Lidar-Observed Diel Vertical Variations of Inland Chlorophyll a Concentration
<p>(<b>a</b>) Schematic diagram of ZJU-MFRL system. BS: beam splitter; PD: photodetector; PMT: photomultiplier tube. (<b>b</b>) MFRL system worked during the day. (<b>c</b>) MFRL system worked at night.</p> "> Figure 2
<p>Map of Jiekou station in Xinanjiang Reservoir. The fixed observatory was marked with a red pentagram.</p> "> Figure 3
<p>Comparison of Chl-<span class="html-italic">a</span> profiles from ZJU-MFRL and in situ measurements at different sampling times. The blue error bars represented the lidar-retrieved Chl-<span class="html-italic">a</span>, and the red dotted line represented the in situ-measured Chl-<span class="html-italic">a</span>. The different sampling points were labeled as T1–T8, and their sampling times were also labeled, respectively.</p> "> Figure 4
<p>Validation results for lidar-retrieved and in situ Chl-<span class="html-italic">a</span> concentration. The gray background represented 20% error band, the blue solid line was the regression line, and the black dotted line indicated a 1:1 line.</p> "> Figure 5
<p>(<b>a</b>) The diel distribution of Chl-<span class="html-italic">a</span> profiles in Jiekou station with three optical depths in the red line. (<b>b</b>) Chl-<span class="html-italic">a</span> concentration in the detected upper (0.7–1 m), middle (2–3 m), and bottom layers (4–5 m) observed by ZJU-MFRL. The gray background represents nighttime, and the yellow background indicates the presence of SPL.</p> "> Figure 6
<p>Distribution of (<b>a</b>) water temperature, and (<b>b</b>) water temperature anomaly measured by buoy YSI-EXO2. (<b>c</b>) Quartile diagram of anomalies of Chl-<span class="html-italic">a</span> concentration and water temperature at different depths as a function of sampling moment. Their mean values were connected by lines, respectively. The gray background represents nighttime.</p> "> Figure 7
<p>Relationship between Chl-<span class="html-italic">a</span> concentration anomaly and water temperature anomaly. The value “1” in the color bar means sunset time and the value “0” means sunrise time. Shades of red (blue) points indicate their proximity to sunset (sunrise) time.</p> "> Figure A1
<p>Calibration result between ChlF measured by YSI-EXO2 and Chl-<span class="html-italic">a</span> measured by UV-1800 in the laboratory.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mie-Fluorescence-Raman Lidar System
2.2. Study Area and Auxiliary Measurements
2.3. MFRL Bio-Optical Properties Retrieval Model
2.4. Statistical Analysis
3. Results
3.1. Consistency Check
3.2. Diel Vertical Variations of Inland Chl-a Concentration
3.3. The Relationships between Vertical Variations of Phytoplankton and Water Column Temperature
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Water Depth (m) | Sampling Moment 1 | Sampling Moment 2 |
---|---|---|
20:02, 23 September 2021 | 08:17, 24 September 2021 | |
Chl-a (μg/L) | Chl-a (μg/L) | |
1 | 16.85 | 11.75 |
5 | 16.51 | 11.23 |
7 | 9.92 | 9.65 |
Appendix B
Notations | Definition | Dimension |
---|---|---|
klidar | Lidar attenuation coefficient | m−1 |
Kd | Diffusion attenuation coefficient | m−1 |
Kd,bio | Diffusion attenuation coefficient due to biogenic components | m−1 |
Kd,w | Diffusion attenuation coefficient due to water | m−1 |
Kd,x | Diffusion attenuation coefficient due to inorganic components | m−1 |
Kd,p | Diffusion attenuation coefficient due to biogenic and inorganic components | m−1 |
χ(λ) | A linear factor that relates Chl to Kd,bio | N/A |
e(λ) | An exponential factor that relates Chl to Kd,bio | N/A |
D(z) | The range-corrected Mie signal | W·m2 |
z | Water depth | m |
zc | Boundary depth in the retrieval process | m |
R | Lidar ratios of the suspended matter | sr |
Rw | Lidar ratios of the water molecules | sr |
RS | The ratio between the lidar ratios of the suspended matter and water molecules | N/A |
Chla | Chl-a concentration | μg/L |
F{*} | The bio-optical model that transfers the attenuation to the Chl-a | N/A |
N | The total number of sampling points | N/A |
xi | The lidar-measured Chl-a concentration | μg/L |
The in situ measured Chl-a concentration | μg/L |
References
- Tsakalakis, I.; Follows, M.J.; Dutkiewicz, S.; Follett, C.L.; Vallino, J.J. Diel light cycles affect phytoplankton competition in the global ocean. Glob. Ecol. Biogeogr. 2022, 31, 1838–1849. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, K.; Cao, Z.; Lai, L.; Geng, J.; Yu, K.; Zhan, P.; Liu, Z. Effects of satellite temporal resolutions on the remote derivation of trends in phytoplankton blooms in inland waters. ISPRS J. Photogramm. Remote Sens. 2022, 191, 188–202. [Google Scholar] [CrossRef]
- Leach, T.H.; Beisner, B.E.; Carey, C.C.; Pernica, P.; Rose, K.C.; Huot, Y.; Brentrup, J.A.; Domaizon, I.; Grossart, H.-P.; Ibelings, B.W.; et al. Patterns and drivers of deep chlorophyll maxima structure in 100 lakes: The relative importance of light and thermal stratification. Limnol. Oceanogr. 2018, 63, 628–646. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Hu, Y.; Hostetler, C.A.; Dall’Olmo, G.; Rodier, S.D.; Hair, J.W.; Trepte, C.R. Space-based lidar measurements of global ocean carbon stocks. Geophys. Res. Lett. 2013, 40, 4355–4360. [Google Scholar] [CrossRef]
- Ho, J.C.; Michalak, A.M.; Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 2019, 574, 667–670. [Google Scholar] [CrossRef]
- Becker, K.W.; Collins, J.R.; Durham, B.P.; Groussman, R.D.; White, A.E.; Fredricks, H.F.; Ossolinski, J.E.; Repeta, D.J.; Carini, P.; Armbrust, E.V.; et al. Daily changes in phytoplankton lipidomes reveal mechanisms of energy storage in the open ocean. Nat. Commun. 2018, 9, 5179. [Google Scholar] [CrossRef]
- Luo, J.; Hu, Z.; Chen, X.; Li, X.; Liu, L.; Yang, M.; Miao, H.; Chu, Y.; Xu, P.; Wang, F. Chlorophyll maxima layer in a large subtropical reservoir (Xinanjiang Reservoir): Spatial development process and limitation by CO2 and phosphorus. Water Res. 2022, 222, 118912. [Google Scholar] [CrossRef]
- Uitz, J.; Claustre, H.; Morel, A.; Hooker, S.B. Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J. Geophys. Res. Ocean. 2006, 111, C08005. [Google Scholar] [CrossRef]
- Schulien, J.A.; Behrenfeld, M.J.; Hair, J.W.; Hostetler, C.A.; Twardowski, M.S. Vertically-resolved phytoplankton carbon and net primary production from a high spectral resolution lidar. Opt. Express 2017, 25, 13577–13587. [Google Scholar] [CrossRef]
- Xue, K.; Zhang, Y.; Ma, R.; Duan, H. An approach to correct the effects of phytoplankton vertical nonuniform distribution on remote sensing reflectance of cyanobacterial bloom waters. Limnol. Oceanogr. Methods 2017, 15, 302–319. [Google Scholar] [CrossRef]
- Cullen, J.J. Subsurface chlorophyll maximum layers: Enduring enigma or mystery solved? Ann. Rev. Mar. Sci. 2015, 7, 207–239. [Google Scholar] [CrossRef]
- Moore, T.S.; Churnside, J.H.; Sullivan, J.M.; Twardowski, M.S.; Nayak, A.R.; McFarland, M.N.; Stockley, N.D.; Gould, R.W.; Johengen, T.H.; Ruberg, S.A. Vertical distributions of blooming cyanobacteria populations in a freshwater lake from LIDAR observations. Remote Sens. Environ. 2019, 225, 347–367. [Google Scholar] [CrossRef]
- Baetge, N.; Halsey, K.H.; Graff, J.R.; Ver Wey, B.; Westberry, T.K.; Appel, A.E.; Bourdin, G.; Demeaux, C.B.; Boss, E.; Behrenfeld, M.J. Physiological and interspecific factors determine diel changes in phytoplankton bio-optical properties. Limnol. Oceanogr. 2024, 69, 390–407. [Google Scholar] [CrossRef]
- Tsakalakis, I.; Pahlow, M.; Oschlies, A.; Blasius, B.; Ryabov, A.B. Diel light cycle as a key factor for modelling phytoplankton biogeography and diversity. Ecol. Model. 2018, 384, 241–248. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Gaube, P.; Della Penna, A.; O’Malley, R.T.; Burt, W.J.; Hu, Y.; Bontempi, P.S.; Steinberg, D.K.; Boss, E.S.; Siegel, D.A.; et al. Global satellite-observed daily vertical migrations of ocean animals. Nature 2019, 576, 257–261. [Google Scholar] [CrossRef]
- Zhao, H.; Zhou, Y.; Wu, H.; Kutser, T.; Han, Y.; Ma, R.; Yao, Z.; Zhao, H.; Xu, P.; Jiang, C.; et al. Potential of Mie-fluorescence-Raman lidar to profile chlorophyll a concentration in inland waters. Environ. Sci. Technol. 2023, 57, 14226–14236. [Google Scholar] [CrossRef]
- Archibald, K.M.; Siegel, D.A.; Doney, S.C. Modeling the impact of zooplankton diel vertical migration on the carbon export flux of the biological pump. Glob. Biogeochem. Cycles 2019, 33, 181–199. [Google Scholar] [CrossRef]
- Brentrup, J.A.; Williamson, C.E.; Colom-Montero, W.; Eckert, W.; de Eyto, E.; Grossart, H.-P.; Huot, Y.; Isles, P.D.F.; Knoll, L.B.; Leach, T.H.; et al. The potential of high-frequency profiling to assess vertical and seasonal patterns of phytoplankton dynamics in lakes: An extension of the Plankton Ecology Group (PEG) model. Inland Waters 2016, 6, 565–580. [Google Scholar] [CrossRef]
- Minaudo, C.; Odermatt, D.; Bouffard, D.; Rahaghi, A.I.; Lavanchy, S.; Wuest, A. The imprint of primary production on high-frequency profiles of lake optical properties. Environ. Sci. Technol. 2021, 55, 14234–14244. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Y.; Shi, K.; Melack, J.; Zhang, Y.; Zhou, Y.; Zhu, M.; Zhu, G.; Wu, Z.; Liu, M. Spatial variations of subsurface chlorophyll maxima during thermal stratification in a large, deep subtropical reservoir. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005480. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y.; Deng, J.; Liu, M.; Zhou, Y.; Zhang, Y.; Shi, K.; Jiang, C. High-resolution temporal detection of cyanobacterial blooms in a deep and oligotrophic lake by high-frequency buoy data. Environ. Res. 2022, 203, 111848. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.C.J.; Kutser, T.; Hunter, P.D. Remote sensing of inland waters: Challenges, progress and future directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef]
- Hostetler, C.A.; Behrenfeld, M.J.; Hu, Y.; Hair, J.W.; Schulien, J.A. Spaceborne lidar in the study of marine systems. Annu. Rev. Mar. Sci. 2018, 10, 121–147. [Google Scholar] [CrossRef]
- Kutser, T.; Metsamaa, L.; Dekker, A.G. Influence of the vertical distribution of cyanobacteria in the water column on the remote sensing signal. Estuar. Coast. Shelf Sci. 2008, 78, 649–654. [Google Scholar] [CrossRef]
- Zhu, X.; Zhao, H.; Hu, E.; Gao, Y.; Zhou, Y.; Liu, D. Estimation of the seawater lidar ratio by MODIS: Spatial–temporal characteristics and ecological significance. Remote Sens. 2023, 15, 3328. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Hu, Y.; O’Malley, R.T.; Boss, E.S.; Hostetler, C.A.; Siegel, D.A.; Sarmiento, J.L.; Schulien, J.; Hair, J.W.; Lu, X.; et al. Annual boom–bust cycles of polar phytoplankton biomass revealed by space-based lidar. Nat. Geosci. 2016, 10, 118–122. [Google Scholar] [CrossRef]
- Ke, J.; Sun, Y.; Dong, C.; Zhang, X.; Wang, Z.; Lyu, L.; Zhu, W.; Ansmann, A.; Su, L.; Bu, L.; et al. Development of China’s first space-borne aerosol-cloud high-spectral-resolution lidar: Retrieval algorithm and airborne demonstration. PhotoniX 2022, 3, 17. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, K.; Shen, X.; Wang, Y.; Li, J.; Li, C.; Mao, J.; Malinka, A.; Zhao, C.; Russell, L.M.; et al. Dual-field-of-view high-spectral-resolution lidar: Simultaneous profiling of aerosol and water cloud to study aerosol-cloud interaction. Proc. Natl. Acad. Sci. USA 2022, 119, e2110756119. [Google Scholar] [CrossRef]
- Jamet, C.; Ibrahim, A.; Ahmad, Z.; Angelini, F.; Babin, M.; Behrenfeld, M.J.; Boss, E.; Cairns, B.; Churnside, J.; Chowdhary, J.; et al. Going beyond standard ocean color observations: Lidar and polarimetry. Front. Mar. Sci. 2019, 6, 251. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, Y.; Zhao, H.; Lee, Z.; Boss, E.; Stachlewska, I.; Dionisi, D.; Jamet, C.; Girolamo, P.D.; Malinka, A.; et al. Comprehensive, continuous, and vertical measurements of seawater constituents with triple-field-of-view high-spectral-resolution lidar. Research 2023, 6, 0201. [Google Scholar] [CrossRef]
- Chen, P.; Mao, Z.; Zhang, Z.; Liu, H.; Pan, D. Detecting subsurface phytoplankton layer in Qiandao Lake using shipborne lidar. Opt. Express 2020, 28, 558–569. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Cui, X.; Chen, W.; Liu, C.; Bai, J.; Zhang, Y.; Zhou, Y.; Liu, Z.; Xu, P.; Che, H.; et al. A semianalytic Monte Carlo radiative transfer model for polarized oceanic lidar: Experiment-based comparisons and multiple scattering effects analyses. J. Quant. Spectrosc. Radiat. Transf. 2019, 237, 106638. [Google Scholar] [CrossRef]
- Xu, P.; Liu, D.; Shen, Y.; Chen, Y.; Zhang, H.; Ye, Z.; Jiang, C.; Zhou, Y.; Liu, Q.; Liu, C. Design and validation of a shipborne multiple-field-of-view lidar for upper ocean remote sensing. J. Quant. Spectrosc. Radiat. Transf. 2020, 254, 107201. [Google Scholar] [CrossRef]
- Jiang, B.; Zhu, S.; Ren, L.; Shi, L.; Zhang, X. Simultaneous ultraviolet, visible, and near-infrared continuous-wave lasing in a rare-earth-doped microcavity. Adv. Photonics 2022, 4, 046003. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, Y.; Li, X.; Wang, X.; Zhao, S.; Liu, Q.; Zhao, C. Second harmonic generation of laser beams in transverse mode locking states. Adv. Photonics 2022, 4, 026002. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, W.; Huang, F. All-silicon photovoltaic detectors with deep ultraviolet selectivity. PhotoniX 2020, 1, 15. [Google Scholar] [CrossRef]
- Xu, P.; Zhou, Z. Silicon-based optoelectronics for general-purpose matrix computation: A review. Adv. Photonics 2022, 4, 044001. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Y.; Shi, K.; Zhu, G.; Wu, Z.; Liu, M.; Zhang, Y. Thermal stratification dynamics in a large and deep subtropical reservoir revealed by high-frequency buoy data. Sci. Total Environ. 2019, 651, 614–624. [Google Scholar] [CrossRef]
- Wang, J.; Fu, Z.; Qiao, H.; Liu, F. Assessment of eutrophication and water quality in the estuarine area of Lake Wuli, Lake Taihu, China. Sci. Total Environ. 2019, 650, 1392–1402. [Google Scholar] [CrossRef]
- Bertone, E.; Burford, M.A.; Hamilton, D.P. Fluorescence probes for real-time remote cyanobacteria monitoring: A review of challenges and opportunities. Water Res. 2018, 141, 152–162. [Google Scholar] [CrossRef]
- Bertone, E.; Chuang, A.; Burford, M.A.; Hamilton, D.P. In-situ fluorescence monitoring of cyanobacteria: Laboratory-based quantification of species-specific measurement accuracy. Harmful Algae 2019, 87, 101625. [Google Scholar] [CrossRef] [PubMed]
- Hemsley, V.S.; Smyth, T.J.; Martin, A.P.; Frajka-Williams, E.; Thompson, A.F.; Damerell, G.; Painter, S.C. Estimating oceanic primary production using vertical irradiance and chlorophyll profiles from ocean gliders in the North Atlantic. Environ. Sci. Technol. 2015, 49, 11612–11621. [Google Scholar] [CrossRef] [PubMed]
- GB 17378.7-2007; The Specification for Marine Monitoring—Part 7: Ecological Survey for Offshore Pollution and Biological Monitoring. National Standards of People’s Republic of China: Beijing, China, 2007.
- Mitchell, B.G.; Kahru, M.; Wieland, J.; Stramska, M. Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples. In Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, NASA/TM-2002-210004/Rev3-Vol2; Fargion, G.S., Mueller, J.L., Eds.; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2002; Volume 2, pp. 231–257. [Google Scholar]
- Roesler, C.; Uitz, J.; Claustre, H.; Boss, E.; Xing, X.; Organelli, E.; Briggs, N.; Bricaud, A.; Schmechtig, C.; Poteau, A.; et al. Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors. Limnol. Oceanogr. Methods 2017, 15, 572–585. [Google Scholar] [CrossRef]
- Fernald, F.G. Analysis of atmospheric lidar observations: Some comments. Appl. Opt. 1984, 23, 652–653. [Google Scholar] [CrossRef]
- Morel, A.; Maritorena, S. Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res. Oceans 2001, 106, 7163–7180. [Google Scholar] [CrossRef]
- Gordon, H.R. Interpretation of airborne oceanic lidar: Effects of multiple scattering. Appl. Opt. 1982, 21, 2996–3001. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chen, Y.; Zhao, H.; Jamet, C.; Dionisi, D.; Chami, M.; Di Girolamo, P.; Churnside, J.H.; Malinka, A.; Zhao, H.; et al. Shipborne oceanic high-spectral-resolution lidar for accurate estimation of seawater depth-resolved optical properties. Light Sci. Appl. 2022, 11, 261. [Google Scholar] [CrossRef]
- Churnside, J.H.; Marchbanks, R.D. Inversion of oceanographic profiling lidars by a perturbation to a linear regression. Appl. Opt. 2017, 56, 5228–5233. [Google Scholar] [CrossRef]
- Liu, D.; Xu, P.; Zhou, Y.; Chen, W.; Han, B.; Zhu, X.; He, Y.; Mao, Z.; Le, C.; Chen, P.; et al. Lidar remote sensing of seawater optical properties: Experiment and Monte Carlo simulation. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9489–9498. [Google Scholar] [CrossRef]
- Chen, Y.; Cui, X.; Gu, Q.; Zhou, Y.; Zhao, H.; Zhang, H.; Ma, S.; Xu, P.; Frielinghaus, H.; Wu, L.; et al. This is MATE: A Multiple scAttering correcTion rEtrieval algorithm for accurate lidar profiling of seawater optical properties. Remote Sens. Environ. 2024, 307, 114166. [Google Scholar] [CrossRef]
- Kheireddine, M.; Antoine, D. Diel variability of the beam attenuation and backscattering coefficients in the northwestern Mediterranean Sea (BOUSSOLE site). J. Geophys. Res. Oceans 2014, 119, 5465–5482. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, H.; Zheng, D.; Zhao, H.; Zhou, Y.; Liu, D. Characteristics and formation conditions of thin phytoplankton layers in the northern gulf of Mexico revealed by airborne lidar. Remote Sens. 2022, 14, 4179. [Google Scholar] [CrossRef]
- Shen, X.; Kong, W.; Chen, P.; Chen, T.; Huang, G.; Shu, R. A shipborne photon-counting lidar for depth-resolved ocean observation. Remote Sens. 2022, 14, 3351. [Google Scholar] [CrossRef]
- Sun, H.; Wang, S.; Hu, X.; Liu, H.; Zhou, X.; Huang, J.; Cheng, X.; Sun, F.; Liu, Y.; Liu, D. Detection of surface defects and subsurface defects of polished optics with multisensor image fusion. PhotoniX 2022, 3, 6. [Google Scholar] [CrossRef]
- Schulien, J.A.; Della Penna, A.; Gaube, P.; Chase, A.P.; Haëntjens, N.; Graff, J.R.; Hair, J.W.; Hostetler, C.A.; Scarino, A.J.; Boss, E.S.; et al. Shifts in phytoplankton community structure across an anticyclonic eddy revealed from high spectral resolution lidar scattering measurements. Front. Mar. Sci. 2020, 7, 493. [Google Scholar] [CrossRef]
- Chen, S.; Tong, B.; Russell, L.M.; Wei, J.; Guo, J.; Mao, F.; Liu, D.; Huang, Z.; Xie, Y.; Qi, B.; et al. Lidar-based daytime boundary layer height variation and impact on the regional satellite-based PM2.5 estimate. Remote Sens. Environ. 2022, 281, 113224. [Google Scholar] [CrossRef]
- Dionisi, D.; Brando, V.E.; Volpe, G.; Colella, S.; Santoleri, R. Seasonal distributions of ocean particulate optical properties from spaceborne lidar measurements in Mediterranean and Black sea. Remote Sens. Environ. 2020, 247, 111889. [Google Scholar] [CrossRef]
- Lu, X.; Hu, Y.; Yang, Y.; Bontempi, P.; Omar, A.; Baize, R. Antarctic spring ice-edge blooms observed from space by ICESat-2. Remote Sens. Environ. 2020, 245, 111827. [Google Scholar] [CrossRef]
- Liu, R.; Ling, Q.; Zhang, Q.; Zhou, Y.; Le, C.; Chen, Y.; Liu, Q.; Chen, W.; Tang, J.; Liu, D. Detection of chlorophyll a and CDOM absorption coefficient with a dual-wavelength oceanic lidar: Wavelength optimization method. Remote Sens. 2020, 12, 3021. [Google Scholar] [CrossRef]
- Teeling, H.; Fuchs, B.M.; Becher, D.; Klockow, C.; Gardebrecht, A.; Bennke, C.M.; Kassabgy, M.; Huang, S.; Mann, A.J.; Waldmann, J.; et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 2012, 336, 608–611. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Boss, E. Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass. J. Mar. Res. 2006, 64, 431–451. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Halsey, K.H.; Milligan, A.J. Evolved physiological responses of phytoplankton to their integrated growth environment. Philos. Trans. R. Soc. Biol. Sci. 2008, 363, 2687–2703. [Google Scholar] [CrossRef]
- Hamilton, D.P.; O’Brien, K.R.; Burford, M.A.; Brookes, J.D.; McBride, C.G. Vertical distributions of chlorophyll in deep, warm monomictic lakes. Aquat. Sci. 2010, 72, 295–307. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Liu, M.; Yu, Z.; Song, D.; Jeppesen, E.; Zhou, Q. Patterns of thermocline structure and the deep chlorophyll maximum feature in multiple stratified lakes related to environmental drivers. Sci. Total Environ. 2022, 851, 158431. [Google Scholar] [CrossRef] [PubMed]
- Mena, C.; Reglero, P.; Hidalgo, M.; Sintes, E.; Santiago, R.; Martin, M.; Moya, G.; Balbin, R. Phytoplankton community structure Is driven by stratification in the oligotrophic Mediterranean Sea. Front. Microbiol. 2019, 10, 1698. [Google Scholar] [CrossRef]
- Huang, Q.; Li, N.; Li, Y. Long-term trend of heat waves and potential effects on phytoplankton blooms in Lake Qiandaohu, a key drinking water reservoir. Environ. Sci. Pollut. Res. 2021, 28, 68448–68459. [Google Scholar] [CrossRef]
Transmitting System | Value | Receiving System | Value |
---|---|---|---|
Laser wavelength | 532 nm | Diameter | 50 mm |
Pulse energy | 5 mJ | Field of view | 200 mrad |
Pulse width | 10 ns | Filter bandwidth | 10 nm @532/650/685 nm |
Repetition frequency | 10 Hz | Electrical width | 100 MHz |
Divergence angle | 1 mrad | Sampling frequency | 400 MSa/s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Zhou, Y.; Gu, Q.; Han, Y.; Wu, H.; Xu, P.; Lin, L.; Lv, W.; Wu, L.; Wu, L.; et al. Lidar-Observed Diel Vertical Variations of Inland Chlorophyll a Concentration. Remote Sens. 2024, 16, 3579. https://doi.org/10.3390/rs16193579
Zhao H, Zhou Y, Gu Q, Han Y, Wu H, Xu P, Lin L, Lv W, Wu L, Wu L, et al. Lidar-Observed Diel Vertical Variations of Inland Chlorophyll a Concentration. Remote Sensing. 2024; 16(19):3579. https://doi.org/10.3390/rs16193579
Chicago/Turabian StyleZhao, Hongkai, Yudi Zhou, Qiuling Gu, Yicai Han, Hongda Wu, Peituo Xu, Lei Lin, Weige Lv, Lan Wu, Lingyun Wu, and et al. 2024. "Lidar-Observed Diel Vertical Variations of Inland Chlorophyll a Concentration" Remote Sensing 16, no. 19: 3579. https://doi.org/10.3390/rs16193579
APA StyleZhao, H., Zhou, Y., Gu, Q., Han, Y., Wu, H., Xu, P., Lin, L., Lv, W., Wu, L., Wu, L., Jiang, C., Chen, Y., Yuan, M., Sun, W., Liu, C., & Liu, D. (2024). Lidar-Observed Diel Vertical Variations of Inland Chlorophyll a Concentration. Remote Sensing, 16(19), 3579. https://doi.org/10.3390/rs16193579