A Deep–Learning Network for Wheat Yield Prediction Combining Weather Forecasts and Remote Sensing Data
<p>(<b>a</b>) Map showing the distribution of the main winter wheat production areas in China; (<b>b</b>) map showing the distribution of the winter wheat county-level yields for 2020.</p> "> Figure 2
<p>Lollipop chart of the yield levels over the four years from 2017 to 2020.</p> "> Figure 3
<p>The framework of LGYP (LSTM-GNN-Yield Prediction).</p> "> Figure 4
<p>(<b>a</b>) Scatter plot showing predicted yields and statistical yield data for different data sources using Remote sensing (RS) data; (<b>b</b>) scatter plot showing predicted yields and statistical yield data for different data sources using Weather forecast (WF) data; (<b>c</b>) scatter plot showing predicted yields and statistical yield data for different data sources using Remote sensing and Weather forecast (RS-WF) data. Note: *** means the value is significant at the 0.001 level.</p> "> Figure 5
<p>The coefficient of determination and root mean square error between the predicted yield and statistical yield data obtained using a yield prediction model for different data sources (RS: Remote sensing data; WF: Weather forecast data; RS-WF: Remote sensing and Weather forecast data).</p> "> Figure 6
<p>Scatter plot showing predicted yields and statistical yield data for different weather forecast data series lengths. The labels (<b>a</b>–<b>h</b>) in the top-right corner represent the number of days of weather forecasts added, with the unit being days. Note: *** means the value is significant at the 0.001 level.</p> "> Figure 7
<p>The coefficient of determination and root mean square error between the predicted yield and statistical yield data obtained using a yield prediction model for different weather forecast data series lengths.</p> "> Figure 8
<p>Scatter plot showing predicted yields and statistical yield data from different dates. Note: *** means the value is significant at the 0.001 level.</p> "> Figure 9
<p>Changes in the coefficient of determination and root mean square error between statistical data and predictions made using data from different dates.</p> "> Figure 10
<p>(<b>a</b>) Predicted yield of winter wheat in major provinces and counties of China for the years 2017–2020, (<b>b</b>) statistical yield values, and (<b>c</b>) difference between predicted and statistical data.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Remote Sensing Data
2.2.2. Weather Forecast Data
2.2.3. Winter Wheat Yield
2.2.4. Wheat Area Data
2.3. Method
2.3.1. Yield Prediction Model
2.3.2. Experiment Design
2.3.3. Model Evaluation Metrics
3. Results
3.1. The Impact of Incorporating Weather Forecast Data on Yield Prediction
3.2. Determining the Impact of Weather Forecast Length on LGYP Yield Prediction Accuracy
3.3. The Variation Pattern of Yield Prediction Accuracy with the Progression of the Time Series
4. Discussion
4.1. The Reason for the Impact on the Results When Incorporating Weather Forecast Data
4.2. The Reason for the Variation in Yield Prediction Accuracy with the Progression of the Time Series
4.3. The Spatial Distribution Pattern of Yield Prediction Results
4.4. Limitations of Weather Forecast Data
5. Conclusions
- (1)
- The combination of remote sensing and weather forecast data improves prediction accuracy by 16% compared to using remote sensing data alone.
- (2)
- Within a range of 0–40 days, selecting weather forecast data for 25 days leads to better performance.
- (3)
- County-scale wheat yield predictions in China can be made 40 days before wheat harvest, achieving the highest level of accuracy (RMSE = 0.496 t/ha).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tian, H.; Wang, P.; Tansey, K.; Zhang, J.; Zhang, S.; Li, H. An LSTM Neural Network for Improving Wheat Yield Estimates by Integrating Remote Sensing Data and Meteorological Data in the Guanzhong Plain, PR China. Agric. For. Meteorol. 2021, 310, 108629. [Google Scholar] [CrossRef]
- Meroni, M.; Waldner, F.; Seguini, L.; Kerdiles, H.; Rembold, F. Yield Forecasting with Machine Learning and Small Data: What Gains for Grains? Agric. For. Meteorol. 2021, 308–309, 108555. [Google Scholar] [CrossRef]
- Terliksiz, A.S.; Altilar, D.T. Impact of Large Kernel Size on Yield Prediction: A Case Study of Corn Yield Prediction with SEDLA in the U.S. Corn Belt. Environ. Res. Commun. 2024, 6, 025011. [Google Scholar] [CrossRef]
- Cheng, E.; Zhang, B.; Peng, D.; Zhong, L.; Yu, L.; Liu, Y.; Xiao, C.; Li, C.; Li, X.; Chen, Y.; et al. Wheat Yield Estimation Using Remote Sensing Data Based on Machine Learning Approaches. Front. Plant Sci. 2022, 13, 1090970. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Geng, H.; Zhang, L.; Peng, S.; Xin, Q.; Huang, J.; Li, X.; Liu, S.; Wang, Y. Improving Maize Yield Prediction at the County Level from 2002 to 2015 in China Using a Novel Deep Learning Approach. Comput. Electron. Agric. 2022, 202, 107356. [Google Scholar] [CrossRef]
- Cheng, E.; Wang, F.; Peng, D.; Zhang, B.; Zhao, B.; Zhang, W.; Hu, J.; Lou, Z.; Yang, S.; Zhang, H.; et al. A GT-LSTM Spatio-Temporal Approach for Winter Wheat Yield Prediction: From the Field Scale to County Scale. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–18. [Google Scholar] [CrossRef]
- Tian, H.; Wang, P.; Tansey, K.; Han, D.; Zhang, J.; Zhang, S.; Li, H. A Deep Learning Framework under Attention Mechanism for Wheat Yield Estimation Using Remotely Sensed Indices in the Guanzhong Plain, PR China. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102375. [Google Scholar] [CrossRef]
- Yu, R.; Li, S.; Zhang, B.; Zhang, H. A Deep Transfer Learning Method for Estimating Fractional Vegetation Cover of Sentinel-2 Multispectral Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Lin, T.; Zhong, R.; Wang, Y.; Xu, J.; Jiang, H.; Xu, J.; Ying, Y.; Rodriguez, L.; Ting, K.C.; Li, H. DeepCropNet: A Deep Spatial-Temporal Learning Framework for County-Level Corn Yield Estimation. Environ. Res. Lett. 2020, 15, 034016. [Google Scholar] [CrossRef]
- Nandram, B.; Berg, E.; Barboza, W. A Hierarchical Bayesian Model for Forecasting State-Level Corn Yield. Env. Ecol. Stat. 2014, 21, 507–530. [Google Scholar] [CrossRef]
- Heslot, N.; Akdemir, D.; Sorrells, M.E.; Jannink, J.-L. Integrating Environmental Covariates and Crop Modeling into the Genomic Selection Framework to Predict Genotype by Environment Interactions. Theor. Appl. Genet. 2014, 127, 463–480. [Google Scholar] [CrossRef] [PubMed]
- Dokoohaki, H.; Kivi, M.S.; Martinez-Feria, R.; Miguez, F.E.; Hoogenboom, G. A Comprehensive Uncertainty Quantification of Large-Scale Process-Based Crop Modeling Frameworks. Environ. Res. Lett. 2021, 16, 084010. [Google Scholar] [CrossRef]
- Chandar, A.G.; Sivasankari, K.; Lakshmi, S.L.; Sugumaran, S.; Kannadhasan, S.; Balakumar, S. An Innovative Smart Agriculture System Utilizing a Deep Neural Network and Embedded System to Enhance Crop Yield. Multidiscip. Sci. J. 2023, 6, 2024063. [Google Scholar] [CrossRef]
- Kern, A.; Barcza, Z.; Marjanović, H.; Árendás, T.; Fodor, N.; Bónis, P.; Bognár, P.; Lichtenberger, J. Statistical Modelling of Crop Yield in Central Europe Using Climate Data and Remote Sensing Vegetation Indices. Agric. For. Meteorol. 2018, 260–261, 300–320. [Google Scholar] [CrossRef]
- Franch, B.; Vermote, E.F.; Becker-Reshef, I.; Claverie, M.; Huang, J.; Zhang, J.; Justice, C.; Sobrino, J.A. Improving the Timeliness of Winter Wheat Production Forecast in the United States of America, Ukraine and China Using MODIS Data and NCAR Growing Degree Day Information. Remote Sens. Environ. 2015, 161, 131–148. [Google Scholar] [CrossRef]
- Mathieu, J.A.; Aires, F. Assessment of the Agro-Climatic Indices to Improve Crop Yield Forecasting. Agric. For. Meteorol. 2018, 253–254, 15–30. [Google Scholar] [CrossRef]
- Iizumi, T.; Shiogama, H.; Imada, Y.; Hanasaki, N.; Takikawa, H.; Nishimori, M. Crop Production Losses Associated with Anthropogenic Climate Change for 1981–2010 Compared with Preindustrial Levels. Int. J. Climatol. 2018, 38, 5405–5417. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; Bayas, J.C.L.; Waldner, F.; Jacques, D.; Becker-Reshef, I.; Whitcraft, A.; Baruth, B.; Bonifacio, R.; Crutchfield, J.; et al. A Comparison of Global Agricultural Monitoring Systems and Current Gaps. Agric. Syst. 2019, 168, 258–272. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; Luo, Y.; Cao, J.; Xie, R.; Li, S. Integrating Satellite-Derived Climatic and Vegetation Indices to Predict Smallholder Maize Yield Using Deep Learning. Agric. For. Meteorol. 2021, 311, 108666. [Google Scholar] [CrossRef]
- Choudhary, K.; Shi, W.; Dong, Y.; Paringer, R. Random Forest for Rice Yield Mapping and Prediction Using Sentinel-2 Data with Google Earth Engine. Adv. Space Res. 2022, 70, 2443–2457. [Google Scholar] [CrossRef]
- Fan, J.; Bai, J.; Li, Z.; Ortiz-Bobea, A.; Gomes, C.P. A GNN-RNN Approach for Harnessing Geospatial and Temporal Information: Application to Crop Yield Prediction 2022. In Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, Virtually, 22 February 22–1 March 2022. [Google Scholar]
- Cai, Y.; Guan, K.; Lobell, D.; Potgieter, A.B.; Wang, S.; Peng, J.; Xu, T.; Asseng, S.; Zhang, Y.; You, L.; et al. Integrating Satellite and Climate Data to Predict Wheat Yield in Australia Using Machine Learning Approaches. Agric. For. Meteorol. 2019, 274, 144–159. [Google Scholar] [CrossRef]
- Zhang, C.; Diao, C. A Phenology-Guided Bayesian-CNN (PB-CNN) Framework for Soybean Yield Estimation and Uncertainty Analysis. ISPRS J. Photogramm. Remote Sens. 2023, 205, 50–73. [Google Scholar] [CrossRef]
- Lin, F.; Crawford, S.; Guillot, K.; Zhang, Y.; Chen, Y.; Yuan, X.; Chen, L.; Williams, S.; Minvielle, R.; Xiao, X.; et al. MMST-ViT: Climate Change-Aware Crop Yield Prediction via Multi-Modal Spatial-Temporal Vision Transformer. In Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 1–6 October 2023. [Google Scholar]
- Han, D.; Wang, P.; Tansey, K.; Zhang, Y.; Li, H. A Graph-Based Deep Learning Framework for Field Scale Wheat Yield Estimation. Int. J. Appl. Earth Obs. Geoinf. 2024, 129, 103834. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, D.; Zhang, Y.; Zhang, Y.; Han, Y.; Zhang, Q.; Zhang, Q.; Zhang, C.; Liu, Z.; Wang, K. Prediction of Corn Variety Yield with Attribute-Missing Data via Graph Neural Network. Comput. Electron. Agric. 2023, 211, 108046. [Google Scholar] [CrossRef]
- Qiao, M.; He, X.; Cheng, X.; Li, P.; Zhao, Q.; Zhao, C.; Tian, Z. KSTAGE: A Knowledge-Guided Spatial-Temporal Attention Graph Learning Network for Crop Yield Prediction. Inf. Sci. 2023, 619, 19–37. [Google Scholar] [CrossRef]
- Xiong, X.; Zhong, R.; Tian, Q.; Huang, J.; Zhu, L.; Yang, Y.; Lin, T. Daily DeepCropNet: A Hierarchical Deep Learning Approach with Daily Time Series of Vegetation Indices and Climatic Variables for Corn Yield Estimation. ISPRS J. Photogramm. Remote Sens. 2024, 209, 249–264. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, Y.; Yu, X.; Huang, C.; Wu, C. TFSF: Topological and Feature Space Fusion with Spatio-Temporal Modeling for Crop Yield Prediction. In Proceedings of the 2023 26th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Rio de Janeiro, Brazil, 24–26 May 2023. [Google Scholar]
- Marshall, M.; Belgiu, M.; Boschetti, M.; Pepe, M.; Stein, A.; Nelson, A. Field-Level Crop Yield Estimation with PRISMA and Sentinel-2. ISPRS J. Photogramm. Remote Sens. 2022, 187, 191–210. [Google Scholar] [CrossRef]
- Zhu, J. The Relationship between Wheat Yield and Sun-Induced Chlorophyll Fluorescence from Continuous Measurements over the Growing Season. Remote Sens. Environ. 2023, 298, 113791. [Google Scholar] [CrossRef]
- Mateo-Sanchis, A.; Piles, M.; Muñoz-Marí, J.; Adsuara, J.E.; Pérez-Suay, A.; Camps-Valls, G. Synergistic Integration of Optical and Microwave Satellite Data for Crop Yield Estimation. Remote Sens. Environ. 2019, 234, 111460. [Google Scholar] [CrossRef]
- Quiring, S.M.; Legates, D.R. Application of CERES-Maize for within-Season Prediction of Rainfed Corn Yields in Delaware, USA. Agric. For. Meteorol. 2008, 148, 964–975. [Google Scholar] [CrossRef]
- Wanthanaporn, U.; Supit, I.; Chaowiwat, W.; Hutjes, R.W.A. Skill of Rice Yields Forecasting over Mainland Southeast Asia Using the ECMWF SEAS5 Ensemble Prediction System and the WOFOST Crop Model. Agric. For. Meteorol. 2024, 351, 110001. [Google Scholar] [CrossRef]
- De Wit, A.; Baruth, B.; Boogaard, H.; Van Diepen, K.; Van Kraalingen, D.; Micale, F.; Te Roller, J.; Supit, I.; Van Den Wijngaart, R. Using ERA-INTERIM for Regional Crop Yield Forecasting in Europe. Clim. Res. 2010, 44, 41–53. [Google Scholar] [CrossRef]
- Chen, Y.; Tao, F. Potential of Remote Sensing Data-Crop Model Assimilation and Seasonal Weather Forecasts for Early-Season Crop Yield Forecasting over a Large Area. Field Crops Res. 2022, 276, 108398. [Google Scholar] [CrossRef]
- Kirthiga, S.M.; Patel, N.R. In-Season Wheat Yield Forecasting at High Resolution Using Regional Climate Model and Crop Model. AgriEngineering 2022, 4, 1054–1075. [Google Scholar] [CrossRef]
- Zare, H.; Viswanathan, M.; Weber, T.K.; Ingwersen, J.; Nowak, W.; Gayler, S.; Streck, T. Improving Winter Wheat Yield Prediction by Accounting for Weather and Model Parameter Uncertainty While Assimilating LAI and Updating Weather Data within a Crop Model. Eur. J. Agron. 2024, 156, 127149. [Google Scholar] [CrossRef]
- Newlands, N.K. An Integrated, Probabilistic Model for Improved Seasonal Forecasting of Agricultural Crop Yield under Environmental Uncertainty. Front. Environ. Sci. 2014, 2, 17. [Google Scholar] [CrossRef]
- Chakraborty, D.; Saha, S.; Sethy, B.K.; Singh, H.D.; Singh, N.; Sharma, R.; Chanu, A.N.; Walling, I.; Anal, P.R.; Chowdhury, S.; et al. Usability of the Weather Forecast for Tackling Climatic Variability and Its Effect on Maize Crop Yield in Northeastern Hill Region of India. Agronomy 2022, 12, 2529. [Google Scholar] [CrossRef]
- Pujahari, R.M.; Yadav, S.P.; Khan, R. Intelligent Farming System through Weather Forecast Support and Crop Production. In Application of Machine Learning in Agriculture; Elsevier: Amsterdam, The Netherlands, 2022; pp. 113–130. ISBN 978-0-323-90550-3. [Google Scholar]
- Raimundo, F.; Glória, A.; Sebastião, P. Prediction of Weather Forecast for Smart Agriculture Supported by Machine Learning. In Proceedings of the 2021 IEEE World AI IoT Congress (AIIoT), Seattle, WA, USA, 10–13 May 2021; pp. 0160–0164. [Google Scholar]
- Anupoju, V.; Kambhammettu, B.P.; Regonda, S.K. Role of Short-Term Weather Forecast Horizon in Irrigation Scheduling and Crop Water Productivity of Rice. J. Water Resour. Plan. Manag. 2021, 147, 05021009. [Google Scholar] [CrossRef]
- Brinkhoff, J.; Clarke, A.; Dunn, B.W.; Groat, M. Analysis and Forecasting of Australian Rice Yield Using Phenology-Based Aggregation of Satellite and Weather Data. Agric. For. Meteorol. 2024, 353, 110055. [Google Scholar] [CrossRef]
- Boas, T.; Bogena, H.R.; Ryu, D.; Vereecken, H.; Western, A.; Hendricks Franssen, H.-J. Seasonal Soil Moisture and Crop Yield Prediction with Fifth-Generation Seasonal Forecasting System (SEAS5) Long-Range Meteorological Forecasts in a Land Surface Modelling Approach. Hydrol. Earth Syst. Sci. 2023, 27, 3143–3167. [Google Scholar] [CrossRef]
- Thimmegowda, M.N.; Manjunatha, M.H.; Huggi, L.; Shivaramu, H.S.; Soumya, D.V.; Nagesha, L.; Padmashri, H.S. Weather-Based Statistical and Neural Network Tools for Forecasting Rice Yields in Major Growing Districts of Karnataka. Agronomy 2023, 13, 704. [Google Scholar] [CrossRef]
- Togliatti, K.; Archontoulis, S.V.; Dietzel, R.; Puntel, L.; VanLoocke, A. How Does Inclusion of Weather Forecasting Impact In-Season Crop Model Predictions? Field Crop. Res. 2017, 214, 261–272. [Google Scholar] [CrossRef]
- Pan, B.; Anderson, G.J.; Goncalves, A.; Lucas, D.D.; Bonfils, C.J.W.; Lee, J. Improving Seasonal Forecast Using Probabilistic Deep Learning. J. Adv. Model Earth Syst. 2022, 14, e2021MS002766. [Google Scholar] [CrossRef]
- Song, C.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.A. Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects? Remote Sens. Environ. 2001, 75, 230–244. [Google Scholar] [CrossRef]
- You, N.; Dong, J.; Huang, J.; Du, G.; Zhang, G.; He, Y.; Yang, T.; Di, Y.; Xiao, X. The 10-m Crop Type Maps in Northeast China during 2017–2019. Sci. Data 2021, 8, 41. [Google Scholar] [CrossRef]
- Li, X.; Qu, Y.; Xin, Q.; Huang, J.; Peng, S.; Zhang, L. Mapping annual 10-m maize cropland changes in China during 2017–2021. Sci. Data 2023, 10, 765. [Google Scholar] [CrossRef]
- Song, Y. The Value of Weather Forecasts: Evidence from Labor Responses to Accurate versus Inaccurate Temperature Forecasts in China. J. Environ. Econ. Manag. 2024, 125, 102970. [Google Scholar] [CrossRef]
- Qiao, M.; He, X.; Cheng, X.; Li, P.; Luo, H.; Zhang, L.; Tian, Z. Crop Yield Prediction from Multi-Spectral, Multi-Temporal Remotely Sensed Imagery Using Recurrent 3D Convolutional Neural Networks. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102436. [Google Scholar] [CrossRef]
- Wang, X.; Huang, J.; Feng, Q.; Yin, D. Winter Wheat Yield Prediction at County Level and Uncertainty Analysis in Main Wheat-Producing Regions of China with Deep Learning Approaches. Remote Sens. 2020, 12, 1744. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Pan, P.; Xu, Z.; Yang, Y.; Wu, F.; Zhuang, Y. Hierarchical Recurrent Neural Encoder for Video Representation with Application to Captioning. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1029–1038. [Google Scholar]
- Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 4–24. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive Representation Learning on Large Graphs 2018. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Zampieri, M.; Ceglar, A.; Dentener, F.; Toreti, A. Wheat Yield Loss Attributable to Heat Waves, Drought and Water Excess at the Global, National and Subnational Scales. Environ. Res. Lett. 2017, 12, 064008. [Google Scholar] [CrossRef]
- Feng, P. Dynamic Wheat Yield Forecasts Are Improved by a Hybrid Approach Using a Biophysical Model and Machine Learning Technique. Agric. For. Meteorol. 2020, 285, 107922. [Google Scholar] [CrossRef]
- Filippi, P.; Jones, E.J.; Wimalathunge, N.S.; Somarathna, P.D.S.N.; Pozza, L.E.; Ugbaje, S.U.; Jephcott, T.G.; Paterson, S.E.; Whelan, B.M.; Bishop, T.F.A. An Approach to Forecast Grain Crop Yield Using Multi-Layered, Multi-Farm Data Sets and Machine Learning. Precis. Agric 2019, 20, 1015–1029. [Google Scholar] [CrossRef]
- Chen, P.; Li, Y.; Liu, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cao, Q. Improving yield prediction based on spatio-temporal deep learning approaches for winter wheat: A case study in Jiangsu Province, China. Comput. Electron. Agric. 2023, 213, 108201. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need 2023. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting 2021. In Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021. [Google Scholar]
- Kang, X.; Le, Z.; Li, C.; Dai, L.; Quan, C.; Shi, M.; Liao, R. Study on the Different Responses of Different Winter Wheat Cultivars to Dry Hot Wind. PLoS ONE 2022, 17, e0274118. [Google Scholar] [CrossRef]
- Zhang, Y. Skilful Nowcasting of Extreme Precipitation with NowcastNet. Nature 2023, 619, 526–532. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, D.; Cheng, E.; Feng, X.; Hu, J.; Lou, Z.; Zhang, H.; Zhao, B.; Lv, Y.; Peng, H.; Zhang, B. A Deep–Learning Network for Wheat Yield Prediction Combining Weather Forecasts and Remote Sensing Data. Remote Sens. 2024, 16, 3613. https://doi.org/10.3390/rs16193613
Peng D, Cheng E, Feng X, Hu J, Lou Z, Zhang H, Zhao B, Lv Y, Peng H, Zhang B. A Deep–Learning Network for Wheat Yield Prediction Combining Weather Forecasts and Remote Sensing Data. Remote Sensing. 2024; 16(19):3613. https://doi.org/10.3390/rs16193613
Chicago/Turabian StylePeng, Dailiang, Enhui Cheng, Xuxiang Feng, Jinkang Hu, Zihang Lou, Hongchi Zhang, Bin Zhao, Yulong Lv, Hao Peng, and Bing Zhang. 2024. "A Deep–Learning Network for Wheat Yield Prediction Combining Weather Forecasts and Remote Sensing Data" Remote Sensing 16, no. 19: 3613. https://doi.org/10.3390/rs16193613