Research on Leaf Area Index Inversion Based on LESS 3D Radiative Transfer Model and Machine Learning Algorithms
<p>Xishan Forest Park (<b>a</b>), Location of the study area (<b>b</b>), and Sampling points in the site (<b>c</b>).</p> "> Figure 2
<p>Technical roadmap of research method. LAI, Leaf Area Index.</p> "> Figure 3
<p>Visualization scene of three-dimensional forest stands using the LESS model, vertical view (<b>a</b>) and aerial view (<b>b</b>).</p> "> Figure 4
<p>Training set (<b>a</b>) and testing set (<b>b</b>) of the Leaf Area Index (LAI) using the Random Forest model. RMSE, root mean squared error.</p> "> Figure 5
<p>Training set (<b>a</b>) and testing set (<b>b</b>) of the Leaf Area Index (LAI) using the BP Neural Network model. RMSE, root mean squared error.</p> "> Figure 6
<p>Training set (<b>a</b>) and testing set (<b>b</b>) of the Leaf Area Index (LAI) employing the XGBoost model. RMSE, root mean squared error.</p> "> Figure 7
<p>Validation set of Leaf Area Index (LAI) utilizing the Random Forest (<b>a</b>), BP Neural Network (<b>b</b>), and XGBoost (<b>c</b>) algorithms. RMSE, root mean squared error.</p> "> Figure 7 Cont.
<p>Validation set of Leaf Area Index (LAI) utilizing the Random Forest (<b>a</b>), BP Neural Network (<b>b</b>), and XGBoost (<b>c</b>) algorithms. RMSE, root mean squared error.</p> "> Figure 8
<p>Leaf Area Index spatial distribution maps of the Random Forest (<b>a</b>) and XGBoost (<b>b</b>) algorithms.</p> "> Figure 8 Cont.
<p>Leaf Area Index spatial distribution maps of the Random Forest (<b>a</b>) and XGBoost (<b>b</b>) algorithms.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data Acquisition
2.2.1. Sample Plot Design and Filed Data Acquisition
2.2.2. Remote Sensing Image Acquisition
2.2.3. LESS Three-Dimensional Radiative Transfer Model
2.3. Machine Learning Algorithm
2.4. Canopy Reflectance Data Simulation
2.5. Multi-Spectral Reflectance Data Conversion
3. Results
3.1. Random Forest Algorithm Training and Testing
3.2. BP Neural Network Training and Testing
3.3. XGBoost Algorithm Training and Testing
3.4. Verification Using Measured LAI Values
3.5. LAI Inversion Spatial Distribution Maps
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fang, H.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An Overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications. Rev. Geophys. 2019, 57, 739–799. [Google Scholar] [CrossRef]
- Lu, X.; Wang, X.; Yang, Z. Leaf area index estimation from the time-series SAR data using the AIEM-MWCM model. Int. J. Digit. Earth 2023, 16, 4385–4403. [Google Scholar] [CrossRef]
- Mastro, P.; Peppo, M.D.; Crema, A.; Boschetti, M.; Pepe, A. Statistical characterization and exploitation of Synthetic Aperture radar vegetation indexes for the generation of Leaf area Index time series. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103498. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F.; Smith, G.J.; Jonckheere, I.; Coppin, P. Review of methods for in situ leaf area index (LAI) determination. Agric. For. Meteorol. 2004, 121, 37–53. [Google Scholar] [CrossRef]
- Chen, J.M.; Black, T.A. Defining leaf area index for non-flat leaves. Plant Cell Environ. 1992, 15, 421–429. [Google Scholar] [CrossRef]
- Wang, X.; Lu, X.; Yang, Z. A MWCMLAI-Net method for LAI inversion in maize and rice using GF-3 and Lutan radar data. Int. J. Digit. Earth 2024, 17, 2341128. [Google Scholar] [CrossRef]
- Parker, G.G. Tamm review: Leaf Area Index (LAI) is both a determinant and a consequence of important processes in vegetation canopies. For. Ecol. Manag. 2020, 477, 118496. [Google Scholar] [CrossRef]
- Kalisperakis, I.; Stentoumis, C.; Grammatikopoulos, L.; Karantzalos, K. Leaf Area Index Estimation in Vineyards from Uav Hyperspectral Data, 2D Image Mosaics and 3D Canopy Surface Models. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-1/W4, 299–303. [Google Scholar] [CrossRef]
- Cohen, W.B.; Maiersperger, T.K.; Gower, S.T.; Turner, D.P. An improved strategy for regression of biophysical variables and Landsat ETM+ data. Remote Sens. Environ. 2003, 84, 561–571. [Google Scholar] [CrossRef]
- Luo, S.-Z.; Wang, C.; Zhang, G.-B.; Xi, X.-H.; Li, G.-C. Forest Leaf Area Index (LAI) Estimation Using Airborne Discrete-Return Lidar Data. Chin. J. Geophys. 2013, 56, 233–242. [Google Scholar] [CrossRef]
- Ollinger, S.V. Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol. 2011, 189, 375–394. [Google Scholar] [CrossRef] [PubMed]
- Nadkarni, N.M.; Parker, G.G.; Lowman, M.D. Forest canopy studies as an emerging field of science. Ann. For. Sci. 2011, 68, 217. [Google Scholar] [CrossRef]
- Breda, N.J.J. Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. J. Exp. Bot. 2003, 54, 2403–2417. [Google Scholar] [CrossRef]
- Song, B.; Liu, L.; Zhao, J.; Chen, X.; Zhang, H.; Gao, Y.; Zhang, X. Validation of Four Coarse-Resolution Leaf Area Index Products Over Croplands in China Using Field Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9372–9382. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, H. Estimation of LAI with the LiDAR Technology: A Review. Remote Sens. 2020, 12, 3457. [Google Scholar] [CrossRef]
- Eklundh, L.; Harrie, L.; Kuusk, A. Investigating relationships between Landsat ETM+ sensor data and leaf area index in a boreal conifer forest. Remote Sens. Environ. 2001, 78, 239–251. [Google Scholar] [CrossRef]
- Li, Z.; Xin, X.; Tang, H.; Yang, F.; Chen, B.; Zhang, B. Estimating grassland LAI using the Random Forests approach and Landsat imagery in the meadow steppe of Hulunber, China. J. Integr. Agric. 2017, 16, 286–297. [Google Scholar] [CrossRef]
- Verrelst, J.; Schaepman, M.E.; Malenovský, Z.; Clevers, J.G.P.W. Effects of woody elements on simulated canopy reflectance: Implications for forest chlorophyll content retrieval. Remote Sens. Environ. 2010, 114, 647–656. [Google Scholar] [CrossRef]
- Srinet, R.; Nandy, S.; Patel, N.R. Estimating leaf area index and light extinction coefficient using Random Forest regression algorithm in a tropical moist deciduous forest, India. Ecol. Inform. 2019, 52, 94–102. [Google Scholar] [CrossRef]
- Houborg, R.; Boegh, E. Mapping leaf chlorophyll and leaf area index using inverse and forward canopy reflectance modeling and SPOT reflectance data. Remote Sens. Environ. 2008, 112, 186–202. [Google Scholar] [CrossRef]
- Houborg, R.; Soegaard, H.; Boegh, E. Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data. Remote Sens. Environ. 2007, 106, 39–58. [Google Scholar] [CrossRef]
- Peng, S.; Wang, Z.; Lu, X.; Liu, X. Hybrid inversion of radiative transfer models based on topographically corrected Landsat surface reflectance improves leaf area index and aboveground biomass retrievals of grassland on the hilly Loess Plateau. Int. J. Digit. Earth 2024, 17, 2316840. [Google Scholar] [CrossRef]
- Schlerf, M.; Atzberger, C. Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data. Remote Sens. Environ. 2006, 100, 281–294. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Wang, T.; Skidmore, A.; Vrieling, A.; O’Connor, B.; Gara, T.; Ens, B.; Paganini, M. Analysis of Sentinel-2 and RapidEye for Retrieval of Leaf Area Index in a Saltmarsh Using a Radiative Transfer Model. Remote Sens. 2019, 11, 671. [Google Scholar] [CrossRef]
- Schneider, F.D.; Leiterer, R.; Morsdorf, F.; Gastellu-Etchegorry, J.-P.; Lauret, N.; Pfeifer, N.; Schaepman, M.E. Simulating imaging spectrometer data: 3D forest modeling based on LiDAR and in situ data. Remote Sens. Environ. 2014, 152, 235–250. [Google Scholar] [CrossRef]
- Wang, Y.; Lauret, N.; Gastellu-Etchegorry, J.-P. DART radiative transfer modelling for sloping landscapes. Remote Sens. Environ. 2020, 247, 111902. [Google Scholar] [CrossRef]
- North, P.R.J. Three-dimensional forest light interaction model using a Monte Carlo method. IEEE Trans. Geosci. Remote Sens. 1996, 34, 946–956. [Google Scholar] [CrossRef]
- Govaerts, Y.M.; Verstraete, M.M. Raytran: A Monte Carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous media. IEEE Trans. Geosci. Remote Sens. 1998, 36, 493–505. [Google Scholar] [CrossRef]
- Qin, W.; Gerstl, S.A.W. 3-D Scene Modeling of Semidesert Vegetation Cover and its Radiation Regime. Remote Sens. Environ. 2000, 74, 145–162. [Google Scholar] [CrossRef]
- Huang, H.; Qin, W.; Liu, Q. RAPID: A Radiosity Applicable to Porous IndiviDual Objects for directional reflectance over complex vegetated scenes. Remote Sens. Environ. 2013, 132, 221–237. [Google Scholar] [CrossRef]
- Dai, Z.; Ding, Y.; Xu, C.; Chen, Y.; Liu, L. Evaluation of the impact of crop residue on fractional vegetation cover estimation by vegetation indices over conservation tillage cropland: A simulation study. Int. J. Remote Sens. 2022, 43, 6463–6482. [Google Scholar] [CrossRef]
- Qi, J.; Xie, D.; Guo, D.; Yan, G. A Large-Scale Emulation System for Realistic Three-Dimensional (3-D) Forest Simulation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4834–4843. [Google Scholar] [CrossRef]
- Qi, J.; Xie, D. LESS: A Model for Radiative Transfer Simulation in Heterogeneous 3D Vegetation Canopies. In AGU Fall Meeting Abstracts; Jianbo Qi: Beijing, China, 2021; Volume 2021, p. B52D-04. [Google Scholar]
- Wu, Q.; Yang, S.; Jiang, J. Impacts of clumping effect on canopy reflectance using 3D radiative transfer modeling. Front. For. Glob. Chang. 2023, 6, 1106773. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, H.; Qi, J.; Sun, Z.; Han, S.; Feng, H.; Jiang, J.; Xu, W.; Li, Z.; Yang, G.; et al. Estimating canopy-scale chlorophyll content in apple orchards using a 3D radiative transfer model and UAV multispectral imagery. Comput. Electron. Agric. 2022, 202, 107401. [Google Scholar] [CrossRef]
- Qi, J.; Jiang, J.; Zhou, K.; Xie, D.; Huang, H. Fast and Accurate Simulation of Canopy Reflectance under Wavelength-Dependent Optical Properties Using a Semi-Empirical 3D Radiative Transfer Model. J. Remote Sens. 2023, 3, 0017. [Google Scholar] [CrossRef]
- Qi, J.; Xie, D.; Jiang, J.; Huang, H. 3D radiative transfer modeling of structurally complex forest canopies through a lightweight boundary-based description of leaf clusters. Remote Sens. Environ. 2022, 283, 113301. [Google Scholar] [CrossRef]
- Zhou, K.; Xie, D.; Qi, J.; Zhang, Z.; Bo, X.; Yan, G.; Mu, X. Explicitly Reconstructing RAMI-V Scenes for Accurate 3-Dimensional Radiative Transfer Simulation Using the LESS Model. J. Remote Sens. 2023, 3, 0033. [Google Scholar] [CrossRef]
- Qi, J.; Xie, D.; Yin, T.; Yan, G.; Gastellu-Etchegorry, J.-P.; Li, L.; Zhang, W.; Mu, X.; Norford, L.K. LESS: LargE-Scale remote sensing data and image simulation framework over heterogeneous 3D scenes. Remote Sens. Environ. 2019, 221, 695–706. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.F. A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning. ISPRS J. Photogramm. Remote Sens. 2018, 135, 173–188. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Prasad, A.M.; Iverson, L.R.; Liaw, A. Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction. Ecosystems 2006, 9, 181–199. [Google Scholar] [CrossRef]
- Hultquist, C.; Chen, G.; Zhao, K. A comparison of Gaussian process regression, random forests and support vector regression for burn severity assessment in diseased forests. Remote Sens. Lett. 2014, 5, 723–732. [Google Scholar] [CrossRef]
- Ji, C.; Ding, H. Optimizing Back-Propagation Neural Network to Retrieve Sea Surface Temperature Based on Improved Sparrow Search Algorithm. Remote Sens. 2023, 15, 5722. [Google Scholar] [CrossRef]
- Yu, W.; Xu, X.; Jin, S.; Ma, Y.; Liu, B.; Gong, W. BP Neural Network Retrieval for Remote Sensing Atmospheric Profile of Ground-Based Microwave Radiometer. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4502105. [Google Scholar] [CrossRef]
- Ma, J.; Wang, L.; Chen, P. Comparing Different Methods for Wheat LAI Inversion Based on Hyperspectral Data. Agriculture 2022, 12, 1353. [Google Scholar] [CrossRef]
- Budholiya, K.; Shrivastava, S.K.; Sharma, V. An optimized XGBoost based diagnostic system for effective prediction of heart disease. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 4514–4523. [Google Scholar] [CrossRef]
- Militino, A.F.; Goyena, H.; Pérez-Goya, U.; Ugarte, M.D. Logistic regression versus XGBoost for detecting burned areas using satellite images. Environ. Ecol. Stat. 2024, 31, 57–77. [Google Scholar] [CrossRef]
- Florea, A.-C.; Andonie, R. Weighted Random Search for Hyperparameter Optimization. Int. J. Comput. Commun. Control 2019, 14, 154–169. [Google Scholar] [CrossRef]
- Heung, B.; Bulmer, C.E.; Schmidt, M.G. Predictive soil parent material mapping at a regional-scale: A Random Forest approach. Geoderma 2014, 214–215, 141–154. [Google Scholar] [CrossRef]
- Xie, X.; Tian, J.; Wu, C.; Li, A.; Jin, H.; Bian, J.; Zhang, Z.; Nan, X.; Jin, Y. Long-term topographic effect on remotely sensed vegetation index-based gross primary productivity (GPP) estimation at the watershed scale. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102755. [Google Scholar] [CrossRef]
- Ma, Y.; He, T.; McVicar, T.R.; Liang, S.; Liu, T.; Peng, W.; Song, D.-X.; Tian, F. Quantifying how topography impacts vegetation indices at various spatial and temporal scales. Remote Sens. Environ. 2024, 312, 114311. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, K.; Qin, J.; Wang, C.; Zhang, H. Examining Spatial Heterogeneity Effects of Landscape and Environment on the Residential Location Choice of the Highly Educated Population in Guangzhou, China. Sustainability 2020, 12, 3869. [Google Scholar] [CrossRef]
- Ekström, T.; Burke, S.; Wiktorsson, M.; Hassanie, S.; Harderup, L.-E.; Arfvidsson, J. Evaluating the impact of data quality on the accuracy of the predicted energy performance for a fixed building design using probabilistic energy performance simulations and uncertainty analysis. Energy Build. 2021, 249, 111205. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Sasano, K.; Katsura, K. Improving efficiency of ground-truth data collection for UAV-based rice growth estimation models: Investigating the effect of sampling size on model accuracy. Plant Prod. Sci. 2024, 27, 1–13. [Google Scholar] [CrossRef]
- Gao, S.; Yan, K.; Liu, J.; Pu, J.; Zou, D.; Qi, J.; Mu, X.; Yan, G. Assessment of remote-sensed vegetation indices for estimating forest chlorophyll concentration. Ecol. Indic. 2024, 162, 112001. [Google Scholar] [CrossRef]
- Ouyang, L.; Qi, J.; Wang, Q.; Jia, K.; Cao, B.; Zhao, W. MART3D: A Multilayer Heterogeneous 3D Radiative Transfer Framework for Characterizing Forest Disturbances. Forests 2024, 15, 824. [Google Scholar] [CrossRef]
- Lu, B.; Proctor, C.; He, Y. Investigating different versions of PROSPECT and PROSAIL for estimating spectral and biophysical properties of photosynthetic and non-photosynthetic vegetation in mixed grasslands. GIScience Remote Sens. 2021, 58, 354–371. [Google Scholar] [CrossRef]
- Landier, L.; Gastellu-Etchegorry, J.P.; Al Bitar, A.; Chavanon, E.; Lauret, N.; Feigenwinter, C.; Mitraka, Z.; Chrysoulakis, N. Calibration of urban canopies albedo and 3D shortwave radiative budget using remote-sensing data and the DART model. Eur. J. Remote Sens. 2018, 51, 739–753. [Google Scholar] [CrossRef]
- Jiquan, W.; Lichun, Q.; Guilian, L.; Fulin, W. The Problems and Its Analysis of BP Neural Network. In Proceedings of the 2010 International Conference on Intelligent System Design and Engineering Application, Changsha, China, 13–14 October 2010; IEEE: Changsha, China, 2010; pp. 701–704. [Google Scholar]
- Li, H.; Khazanovich, L. Multi-gene genetic programming extension of AASHTO M-E for design of low-volume concrete pavements. J. Road Eng. 2022, 2, 252–266. [Google Scholar] [CrossRef]
- Kronberger, G.; De Franca, F.O.; Burlacu, B.; Haider, C.; Kommenda, M. Shape-Constrained Symbolic Regression—Improving Extrapolation with Prior Knowledge. Evol. Comput. 2022, 30, 75–98. [Google Scholar] [CrossRef]
- Mousivand, A.; Verhoef, W.; Menenti, M.; Gorte, B. Modeling Top of Atmosphere Radiance over Heterogeneous Non-Lambertian Rugged Terrain. Remote Sens. 2015, 7, 8019–8044. [Google Scholar] [CrossRef]
- Zheng, Y.; Xiao, Z.; Shi, H.; Song, J. Exploring the Effects of Topography on Leaf Area Index Retrieved from Remote Sensing Data at Various Spatial Scales over Rugged Terrains. Remote Sens. 2024, 16, 1404. [Google Scholar] [CrossRef]
- Shi, H.; Xiao, Z.; Wen, J.; Wu, S. An Optical–Thermal Surface–Atmosphere Radiative Transfer Model Coupling Framework With Topographic Effects. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4400312. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, J.; Han, W.; Dou, P.; Huang, C. Spatio-temporal analysis of LAI using multisource remote sensing data for source region of Yellow River Basin. Front. Environ. Sci. 2024, 12, 1320881. [Google Scholar] [CrossRef]
- Lafortezza, R.; Giannico, V. Combining high-resolution images and LiDAR data to model ecosystem services perception in compact urban systems. Ecol. Indic. 2019, 96, 87–98. [Google Scholar] [CrossRef]
- Gawlikowski, J.; Ebel, P.; Schmitt, M.; Zhu, X.X. Explaining the Effects of Clouds on Remote Sensing Scene Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 9976–9986. [Google Scholar] [CrossRef]
Parameter | Value Size (Range) | Unit |
---|---|---|
Structure coefficient (N) | 1.5 | |
Water thickness (Cw) | 0.015 | cm |
Chlorophyll (Cab) | 30, 50, 70 | μg·cm−2 |
Dry matter (Cm) | 0.012 | g·cm−2 |
Blade size | 0.01 | m2 |
Tree height (H) | 9.5, 12, 14 | m |
Coronal height | 3.5, 5, 6 | m |
East-west crown width | 3, 4.5, 5 | m |
North-south crown width | 2, 4, 5.5 | m |
Sun zenith angle SZA | 43.756 | |
Sun azimuth angle SAA | 164.272 | |
Skylight proportion | Calculated using the 6s model | |
Soil reflectance | Calculated using the Gsv model | |
Simulated band | 400–900 (in steps of 1) | nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Zhang, Z.; He, H.; Zhang, X.; Feng, F.; Xu, C.; Zhang, M.; Lafortezza, R. Research on Leaf Area Index Inversion Based on LESS 3D Radiative Transfer Model and Machine Learning Algorithms. Remote Sens. 2024, 16, 3627. https://doi.org/10.3390/rs16193627
Jiang Y, Zhang Z, He H, Zhang X, Feng F, Xu C, Zhang M, Lafortezza R. Research on Leaf Area Index Inversion Based on LESS 3D Radiative Transfer Model and Machine Learning Algorithms. Remote Sensing. 2024; 16(19):3627. https://doi.org/10.3390/rs16193627
Chicago/Turabian StyleJiang, Yunyang, Zixuan Zhang, Huaijiang He, Xinna Zhang, Fei Feng, Chengyang Xu, Mingjie Zhang, and Raffaele Lafortezza. 2024. "Research on Leaf Area Index Inversion Based on LESS 3D Radiative Transfer Model and Machine Learning Algorithms" Remote Sensing 16, no. 19: 3627. https://doi.org/10.3390/rs16193627
APA StyleJiang, Y., Zhang, Z., He, H., Zhang, X., Feng, F., Xu, C., Zhang, M., & Lafortezza, R. (2024). Research on Leaf Area Index Inversion Based on LESS 3D Radiative Transfer Model and Machine Learning Algorithms. Remote Sensing, 16(19), 3627. https://doi.org/10.3390/rs16193627