Urban Perception Evaluation and Street Refinement Governance Supported by Street View Visual Elements Analysis
<p>The research flowchart.</p> "> Figure 2
<p>Study area location: (<b>a</b>) China; (<b>b</b>) Guangdong Province; (<b>c</b>) Shenzhen City; (<b>d</b>) Nanshan District.</p> "> Figure 3
<p>The methodology roadmap.</p> "> Figure 4
<p>The process of VggNet neural network model.</p> "> Figure 5
<p>An example of TrueSkill algorithm computation.</p> "> Figure 6
<p>The spatial distribution of six types of perceptional scores in Nanshan District.</p> "> Figure 7
<p>An overall perception performance with scores (<b>left</b>) and their clustering (<b>right</b>).</p> "> Figure 8
<p>The spatial autocorrelation clustering.</p> "> Figure 9
<p>The spatial distribution of the urban perception’s influencing factors.</p> "> Figure 10
<p>The spatial distribution of the street accessibility.</p> "> Figure 11
<p>The spatial distribution of the perception performance with a high accessibility.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Sources
3. Methods
3.1. DeepLabV3+ Neural Network Model
3.2. VggNet Neural Network Model
3.3. Microsoft TrueSkill City Awareness Computing
3.4. Urban Spatial Perception Interpretation Model
4. Results
4.1. Multidimensional Spatial Perception Distribution
4.2. Spatial Perception and Its Influencing Factors
4.3. Relationship between the Urban Perception and Street Accessibility
5. Discussion
5.1. Differences in Positive and Negative Spatial Perceptions in Nanshan District
5.2. Spatial Autocorrelation Analysis and Its Implications on Urban Perception in Nanshan District
5.3. Spatial Heterogeneity and the Impact of Street Elements and Accessibility in Nanshan District
6. Conclusions
- Increase green spaces and public open areas: Enhance visual and psychological perception quality by expanding greenery and accessible public spaces.
- Improve road quality and traffic convenience: Enhance transportation infrastructure, especially in densely built areas, to ensure efficient mobility and reduced congestion.
- Implement thoughtful building design and layout: Improve overall environmental safety and aesthetics through carefully planned architectural designs and layouts.
- Reduce negative visual elements: Minimize the use of fences and other negative elements to increase openness and enhance spatial aesthetics.
- Undertake targeted urban renewal and governance in low-perception areas: Implement focused strategies to raise environmental quality and resident satisfaction in areas with low perception scores.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Matsuoka, R.H.; Kaplan, R. People Needs in the Urban Landscape: Analysis of Landscape and Urban Planning Contributions. Landsc. Urban Plan. 2008, 84, 7–19. [Google Scholar] [CrossRef]
- Kaklauskas, A.; Bardauskiene, D.; Cerkauskiene, R.; Ubarte, I.; Raslanas, S.; Radvile, E.; Kaklauskaite, U.; Kaklauskiene, L. Emotions Analysis in Public Spaces for Urban Planning. Land Use Policy 2021, 107, 105458. [Google Scholar] [CrossRef]
- Musse, M.A.; Barona, D.A.; Santana Rodriguez, L.M. Urban Environmental Quality Assessment Using Remote Sensing and Census Data. Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 95–108. [Google Scholar] [CrossRef]
- Porzi, L.; Rota Bulò, S.; Lepri, B.; Ricci, E. Predicting and Understanding Urban Perception with Convolutional Neural Networks. In Proceedings of the 23rd ACM International Conference on Multimedia, Brisbane Australia, 26–30 October 2015; ACM: New York, NY, USA, 2015; pp. 139–148. [Google Scholar]
- Ewing, R.; Handy, S. Measuring the Unmeasurable: Urban Design Qualities Related to Walkability. J. Urban Des. 2009, 14, 65–84. [Google Scholar] [CrossRef]
- Nasar, J.L. Perception, Cognition, and Evaluation of Urban Places. In Public Places and Spaces; Altman, I., Zube, E.H., Eds.; Springer: Boston, MA, USA, 1989; pp. 31–56. ISBN 978-1-4684-5603-5. [Google Scholar]
- Samuelsson, K.; Giusti, M.; Peterson, G.D.; Legeby, A.; Brandt, S.A.; Barthel, S. Impact of Environment on People’s Everyday Experiences in Stockholm. Landsc. Urban Plan. 2018, 171, 7–17. [Google Scholar] [CrossRef]
- Das, D. Urban Quality of Life: A Case Study of Guwahati. Soc. Indic. Res. 2008, 88, 297–310. [Google Scholar] [CrossRef]
- Duan, J.; Wang, Y.; Fan, C.; Xia, B.; De Groot, R. Perception of Urban Environmental Risks and the Effects of Urban Green Infrastructures (UGIs) on Human Well-Being in Four Public Green Spaces of Guangzhou, China. Environ. Manag. 2018, 62, 500–517. [Google Scholar] [CrossRef]
- Griew, P.; Hillsdon, M.; Foster, C.; Coombes, E.; Jones, A.; Wilkinson, P. Developing and Testing a Street Audit Tool Using Google Street View to Measure Environmental Supportiveness for Physical Activity. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 103. [Google Scholar] [CrossRef]
- Bonaiuto, M. Residential Satisfaction and Perceived Urban Quality. In Encyclopedia of Applied Psychology; Spielberger, C.D., Ed.; Elsevier: New York, NY, USA, 2004; pp. 267–272. ISBN 978-0-12-657410-4. [Google Scholar]
- Liu, M.; Han, L.; Xiong, S.; Qing, L.; Ji, H.; Peng, Y. Large-Scale Street Space Quality Evaluation Based on Deep Learning over Street View Image. In Proceedings of the Image and Graphics: 10th International Conference, ICIG 2019, Beijing, China, 23–25 August 2019; Zhao, Y., Barnes, N., Chen, B., Westermann, R., Kong, X., Lin, C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 690–701. [Google Scholar]
- Biljecki, F.; Ito, K. Street View Imagery in Urban Analytics and GIS: A Review. Landsc. Urban Plan. 2021, 215, 104217. [Google Scholar] [CrossRef]
- Zhang, L.; Pei, T.; Wang, X.; Wu, M.; Song, C.; Guo, S.; Chen, Y. Quantifying the Urban Visual Perception of Chinese Traditional-Style Building with Street View Images. Appl. Sci. 2020, 10, 5963. [Google Scholar] [CrossRef]
- Tong, M.; She, J.; Tan, J.; Li, M.; Ge, R.; Gao, Y. Evaluating Street Greenery by Multiple Indicators Using Street-Level Imagery and Satellite Images: A Case Study in Nanjing, China. Forests 2020, 11, 1347. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, Y.; Sun, Y.; Tao, P.; Kuang, X. Does Green Space Really Matter for Residents’ Obesity? A New Perspective From Baidu Street View. Front. Public Health 2020, 8, 332. [Google Scholar] [CrossRef]
- Ito, K.; Kang, Y.; Zhang, Y.; Zhang, F.; Biljecki, F. Understanding Urban Perception with Visual Data: A Systematic Review. Cities 2024, 152, 105169. [Google Scholar] [CrossRef]
- Salesses, P.; Schechtner, K.; Hidalgo, C.A. The Collaborative Image of The City: Mapping the Inequality of Urban Perception. PLoS ONE 2013, 8, e68400. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Li, W. Building Block Level Urban Land-Use Information Retrieval Based on Google Street View Images. GIScience Remote Sens. 2017, 54, 819–835. [Google Scholar] [CrossRef]
- Dong, L.; Jiang, H.; Li, W.; Qiu, B.; Wang, H.; Qiu, W. Assessing Impacts of Objective Features and Subjective Perceptions of Street Environment on Running Amount: A Case Study of Boston. Landsc. Urban Plan. 2023, 235, 104756. [Google Scholar] [CrossRef]
- Sun, H.; Xu, H.; He, H.; Wei, Q.; Yan, Y.; Chen, Z.; Li, X.; Zheng, J.; Li, T. A Spatial Analysis of Urban Streets under Deep Learning Based on Street View Imagery: Quantifying Perceptual and Elemental Perceptual Relationships. Sustainability 2023, 15, 14798. [Google Scholar] [CrossRef]
- Wang, L.; Han, X.; He, J.; Jung, T. Measuring Residents’ Perceptions of City Streets to Inform Better Street Planning through Deep Learning and Space Syntax. ISPRS J. Photogramm. Remote Sens. 2022, 190, 215–230. [Google Scholar] [CrossRef]
- Cui, Q.; Zhang, Y.; Yang, G.; Huang, Y.; Chen, Y. Analysing Gender Differences in the Perceived Safety from Street View Imagery. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103537. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, H.-M. Using Google Street View to Reveal Environmental Justice: Assessing Public Perceived Walkability in Macroscale City. Landsc. Urban Plan. 2024, 244, 104995. [Google Scholar] [CrossRef]
- Han, X.; Wang, L.; Seo, S.H.; He, J.; Jung, T. Measuring Perceived Psychological Stress in Urban Built Environments Using Google Street View and Deep Learning. Front. Public Health 2022, 10, 891736. [Google Scholar] [CrossRef]
- Min, W.; Mei, S.; Liu, L.; Wang, Y.; Jiang, S. Multi-Task Deep Relative Attribute Learning for Visual Urban Perception. IEEE Trans. Image Process. 2020, 29, 657–669. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L.; Zhang, T.; Hu, Y.; He, J. The Impact Mechanism of Urban Built Environment on Urban Greenways Based on Computer Vision. Forests 2024, 15, 1171. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.; Wu, J.; Li, P.; Dong, J.; Wang, T. Decoding Urban Green Spaces: Deep Learning and Google Street View Measure Greening Structures. Urban For. Urban Green. 2023, 87, 128028. [Google Scholar] [CrossRef]
- Ordonez, V.; Berg, T.L. Learning High-Level Judgments of Urban Perception. In Proceedings of the Computer Vision—ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Springer International Publishing: Cham, Switzerland, 2014; Volume 8694, pp. 494–510. [Google Scholar]
- Dubey, A.; Naik, N.; Parikh, D.; Raskar, R.; Hidalgo, C.A. Deep Learning the City: Quantifying Urban Perception at a Global Scale; Springer International Publishing: Cham, Switzerland, 2016; Volume 9905, pp. 196–212. [Google Scholar]
- Wu, Y.; Liu, Q.; Hang, T.; Yang, Y.; Wang, Y.; Cao, L. Integrating Restorative Perception into Urban Street Planning: A Framework Using Street View Images, Deep Learning, and Space Syntax. Cities 2024, 147, 104791. [Google Scholar] [CrossRef]
- Tian, H.; Han, Z.; Xu, W. Evolution of Historical Urban Landscape with Computer Vision and Machine Learning: A Case Study of Berlin. J. Digit. Landsc. Archit. 2021, 6, 436–451. [Google Scholar]
- Zhang, F.; Zhou, B.; Liu, L.; Liu, Y.; Fung, H.H.; Lin, H.; Ratti, C. Measuring Human Perceptions of a Large-Scale Urban Region Using Machine Learning. Landsc. Urban Plan. 2018, 180, 148–160. [Google Scholar] [CrossRef]
- Rui, Q.; Cheng, H. Quantifying the Spatial Quality of Urban Streets with Open Street View Images: A Case Study of the Main Urban Area of Fuzhou. Ecol. Indic. 2023, 156, 111204. [Google Scholar] [CrossRef]
- Jiang, B.; Claramunt, C.; Batty, M. Geometric Accessibility and Geographic Information: Extending Desktop GIS to Space Syntax. Comput. Environ. Urban Syst. 1999, 23, 127–146. [Google Scholar] [CrossRef]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the Computer Vision—ECCV 2018, Tel Aviv, Israel, 23–27 October 2022; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 833–851. [Google Scholar]
- Zhu, H.; Nan, X.; Yang, F.; Bao, Z. Utilizing the Green View Index to Improve the Urban Street Greenery Index System: A Statistical Study Using Road Patterns and Vegetation Structures as Entry Points. Landsc. Urban Plan. 2023, 237, 104780. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Han, X.; Wang, L.; He, J.; Jung, T. Restorative Perception of Urban Streets: Interpretation Using Deep Learning and MGWR Models. Front. Public Health 2023, 11, 1141630. [Google Scholar] [CrossRef] [PubMed]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geogr. Anal. 2010, 28, 281–298. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale Geographically Weighted Regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Appleyard, D. Livable Streets: Protected Neighborhoods? Ann. Am. Acad. Political Soc. Sci. 1980, 451, 106–117. [Google Scholar] [CrossRef]
- Donovan, G.H.; Butry, D.T. Trees in the City: Valuing Street Trees in Portland, Oregon. Landsc. Urban Plan. 2010, 94, 77–83. [Google Scholar] [CrossRef]
- Demuzere, M.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, D.; Orru, H.; Bhave, A.G.; Mittal, N.; Feliu, E.; Faehnle, M. Mitigating and Adapting to Climate Change: Multi-Functional and Multi-Scale Assessment of Green Urban Infrastructure. J. Environ. Manag. 2014, 146, 107–115. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Charlton, M.E.; Brunsdon, C. Geographically Weighted Regression: A Natural Evolution of the Expansion Method for Spatial Data Analysis. Environ. Plan A 1998, 30, 1905–1927. [Google Scholar] [CrossRef]
- Chen, H.; Yun, Z.; Xie, L.; Dawodu, A. Spatial Disparities in Urban Park Accessibility: Integrating Real-Time Traffic Data and Housing Prices in Ningbo, China. Urban For. Urban Green. 2024, 100, 128484. [Google Scholar] [CrossRef]
- Han, B.; Cohen, D.; McKenzie, T.L. Quantifying the Contribution of Neighborhood Parks to Physical Activity. Prev. Med. 2013, 57, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Lachowycz, K.; Jones, A.P. Towards a Better Understanding of the Relationship between Greenspace and Health: Development of a Theoretical Framework. Landsc. Urban Plan. 2013, 118, 62–69. [Google Scholar] [CrossRef]
- Lovasi, G.S.; Schwartz-Soicher, O.; Quinn, J.W.; Berger, D.K.; Neckerman, K.M.; Jaslow, R.; Lee, K.K.; Rundle, A. Neighborhood Safety and Green Space as Predictors of Obesity among Preschool Children from Low-Income Families in New York City. Prev. Med. 2013, 57, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Abercrombie, L.C.; Sallis, J.F.; Conway, T.L.; Frank, L.D.; Saelens, B.E.; Chapman, J.E. Income and Racial Disparities in Access to Public Parks and Private Recreation Facilities. Am. J. Prev. Med. 2008, 34, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, T.; Leslie, E.; Giles-Corti, B.; Owen, N. Associations of Neighbourhood Greenness with Physical and Mental Health: Do Walking, Social Coherence and Local Social Interaction Explain the Relationships? J. Epidemiol. Community Health 2008, 62, e9. [Google Scholar] [CrossRef] [PubMed]
- Pickett, S.T.A.; Cadenasso, M.L.; Grove, J.M.; Boone, C.G.; Groffman, P.M.; Irwin, E.; Kaushal, S.S.; Marshall, V.; McGrath, B.P.; Nilon, C.H.; et al. Urban Ecological Systems: Scientific Foundations and a Decade of Progress. J. Environ. Manag. 2011, 92, 331–362. [Google Scholar] [CrossRef] [PubMed]
Global Moran I Summary | |
---|---|
Moran’s I index | 0.306115 |
Expectation index | −0.000022 |
Variance | 0.000000 |
Z-score | 804.380739 |
p-value | 0.000000 |
Number | Visual Elements | Avg | Max | Min | SD |
---|---|---|---|---|---|
1 | Other | 0.112 | 0.558 | 0.001 | 0.075 |
2 | Building | 0.053 | 0.527 | 0.001 | 0.066 |
3 | Sky | 0.300 | 0.714 | 0.001 | 0.112 |
4 | Road | 0.176 | 0.441 | 0.001 | 0.084 |
5 | Sidewalk | 0.029 | 0.343 | 0.001 | 0.035 |
6 | Car | 0.083 | 0.331 | 0.001 | 0.045 |
7 | Fence | 0.005 | 0.106 | 0.001 | 0.009 |
8 | Plant | 0.156 | 0.691 | 0.001 | 0.119 |
OLS Coefficient | GWR Coefficient | MGWR Coefficient | |||||
---|---|---|---|---|---|---|---|
Variable | Mean Value | Mean Value | Max | Min | Mean Value | Max | Min |
Interception | 0.000 | 0.086 | −41.538 | 9.388 | 0.082 | −1.363 | 1.555 |
Others | 0.196 *** | 0.205 | −1.649 | 1.830 | 0.185 | 0.004 | 0.309 |
Building | 0.406 *** | 0.239 | −8.202 | 9.107 | 0.210 | −0.209 | 0.645 |
Sky | 0.078 *** | 0.173 | −4.171 | 6.696 | 0.109 | −0.412 | 0.578 |
Road | 0.288 *** | 0.198 | −1.515 | 1.982 | 0.190 | 0.017 | 0.388 |
Sidewalk | 0.071 *** | 0.103 | −3.338 | 9.946 | 0.073 | −0.502 | 0.495 |
Car | 0.019 *** | 0.082 | −1.484 | 1.592 | 0.074 | −0.279 | 0.525 |
Fence | −0.105 *** | −0.048 | −1.863 | 4.711 | −0.063 | −0.071 | −0.054 |
Plant | 0.541 *** | 0.447 | −33.624 | 3.922 | 0.396 | 0.003 | 0.730 |
R2 | 0.250 | 0.631 | 0.726 | ||||
AIC | 117,737.097 | 94,272.137 | 79,363.862 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, F.; Zeng, P.; Wang, L.; Zhang, L.; Xu, W. Urban Perception Evaluation and Street Refinement Governance Supported by Street View Visual Elements Analysis. Remote Sens. 2024, 16, 3661. https://doi.org/10.3390/rs16193661
Tang F, Zeng P, Wang L, Zhang L, Xu W. Urban Perception Evaluation and Street Refinement Governance Supported by Street View Visual Elements Analysis. Remote Sensing. 2024; 16(19):3661. https://doi.org/10.3390/rs16193661
Chicago/Turabian StyleTang, Fengliang, Peng Zeng, Lei Wang, Longhao Zhang, and Weixing Xu. 2024. "Urban Perception Evaluation and Street Refinement Governance Supported by Street View Visual Elements Analysis" Remote Sensing 16, no. 19: 3661. https://doi.org/10.3390/rs16193661