photovoltaics over the Barren Area of Qinghai, China. Renew. Energy 2020, 145, 478–489. [Google Scholar] [CrossRef]
- Li, Y.; Kalnay, E.; Motesharrei, S.; Rivas, J.; Kucharski, F.; Kirk-Davidoff, D.; Bach, E.; Zeng, N. Climate Model Shows Large-Scale Wind and Solar Farms in the Sahara Increase Rain and Vegetation. Science 2018, 361, 1019–1022. [Google Scholar] [CrossRef]
- Hua, Y.; Chai, J.; Chen, L.; Liu, P. The Influences of the Desert Photovoltaic Power Station on Local Climate and Environment: A Case Study in Dunhuang Photovoltaic Industrial Park, Dunhuang City, China in 2019. Atmosphere 2022, 13, 1235. [Google Scholar] [CrossRef]
- Armstrong, A.; Waldron, S.; Whitaker, J.; Ostle, N.J. Wind Farm and Solar Park Effects on Plant-Soil Carbon Cycling: Uncertain Impacts of Changes in Ground-Level Microclimate. Glob. Chang. Biol. 2014, 20, 1699–1706. [Google Scholar] [CrossRef]
- Hastik, R.; Basso, S.; Geitner, C.; Haida, C.; Poljanec, A.; Portaccio, A.; Vrščaj, B.; Walzer, C. Renewable Energies and Ecosystem Service Impacts. Renew. Sustain. Energy Rev. 2015, 48, 608–623. [Google Scholar] [CrossRef]
- Holland, R.A.; Scott, K.; Agnolucci, P.; Rapti, C.; Eigenbrod, F.; Taylor, G. The Influence of the Global Electric Power System on Terrestrial Biodiversity. Proc. Natl. Acad. Sci. USA 2019, 116, 26078–26084. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, E.; Zhou, D.; Luo, Z.; Zhang, Z. Rising Soil Temperature in China and Its Potential Ecological Impact. Sci. Rep. 2016, 6, 35530. [Google Scholar] [CrossRef] [PubMed]
- Guoqing, L.; Hernandez, R.R.; Blackburn, G.A.; Davies, G.; Hunt, M.; Whyatt, J.D.; Armstrong, A. Ground-Mounted Photovoltaic Solar Parks Promote Land Surface Cool Islands in Arid Ecosystems. Renew. Sustain. Energy Transit. 2021, 1, 100008. [Google Scholar] [CrossRef]
- García-García, A.; Cuesta-Valero, F.J.; Miralles, D.G.; Mahecha, M.D.; Quaas, J.; Reichstein, M.; Zscheischler, J.; Peng, J. Soil Heat Extremes Can Outpace Air Temperature Extremes. Nat. Clim. Chang. 2023, 13, 1237–1241. [Google Scholar] [CrossRef]
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-Derived Land Surface Temperature: Current Status and Perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, T.; Wang, T.; Zhou, X. Evaluation of Collection-6 MODIS Land Surface Temperature Product Using Multi-Year Ground Measurements in an Arid Area of Northwest China. Remote. Sens. 2018, 10, 1852. [Google Scholar] [CrossRef]
- Armstrong, A.; Ostle, N.J.; Whitaker, J. Solar Park Microclimate and Vegetation Management Effects on grassland Carbon Cycling. Environ. Res. Lett. 2016, 11, 074016. [Google Scholar] [CrossRef]
- Chang, R.; Shen, Y.; Luo, Y.; Wang, B.; Yang, Z.; Guo, P. Observed Surface Radiation and Temperature Impacts from the Large-scale Deployment of Photovoltaics in the Barren Area of Gonghe, China. Renew. Energy 2018, 118, 131–137. [Google Scholar] [CrossRef]
- Vervloesem, J.; Marcheggiani, E.; Choudhury, A.M.; Muys, B. Effects of Photovoltaic Solar Farms on Microclimate and Vegetation Diversity. Sustainability 2022, 14, 7493. [Google Scholar] [CrossRef]
- Luo, L.; Zhuang, Y.; Liu, H.; Zhao, W.; Chen, J.; Du, W.; Gao, X. Environmental Impacts of Photovoltaic Power Plants in Northwest China. Sustain. Energy Technol. Assess. 2023, 56, 103120. [Google Scholar] [CrossRef]
- Wu, Z.; Hou, A.; Chang, C.; Huang, X.; Shi, D.; Wang, Z. Environmental Impacts of Large-Scale CSP Plants in Northwestern China. Environ. Sci. Process. Impacts 2014, 16, 2432–2441. [Google Scholar] [CrossRef]
- Broadbent, A.M.; Krayenhoff, E.S.; Georgescu, M.; Sailor, D.J. The Observed Effects of Utility-Scale Photovoltaics on Near-Surface Air Temperature and Energy Balance. J. Appl. Meteorol. Clim. 2019, 58, 989–1006. [Google Scholar] [CrossRef]
- Jin, Y.; Hu, S.; Ziegler, A.D.; Gibson, L.; Campbell, J.E.; Xu, R.; Chen, D.; Zhu, K.; Zheng, Y.; Ye, B.; et al. Energy Production and Water Savings from Floating Solar Photovoltaics on Global Reservoirs. Nat. Sustain. 2023, 6, 865–874. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, Z.; Liu, B.; Chen, S.; Wu, J. Effects of Photovoltaic Power Station Construction on Terrestrial Ecosystems: A Meta-Analysis. Front. Ecol. Evol. 2023, 11, 1151182. [Google Scholar] [CrossRef]
- Choi, C.S.; Macknick, J.; Li, Y.; Bloom, D.; McCall, J.; Ravi, S. Environmental Co-Benefits of Maintaining Native Vegetation with Solar Photovoltaic Infrastructure. Earth’s Futur. 2023, 11, e2023EF003542. [Google Scholar] [CrossRef]
- Wu, C.; Liu, H.; Yu, Y.; Zhao, W.; Liu, J.; Yu, H.; Yetemen, O. Ecohydrological Effects of Photovoltaic Solar Farms on Soil Microclimates and Moisture Regimes in Arid Northwest China: A Modeling Study. Sci. Total. Environ. 2021, 802, 149946. [Google Scholar] [CrossRef]
- Chang, R.; Yan, Y.; Wu, J.; Wang, Y.; Gao, X. Projected PV Plants in China’s Gobi Deserts Would Result in Lower Evaporation and Wind. Sol. Energy 2023, 256, 140–150. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, Y.; Luo, Y.; Yang, L.; Li, P.; Jin, X.; Jiang, J.; Liu, R.; Gao, X. A Comparative Study on the Surface Radiation Characteristics of Photovoltaic Power Plant in the Gobi desert. Renew. Energy 2021, 182, 764–771. [Google Scholar] [CrossRef]
- Xia, Z.; Li, Y.; Chen, R.; Sengupta, D.; Guo, X.; Xiong, B.; Niu, Y. Mapping the Rapid Development of Photovoltaic Power Stations in Northwestern China Using Remote Sensing. Energy Rep. 2022, 8, 4117–4127. [Google Scholar] [CrossRef]
- Wang, J.; Chen, L.; Tan, Z.; Du, E.; Liu, N.; Ma, J.; Sun, M.; Li, C.; Song, J.; Lu, X.; et al. Inherent Spatiotemporal Uncertainty of Renewable Power in China. Nat. Commun. 2023, 14, 5379. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Wang, X.; Wang, X.; Chang, X.; Zhang, H.; Xu, Z.; Zhang, W.; Wei, H.; Zhang, X.; Yi, S.; et al. Formation and Evolution of Gobi Desert in Central and Eastern Asia. Earth-Sci. Rev. 2019, 194, 251–263. [Google Scholar] [CrossRef]
- Yao, Z.; Xiao, J.; Ma, X. The Impact of Large-Scale Afforestation on Ecological Environment in the Gobi Region. Sci. Rep. 2021, 11, 14383. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.; Yan, Y.; Luo, Y.; Xiao, C.; Wu, C.; Jiang, J.; Shi, W. A Coupled WRF-PV Mesoscale Model Simulating the Near-Surface Climate of Utility-Scale Photovoltaic Plants. Sol. Energy 2022, 245, 278–289. [Google Scholar] [CrossRef]
- Qin, Y.; Li, Y.; Xu, R.; Hou, C.; Armstrong, A.; Bach, E.; Wang, Y.; Fu, B. Impacts of 319 Wind Farms on Surface Temperature and Vegetation in the United States. Environ. Res. Lett. 2022, 17, 024026. [Google Scholar] [CrossRef]
- Wu, D.; Grodsky, S.M.; Xu, W.; Liu, N.; Almeida, R.M.; Zhou, L.; Miller, L.M.; Roy, S.B.; Xia, G.; Agrawal, A.A.; et al. Observed Impacts of Large Wind Farms on Grassland Carbon Cycling. Sci. Bull. 2023, 68, 2889–2892. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, M. Assessing the Effects of Photovoltaic Powerplants on Surface Temperature Using Remote Sensing Techniques. Remote Sens. 2020, 12, 1825. [Google Scholar] [CrossRef]
- Justice, C.; Townshend, J.; Vermote, E.; Masuoka, E.; Wolfe, R.; Saleous, N.; Roy, D.; Morisette, J. An Overview of MODIS Land Data Processing and Product Status. Remote Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Phan, T.N.; Kappas, M. Application of MODIS Land Surface Temperature Data: A Systematic Literature Review and Analysis. J. Appl. Remote Sens. 2018, 12, 041501. [Google Scholar] [CrossRef]
- Wang, K.; Wan, Z.; Wang, P.; Sparrow, M.; Liu, J.; Haginoya, S. Evaluation and Improvement of the MODIS Land Surface Temperature/Emissivity Products Using Ground-Based Measurements at a Semi-Desert Site on the Western Tibetan Plateau. Int. J. Remote Sens. 2007, 28, 2549–2565. [Google Scholar] [CrossRef]
- Wan, Z.; Hook, S.; Hulley, G. Modis/Terra Land Surface Temperature/Emissivity Daily L3 Global 1 km Sin Grid V061; NASA EOSDIS Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2021. [Google Scholar]
- Wan, Z.; Hook, S.; Hulley, G. Modis/Aqua Land Surface Temperature/Emissivity Daily L3 Global 1 km Sin Grid V061; NASA EOSDIS Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2021. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial Resolution Climate Surfaces for Global land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Python Software Foundation. Python Documentation, version 3.12.0; Python Software Foundation: Wilmington, DE, USA, 2023. [Google Scholar]
- Google Earth Pro, version 7. 3.6; Google LLC: Mountain View, CA, USA, 2022. [Google Scholar]
- Zhou, L.; Tian, Y.; Roy, S.B.; Thorncroft, C.; Bosart, L.F.; Hu, Y. Impacts of Wind Farms on Land Surface Temperature. Nat. Clim. Chang. 2012, 2, 539–543. [Google Scholar] [CrossRef]
- R: A Language and Environment for Statistical Computing. version 4.3.2; R Foundation for Statistical Computing: Vienna, Austria, 2013.
- Gelman, A. Scaling Regression Inputs by Dividing by Two Standard Deviations. Stat. Med. 2007, 27, 2865–2873. [Google Scholar] [CrossRef]
- Grueber, C.E.; Nakagawa, S.; Laws, R.J.; Jamieson, I.G. Multimodel Inference in Ecology and Evolution: Challenges and Solutions. J. Evol. Biol. 2011, 24, 699–711. [Google Scholar] [CrossRef]
- Yang, L.; Gao, X.; Lv, F.; Hui, X.; Ma, L.; Hou, X. Study on the Local Climatic Effects of Large Photovoltaic Solar Farms in Desert Areas. Sol. Energy 2017, 144, 244–253. [Google Scholar] [CrossRef]
- Barron-Gafford, G.A.; Pavao-Zuckerman, M.A.; Minor, R.L.; Sutter, L.F.; Barnett-Moreno, I.; Blackett, D.T.; Thompson, M.; Dimond, K.; Gerlak, A.K.; Nabhan, G.P.; et al. Agrivoltaics Provide Mutual Benefits across the Food–Energy–Water Nexus in Drylands. Nat. Sustain. 2019, 2, 9848–9855. [Google Scholar] [CrossRef]
- Wu, W.; Yue, S.; Zhou, X.; Guo, M.; Wang, J.; Ren, L.; Yuan, B. Observational Study on the Impact of Large-Scale Photovoltaic Development in Deserts on Local Air Temperature and Humidity. Sustainability 2020, 12, 3403. [Google Scholar] [CrossRef]
- Rahman, M.; Hasanuzzaman, M.; Rahim, N. Effects of Various Parameters on PV-Module Power and Efficiency. Energy Convers. Manag. 2015, 103, 348–358. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, R.; Huang, Z.; Cheng, Z.; López-Vicente, M.; Ma, X.; Wu, G. Solar Photovoltaic Panels Significantly Promote Vegetation Recovery by Modifying the Soil Surface Microhabitats in an Arid Sandy Ecosystem. Land Degrad. Dev. 2019, 30, 2177–2186. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, Q.; Batkhishig, O.; Ouyang, Z. Relationship between Evapotranspiration and Land Surface Temperature under Energy- and Water-Limited Conditions in Dry and Cold Climates. Adv. Meteorol. 2015, 2016, 1835487. [Google Scholar] [CrossRef]
- Wang, M.; Guo, X.; Zhang, S.; Xiao, L.; Mishra, U.; Yang, Y.; Zhu, B.; Wang, G.; Mao, X.; Qian, T.; et al. Global Soil Profiles Indicate Depth-Dependent Soil Carbon Losses under a Warmer Climate. Nat. Commun. 2022, 13, 5514. [Google Scholar] [CrossRef] [PubMed]
- Beedlow, P.A.; Lee, E.H.; Tingey, D.T.; Waschmann, R.S.; Burdick, C.A. The Importance of Seasonal Temperature and Moisture Patterns on Growth of Douglas-Fir in Western Oregon, USA. Agric. For. Meteorol. 2013, 169, 174–185. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Y.; Ji, X.; Downing, A.; Serpe, M. Combined Effects of Nitrogen Deposition and Water Stress on Growth and Physiological Responses of Two Annual Desert Plants in Northwestern China. Environ. Exp. Bot. 2011, 74, 1–8. [Google Scholar] [CrossRef]
- Walck, J.L.; Hidayati, S.N.; Dixon, K.W.; Thompson, K.; Poschlod, P. Climate Change and Plant Regeneration from Seed. Glob. Chang. Biol. 2010, 17, 2145–2161. [Google Scholar] [CrossRef]
- Nishar, A.; Bader, M.K.-F.; O’gorman, E.J.; Deng, J.; Breen, B.; Leuzinger, S. Temperature Effects on Biomass and Regeneration of Vegetation in a Geothermal Area. Front. Plant Sci. 2017, 8, 249. [Google Scholar] [CrossRef] [PubMed]
- Belnap, J. Surface Disturbances: Their Role in Accelerating Desertification. Environ. Monit. Assess. 1995, 37, 39–57. [Google Scholar] [CrossRef] [PubMed]
- Marrou, H.; Guilioni, L.; Dufour, L.; Dupraz, C.; Wery, J. Microclimate under Agrivoltaic Systems: Is Crop Growth Rate Affected in the Partial Shade of Solar Panels? Agric. For. Meteorol. 2013, 177, 117–132. [Google Scholar] [CrossRef]
- Bao, Y.; Chen, S.; Liu, Q.; Xiao, Q.; Cao, C. Land Surface Temperature and Emissivity Retrieval by Integrating MODIS Data Onboard Terra and Aqua Satellites. Int. J. Remote Sens. 2011, 32, 1449–1469. [Google Scholar] [CrossRef]
- Wan, Z. New Refinements and Validation of the MODIS Land-Surface Temperature/Emissivity Products. Remote Sens. Environ. 2008, 112, 59–74. [Google Scholar] [CrossRef]
- Wan, Z.; Zhang, Y.; Zhang, Q.; Li, Z.L. Quality Assessment and Validation of the MODIS Global land Surface Temperature. Int. J. Remote Sens. 2004, 25, 261–274. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhou, Q.; Zhang, Y.; Liu, X.; Liu, J.; Chen, S.; Wang, X.; Wu, J. Diurnal Asymmetry Effects of Photovoltaic Power Plants on Land Surface Temperature in Gobi Deserts. Remote Sens. 2024, 16, 1711. https://doi.org/10.3390/rs16101711
Wang X, Zhou Q, Zhang Y, Liu X, Liu J, Chen S, Wang X, Wu J. Diurnal Asymmetry Effects of Photovoltaic Power Plants on Land Surface Temperature in Gobi Deserts. Remote Sensing. 2024; 16(10):1711. https://doi.org/10.3390/rs16101711
Chicago/Turabian StyleWang, Xubang, Qianru Zhou, Yong Zhang, Xiang Liu, Jianquan Liu, Shengyun Chen, Xinxin Wang, and Jihua Wu. 2024. "Diurnal Asymmetry Effects of Photovoltaic Power Plants on Land Surface Temperature in Gobi Deserts" Remote Sensing 16, no. 10: 1711. https://doi.org/10.3390/rs16101711