Efficient On-Board Compression for Arbitrary-Shaped Cloud-Covered Remote Sensing Images via Adaptive Filling and Controllable Quantization
<p>The categories of clouds in the remote sensing image. (<b>a</b>,<b>b</b>) are thick clouds, (<b>c</b>) is thin cloud. The close-up views of the regions marked by red boxes are shown at the bottom right corner.</p> "> Figure 2
<p>Intensity histograms of cloud-free remote sensing images. (<b>a</b>–<b>c</b>) are the original images. (<b>d</b>–<b>f</b>) are the corresponding gray value histograms of (<b>a</b>–<b>c</b>), respectively.</p> "> Figure 3
<p>Intensity histograms of cloud-covered remote sensing images. (<b>a</b>,<b>f</b>,<b>k</b>) are the original images. (<b>b</b>,<b>g</b>,<b>l</b>) are cloud masks of (<b>a</b>), (<b>f</b>), (<b>k</b>), respectively. (<b>c</b>,<b>h</b>,<b>m</b>) are histograms of (<b>a</b>), (<b>f</b>), (<b>k</b>), respectively. (<b>d</b>,<b>i</b>,<b>n</b>) are histograms of ground object of (<b>a</b>), (<b>f</b>), (<b>k</b>), respectively. (<b>e</b>,<b>j</b>,<b>o</b>) are histograms of cloudy regions of (<b>a</b>), (<b>f</b>), (<b>k</b>), respectively.</p> "> Figure 4
<p>The overall codec framework.</p> "> Figure 5
<p>The processing flow of the optimized adaptive filling strategy.</p> "> Figure 6
<p>Schematic diagram of boundary filtering on the filled cloudy region.</p> "> Figure 7
<p>Comparison of cloudy region filling by using the preprocessing modules of different image compression methods. (<b>a</b>) is original image. (<b>b</b>) is cloud mask of (<b>a</b>), where white regions (gray value of 255) denote clouds and black regions (gray value of 0) denote ground objects. (<b>c</b>–<b>e</b>) are results of filling the cloudy region using ADR, LEC, and OAF (our method), respectively. The close-up views of the regions marked by red boxes are shown at the bottom right corner, which clearly shows the smoothness of the boundary after filling cloudy regions with different strategies.</p> "> Figure 8
<p>Results of different quantization methods. (<b>a</b>) is original image. (<b>b</b>) is cloud mask of (<b>a</b>). (<b>c</b>) is the result of quantization. (<b>d</b>) is the result of CQ. The close-up views of the regions marked by red boxes are shown at the bottom right corner.</p> "> Figure 9
<p>The processing flow of the controllable quantization strategy. The close-up views of the regions marked by red boxes are shown at the bottom right corner.</p> "> Figure 10
<p>The quantization of the data in cloudy regions in the spatial domain. The close-up views of the regions marked by red boxes in the original image are shown at the bottom left corner.</p> "> Figure 11
<p>The processing flow of binary cloud mask encoding.</p> "> Figure 12
<p>The processing flow of symbol packaging.</p> "> Figure 13
<p>The contrast of the decoded images before and after image post-processing. (<b>a</b>) is original image, (<b>b</b>) is cloud mask of (<b>a</b>). (<b>c</b>) OAF without post-processing, (<b>d</b>) OAF with post-processing, (<b>e</b>) CQ without post-processing, (<b>f</b>) CQ with post-processing.</p> "> Figure 14
<p>Examples of evaluation dataset. (<b>a</b>–<b>e</b>) are GF-1 remote sensing images including ice and snow, water, urban area, farmland, and forest, respectively, (<b>f</b>), (<b>g</b>), (<b>h</b>), (<b>i</b>), (<b>j</b>) are the corresponding cloud masks of (<b>a</b>), (<b>b</b>), (<b>c</b>), (<b>d</b>), (<b>e</b>) respectively.</p> "> Figure 15
<p>The decoded images by using CQ with different S and D values. The close-up views of the regions marked by red boxes are shown at the top right corner and the top left corner. (<b>a</b>) is original image, (<b>b</b>) is cloud mask of (<b>a</b>). (<b>c</b>) D = 0, S = 0, <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 60.14 dB, (<b>d</b>) D = 0, S = 2, <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 62.83 dB, (<b>e</b>) D = 0, S = 4, <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 63.54 dB, (<b>f</b>) D = 0, S = 6, <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 65.21 dB, (<b>g</b>) D = 4, S = 2, <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 63.01 dB, (<b>h</b>) D = 4, S = 4, <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 63.87 dB, (<b>i</b>) D = 16, S = 2, <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 63.95 dB.</p> "> Figure 16
<p>Image 1.The percentage of clouds was 50%. (<b>a</b>) is original image, (<b>b</b>) is cloud mask of (<b>a</b>). The close-up views of the regions marked by red boxes are shown at the top left corner and the bottom left corner.</p> "> Figure 17
<p>Image 2. The percentage of could was 50%. (<b>a</b>) is original image, (<b>b</b>) is cloud mask of (<b>a</b>). The close-up views of the regions marked by red boxes are shown at the bottom left corner.</p> "> Figure 18
<p>Comparison of subjective quality of decoded image 1. The close-up views of the regions marked by red boxes are shown at the bottom left corner and the top left corner. The compression ratio was 4. (<b>a</b>) JPEG2000 <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 61.98 dB, (<b>b</b>) ADR + JPEG2000 <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 65.61 dB, (<b>c</b>) LEC + JPEG2000 <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 66.48 dB, (<b>d</b>) OAF + JPEG2000(<math display="inline"><semantics> <mrow> <mi>D</mi> <msub> <mi>C</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math>) <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 67.75 dB, (<b>e</b>) CQ (D = 4, S = 2) + JPEG2000(<math display="inline"><semantics> <mrow> <mi>D</mi> <msub> <mi>C</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math>) <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 64.70 dB, (<b>f</b>) CQ (D = 1024, S = 10) + JPEG2000(<math display="inline"><semantics> <mrow> <mi>D</mi> <msub> <mi>C</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math>) <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 67.18 dB.</p> "> Figure 19
<p>Comparison of subjective quality of the decoded image of image 1. The close-up views of the regions marked by red boxes are shown at the bottom left corner and the top left corner. The compression ratio was 64. (<b>a</b>) JPEG2000. <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 32.76 dB, (<b>b</b>) ADR + JPEG2000 <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 32.98 dB, (<b>c</b>) LEC + JPEG2000 <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 33.50 dB, (<b>d</b>) OAF + JPEG2000(<math display="inline"><semantics> <mrow> <mi>D</mi> <msub> <mi>C</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 34.97 dB, (<b>e</b>) CQ (D = 4, S = 2) + JPEG2000(<math display="inline"><semantics> <mrow> <mi>D</mi> <msub> <mi>C</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math>) <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 33.45 dB, (<b>f</b>) CQ (D = 1024, S = 10) + JPEG2000(<math display="inline"><semantics> <mrow> <mi>D</mi> <msub> <mi>C</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math>) <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 34.04 dB.</p> "> Figure 20
<p>Comparison of subjective quality of the decoded image of image 2. The close-up views of the regions marked by red boxes are shown at the bottom left corner and the top left corner. The compression ratio was 4. (<b>a</b>) JPEG2000. <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 61.84 dB, (<b>b</b>) ADR + JPEG2000 <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 64.55 dB, (<b>c</b>) LEC + JPEG2000 <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 66.71 dB, (<b>d</b>) OAF + JPEG2000(<math display="inline"><semantics> <mrow> <mi>D</mi> <msub> <mi>C</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math>) <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 69.69 dB, (<b>e</b>) CQ (D = 4, S = 2) + JPEG2000(<math display="inline"><semantics> <mrow> <mi>D</mi> <msub> <mi>C</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math>) <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 65.22 dB, (<b>f</b>) CQ (D = 1024, S = 10) + JPEG2000(<math display="inline"><semantics> <mrow> <mi>D</mi> <msub> <mi>C</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math>) <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 69.01 dB.</p> "> Figure 21
<p>Comparison of subjective quality of the decoded image of image 2. The close-up views of the regions marked by red boxes are shown at the bottom left corner. The compression ratio was 64. (<b>a</b>) JPEG2000. <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 28.45dB, (<b>b</b>) ADR + JPEG2000 <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 32.38 dB, (<b>c</b>) LEC + JPEG2000 <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 33.73 dB, (<b>d</b>) OAF + JPEG2000(<math display="inline"><semantics> <mrow> <mi>D</mi> <msub> <mi>C</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math>) <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 36.53 dB, (<b>e</b>) CQ (D = 4, S = 2) + JPEG2000(<math display="inline"><semantics> <mrow> <mi>D</mi> <msub> <mi>C</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math>) <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 33.82 dB, (<b>f</b>) CQ (D = 1024, S = 10) + JPEG2000(<math display="inline"><semantics> <mrow> <mi>D</mi> <msub> <mi>C</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math>) <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>S</mi> <mi>N</mi> <msub> <mi>R</mi> <mrow> <mi>R</mi> <mi>O</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> = 36.13 dB.</p> ">
Abstract
:1. Introduction
- (1)
- By leveraging the characteristics of cloud-covered remote sensing images, we propose an efficient on-board compression method based on an optional spatial preprocessing mechanism including the optimized adaptive filling (OAF) strategy and the controllable quantization (CQ) strategy for RS images containing arbitrary-shaped clouds. Our method can effectively reduce the coding consumption of invalid cloud-covered regions and significantly improve the compression efficiency of ROIs as well as the quality of reconstructed images.
- (2)
- By analyzing the local edge characteristics of cloudy regions, we propose the OAF strategy, which uses the mean of the inner and outer edges to fill the cloudy regions. It minimizes the gray-scale value difference between cloudy regions and cloud-free regions and prevents the loss of cloud edge information. After filling, the mean filtering is then performed on the edges to make it smooth, which fully reduces the high-frequency wavelet coefficients at the edges and further improves compression performance. The OAF strategy can achieve minimum bit rates and is suitable for images with only thick clouds.
- (3)
- We skillfully design a flexible CQ strategy which can implicitly identify thin clouds and thick clouds. By setting the quantization factor and sampling factor, the data in cloudy regions can be reasonably quantized in the amplitude domain and the spatial domain, respectively. The CQ strategy not only eliminates invalid information and reduces coding consumption but also retains the partial information of ground objects in thin cloud-covered regions, which can balance compression efficiency and image restoration quality and is more suitable for images containing thin clouds. In particular, when extreme quantization is used, i.e., the quantization factor of the CQ strategy is maximum, the CQ strategy degenerates into the OAF strategy.
- (4)
- Taking advantage of the spatial correlation of the binary mask and the characteristics of the ROI mask symbol sequence, we propose an efficient binary cloud mask coding algorithm. The algorithm skillfully combines block coding, run-length coding, and Huffman coding. Firstly, a block scan is used for the entire image. Secondly, run-length coding is used for the regional block symbols with a high probability of occurrence and strong continuity, which not only improves the coding efficiency of region unit symbols but also makes the whole symbol sequence coding more efficient and minimizes its proportion in the entire bitstream.
2. Characteristics of Cloud-Covered Remote Sensing Images
- (1)
- (2)
- Thin clouds: thin clouds can transmit light, which increases the brightness of images and causes blurring but does not affect the interpretation of ground scenes, as shown in the red box of Figure 1c.
- (1)
- Intensity distribution: Generally speaking, the statistical properties of the intensity (or gray-scale values) of pixels in cloud-free RS images conform to a normal distribution [13], as shown in Figure 2. However, in cloud-covered RS images, thick cloud-covered regions exhibit the highest brightness, while the intensity values of ground objects are relatively lower. Thin cloud-covered regions have intensity levels that are close to or slightly higher than ground objects. As shown in Figure 3, the intensity histogram of pixels in cloud-covered RS images shows a characteristic dual-peak distribution. Pixels in thick cloud-covered regions tend to cluster at higher gray-scale values, forming one peak, and pixels in cloud-free regions that contain ground objects form the other peak at lower gray-scale values. For example, in an 8-bit image, the gray-scale values of typical RS images are mostly distributed within the interval [0, 255], whereas the gray-scale values of ground objects in cloud-covered RS images are primarily distributed within the interval [0, 200], as shown in Figure 3. Furthermore, some cloudy regions may be missed, which leads to their intensity histogram no longer conforming to the normal distribution but to a long-tailed distribution, as shown in Figure 3d,i,n. In order to avoid the influence of these characteristics, we improve the level-shifting module of existing compression algorithms, which is described in detail in Section 3.4.
- (2)
- Texture: In cloud-covered RS images, the texture of the cloudy region is relatively simple. A large number of pixels in cloudy regions have the same gray-scale value, which makes the intensity distribution relatively concentrated, as shown in Figure 3e,j,o. Therefore, there is a large amount of redundancy in cloudy regions. In the compression process of our method, cloudy regions can be downsampled to reduce the encoding rate. Meanwhile, the texture information of cloudy regions is not completely lost. This is described in Section 3.2.
- (3)
- Reflectivity: The same object has different electromagnetic wave reflection characteristics for different wavelengths [14]. The reflectivity of thick clouds is very high, and electromagnetic wave radiation cannot penetrate them [15]. Sensors cannot detect ground objects occluded by thick clouds. Therefore, thick cloudy regions in RS images do not contain information on ground objects. It is reasonable to use a fixed value to replace the gray values of pixels in thick cloudy regions, which can effectively reduce the encoding rate of the data in cloudy regions. This is the core idea of our proposed OAF strategy, which is introduced in Section 3.1. However, thin clouds have low reflectivity and are easily penetrated by solar radiation. Sensors can penetrate thin clouds to obtain some effective information on ground objects. Therefore, considering partial ground objects existing in thin cloudy regions, we propose a CQ strategy to retain the information on ground objects in thin cloudy regions. It is introduced in Section 3.2.
- (4)
- Frequency: In cloud-covered RS images, the hue of cloudy regions is uniform, and the texture structure is simpler than that of other ground objects, which makes cloudy regions mainly contain low-frequency information in the frequency domain. In comparison with cloudy regions, rich and various ground objects mainly contain high-frequency information in the frequency domain [16]. Considering the gray-scale values of pixels in cloudy regions are significantly higher than those of most ground objects (e.g., water surface, vegetation, bare land, etc.), the adjacent boundaries between cloudy regions and ground objects contain more high-frequency components, which affect the image compression performance. To mitigate this effect, in the proposed OAF strategy, we fill each cloudy region with a fixed value that is closest to ground objects and then perform boundary filtering. In the CQ strategy, we smooth the adjacent boundaries by subtracting each connected cloudy region from the difference between the average values of its inner and outer edge context data. The specific processing details are described in Section 3.1 and Section 3.2, respectively.
3. Methods
3.1. Optimized Adaptive Filling Strategy
- (1)
- Recently, most image compression algorithms have mainly focused on eliminating the correlation among adjacent pixels in the time domain (such as predictive coding) or transform domain (such as DWT [20] or DCT) [21,22]. For prediction-based coding algorithms, smaller prediction errors bring lower coding costs. For transform-based coding algorithms, to obtain lower coding costs, the transformed high-frequency coefficients should be made as small as possible. To this end, the filling value of a cloudy region should be set as close as possible to the gray value of pixels in adjacent areas.
- (2)
- Generally, cloud masks are obtained by cloud detection algorithms. Although existing cloud detection algorithms usually have an accuracy of more than 90%, there is a possibility of missed detection for thin cloud regions and some thick cloud regions [23]. Therefore, the filling value is required to be close to the gray values of pixels in missing cloudy regions and ROIs at the same time so that the balance between them is reached and coding costs can be reduced.
- (3)
- In cloud-covered RS images, cloudy regions may appear randomly at any location, and the ground objects occluded by clouds are also diverse. A single filling value cannot represent the adjacent information of different cloudy regions. Therefore, different cloudy regions should set different filling values to represent their adjacent information.
3.2. Controllable Quantization Strategy
- (1)
- Quantization of the data in cloudy regions in the spatial domain
- (2)
- Quantization of the data in cloudy regions in the amplitude domain
- (3)
- Smoothness of boundaries
3.3. Binary Cloud Mask Coding
3.4. DC-Level Shift Optimization
3.5. Image Post-Processing
4. Experiments
4.1. Dataset and Evaluation Metric
4.2. Optimal Length Threshold Setting of Cloud Mask Encoding Module
4.3. Best Quantization Factor and Sampling Factor Setting in CQ
4.4. Comparisons of Image Compression Performance before and after Optimizing DC-Level Shift
4.5. Compression Performance Evaluation
- (a)
- It was beneficial to apply image preprocessing for the coding of cloud-covered remote sensing images to enhance the coding efficiency. Under the same compression ratio, the higher the percentage of clouds, the better the compression performance.
- (b)
- For remote sensing images with different percentages of clouds, the proposed OAF achieved the best compression performance among all the compression algorithms. As shown in Table 5, Table 6 and Table 7, in the case of a four-time compression ratio, the performance of a 50% cloud-covered RS image compression using the OAF was increased by 20% and 5% compared to JPEG2000 and the current best-performing LEC method, respectively.
- (c)
- The biggest advantage of the proposed CQ strategy was that it could retain the information of the ground objects under thin clouds while obtaining better compression performance. As shown in Table 5, Table 6 and Table 7, compared with JPEG2000, the compression performance of the CQ was greatly improved. When the compression ratio was four, and the percentage of clouds was 50%, the of the CQ (D = 4, S = 2) was increased by 7.7% compared to JPEG2000. With the increase in S and D, the compression performance continued to improve. When S and D reached the maximum value, the of the CQ (D = 1024, S = 10) was increased by 14% compared to JPEG2000.
- (d)
- For the CQ strategy, although it could not achieve the same compression performance as the OAF when S and D were set to the optimal value, the compression performance was still better than ADR and LEC at some compression ratios. For example, when the compression ratio was 32, and the percentage of clouds was 50%, the of the CQ (D = 4, S = 2) was increased by 1.6% compared to LEC and by 5.1% compared to ADR. When the compression ratio was 64 and the percentage of clouds was 50%, the of the CQ (D = 4, S = 2) was increased by 4.2% compared to LEC and by 8.1% compared to ADR.
- (e)
- The CQ could retain the information of the ground objects under thin clouds when S and D were set to the optimal value. The compression performance of the CQ was almost equal to the OAF when D = 1024 and S = 10, but the ground objects under thin clouds were lost. We could achieve different compression performance values by flexibly adjusting the values of S and D, so CQ was more flexible than OAF.
5. Discussion
5.1. Suitability for On-Board Compression
5.2. Universality Evaluation
5.3. Analysis of Selection Mechanisms for OAF and CQ Modules
6. Conclusions
7. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, W.; Lining, X. Remote sensing satellite networking technology and remote sensing system: A survey. IEEE Int. Conf. Electron. Meas. Instruments (ICEMI) 2015, 3, 1251–1256. [Google Scholar]
- Joshi, V.; Rani, J.S. A simple lossless algorithm for on-board satellite hyperspectral data compression. IEEE Geosci. Remote Sens. Lett. 2023, 20, 5504305. [Google Scholar] [CrossRef]
- Kucherov, B.; Přibyl, O.; Artyushenko, V. Increasing efficiency of getting results of satellite remote sensing for smart cities. In Proceedings of the Smart City Symposium Prague (SCSP), Prague, Czech Republic, 25–26 May 2017; pp. 1–6. [Google Scholar]
- Zhang, Y.; Rossow, W.B.; Lacis, A.A.; Oinas, V.; Mishchenko, M.I. Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res. Atmos. 2004, 109, D19105. [Google Scholar] [CrossRef]
- Huang, B. Satellite Data Compression; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Rabbani, M.; Joshi, R.L.; Jones, P.W. JPEG 2000 core coding system (Part 1). Jpeg 2000 Suite 2009, 15, 1. [Google Scholar]
- ISO/IEC, 2002: 15444-10; Information Technology Jpeg 2000 Image Coding System: Extensions for Three-Dimensional Data. ISO: Geneva, Switzerland, 2002.
- Li, S.; Li, W. Shape-adaptive discrete wavelet transforms for arbitrarily shaped visual object coding. IEEE Trans. Circuits Syst. Video Technol. 2000, 10, 725–743. [Google Scholar]
- Gonzalez-Conejero, J.; Serra-Sagrista, J.; Rubies-Feijoo, C.; Donoso-Bach, L. Encoding of images containing no-data regions within JPEG2000 framework. In Proceedings of the IEEE International Conference on Image Processing, San Diego, CA, USA, 12–15 October 2008; pp. 1057–1060. [Google Scholar]
- Wang, H.; Zhou, H.; Wang, J. An invalid cloud region masking method for remote sensing image compression. Pattern Recognit. Image Anal. 2020, 30, 134–144. [Google Scholar] [CrossRef]
- Oktem, R.; Benderli, O.; Ismailoğlu, N. Improving compression ratio for satellite transmission by use of cloud extraction. In Proceedings of the European Signal Processing Conference, Antalya, Turkey, 4–8 September 2005; pp. 1–4. [Google Scholar]
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing; Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Zhao, Y. Principles and Methods of Remote Sensing Application Analysis; Science Press: Beijing, China, 2003. [Google Scholar]
- Gao, B.C.; Li, R.R. Removal of thin cirrus scattering effects in Landsat 8 OLI images using the cirrus detecting channel. Remote Sens. 2017, 9, 834. [Google Scholar] [CrossRef]
- Barrett, E.C.; Grant, C.K. The Identification of Cloud Types in LANDSAT MSS Images. [Great Britain]. No. E76-10277. 1976. Available online: https://api.semanticscholar.org/CorpusID:126749179 (accessed on 10 July 2024).
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, X.; Wu, J.; Song, L.; Li, Y. Cloud Detection Method based on Spatial-Spectral Features and Encoder-Decoder Feature Fusion. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5407915. [Google Scholar] [CrossRef]
- Zhang, J.; Song, L.; Wang, Y.; Wu, J.; Li, Y. Attention Mechanism with Spatial Spectrum Dense Connection and Context Dynamic Convolution for Cloud Detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5408211. [Google Scholar] [CrossRef]
- Shihab, H.S. Image compression techniques on-Board small satellites. Iraqi J. Sci. 2023, 1518–1534. [Google Scholar] [CrossRef]
- Gupta, D.; Choubey, S. Discrete wavelet transform for image processing. Int. J. Emerg. Technol. Adv. Eng. 2015, 4, 598–602. [Google Scholar]
- Fisher, Y. Fractal image compression. Fractals 1994, 2, 347–361. [Google Scholar] [CrossRef]
- Tekalp, A.M. Digital Video Processing; Prentice Hall Press: Hoboken, NJ, USA, 2015. [Google Scholar]
- Tan, K.; Zhang, Y.; Tong, X.; Kang, Y. Automatic cloud detection for Chinese high resolution remote sensing satellite imagery. Acta Geod. Cartogr. Sin. 2016, 45, 581. [Google Scholar]
- Suzuki, K.; Horiba, I.; Sugie, N. Linear-time connected-component labeling based on sequential local operations. Comput. Vis. Image Underst. 2003, 89, 1–23. [Google Scholar] [CrossRef]
- He, L.; Zhao, X.; Yao, B.; Yang, Y.; Chao, Y.; Shi, Z.; Suzuki, K. A combinational algorithm for connected-component labeling and Euler number computing. J. Real-Time Image Process. 2017, 13, 703–712. [Google Scholar] [CrossRef]
- He, L.; Zhao, X.; Chao, Y.; Suzuki, K. Configuration-transition-based connected-component labeling. IEEE Trans. Image Process. 2013, 23, 943–951. [Google Scholar]
- Ding, J.J.; Lee, P.X. Fast morphology algorithm with parallel processing structures. In Proceedings of the International Conference on Audio, Language and Image Processing, Shanghai, China, 7–9 July 2014; pp. 324–329. [Google Scholar]
- Wu, Z.J.; Wu, L.H.; Yuan, B.F. Algorithm for detection of ROI based on fractal and wavelet. J. Comput. Appl. 2010, 30, 1613. [Google Scholar] [CrossRef]
- Li, Z.; Yin, L.; Zhang, L. An improved rectangular partition coding for binary image. Comput. Appl. Softw. 2011, 28, 256–259. [Google Scholar]
- Wang, P.; Yang, Y.; Yang, J. Image compression based on block encoding. Comput. Eng. Des. 2004, 975–977. [Google Scholar] [CrossRef]
- Shen, L.; Zhuo, L. Wavelet Coding and Network Video Transmission; Science Press: Beijing, China, 2005. [Google Scholar]
- Xu, Z. Research on Image Compression for Reginon of Interest of Remote Sensing Image Based on CCSDS; Changchun Institute of Optics, Fine Mechanics and Pyhsics, Chinese Academy of Sciences: Changchun, China, 2014. [Google Scholar]
- Giorgio, M.; Guida, M.; Pulcini, G. The transformed gamma process for degradation phenomena in presence of unexplained forms of unit-to-unit variability. Qual. Reliab. Eng. Int. 2018, 34, 543–562. [Google Scholar] [CrossRef]
- Li, Z.; Shen, H.; Li, H.; Xia, G.; Gamba, P.; Zhang, L. Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery. Remote Sens. Environ. 2017, 191, 342–358. [Google Scholar] [CrossRef]
- Smith, C.M. Efficient Software Implementation of the JBIG Compression Standard. Online Version of Thesis, 1993. Available online: https://repository.rit.edu/theses/174/ (accessed on 10 July 2024).
- Khan, A. Algorithm Study and Matlab Model for CCITT Group4 TIFF Image Compression. 2011. Available online: https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-65709 (accessed on 10 July 2024).
- Gunasheela, K.S.; Prasantha, H.S. Satellite image compression-detailed survey of the algorithms. In Proceedings of International Conference on Cognition and Recognition: ICCR 2016; Springer: Singapore, 2018; pp. 187–198. [Google Scholar]
- Hassan, F.E.; Salama, G.I.; Ibrahim, M.S.; Bahy, R.M. Investigation of On-Board Compression techniques for Remote Sensing Satellite Imagery. In Proceedings of the International Conference on Aerospace Sciences and Aviation Technology, Capua, Italy, 17–19 May 2005; The Military Technical College: El Weili, Egypt, 2011; Volume 11, pp. 937–946. [Google Scholar]
- Indradjad, A.; Nasution, A.S.; Gunawan, H.; Widipaminto, A. A comparison of Satellite Image Compression methods in the Wavelet Domain. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 280, p. 012031. [Google Scholar]
- Bellard, F. BPG Image Format. Available online: http://bellard.org/bpg/ (accessed on 30 January 2017).
- Ballé, J.; Minnen, D.; Singh, S.; Hwang, S.J.; Johnston, N. Variational image compression with a scale hyperprior. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
Threshold | Size of Each Part of the Bitstream (Byte) | |||||
---|---|---|---|---|---|---|
Head | Code Table1 | Code Table2 | Data1 | Data2 | Sum | |
No threshold | 15 | 77.5 | 2544.7 | 4286.7 | 4535.7 | 11,459.5 |
256 | 14 | 77.5 | 1146.3 | 4349.6 | 4613.2 | 10,200.5 |
192 | 14 | 77.5 | 928.3 | 4403.6 | 4652.3 | 10,075.7 |
128 | 14 | 70.4 | 642.5 | 4182.9 | 4449.0 | 9358.8 |
96 | 14 | 77.5 | 485.0 | 4640.0 | 4756.6 | 9973.1 |
64 | 14 | 77.5 | 325.0 | 4884.3 | 4810.1 | 10,110.9 |
ZIP | 7Z | RAR | CCITT-G3 | Our Method | CCITT-G4 | JBIG1 | |
---|---|---|---|---|---|---|---|
Size (KB) | 15.1 | 14.9 | 14.6 | 13.1 | 9.3 | 6.9 | 5.7 |
(dB) | Quantization Factors S | ||||||
---|---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | 8 | 10 | ||
Sampling factors D | 0 | 60.14 | 62.83 | 63.54 | 65.21 | 66.20 | 66.31 |
4 | 61.75 | 63.01 | 63.87 | 65.54 | 66.24 | 66.41 | |
16 | 62.81 | 63.95 | 64.89 | 65.74 | 66.26 | 66.42 | |
64 | 63.51 | 64.85 | 65.79 | 65.98 | 66.38 | 66.46 | |
256 | 64.91 | 65.67 | 66.27 | 66.41 | 66.47 | 66.49 | |
1024 | 66.51 | 66.51 | 66.51 | 66.51 | 66.51 | 66.51 |
(dB) | Compression Ratio | |||||
---|---|---|---|---|---|---|
2 | 4 | 8 | 16 | 32 | 64 | |
CQ(D = 4, S = 2) + JPEG2000 | 127.61 | 62.51 | 54.92 | 47.94 | 42.55 | 37.67 |
CQ (D = 4, S = 2) | 127.82 | 64.76 | 55.02 | 48.13 | 42.66 | 37.83 |
+ JPEG2000() | (↑ 0.21) | (↑ 2.25) | (↑ 0.1) | (↑ 0.19) | (↑ 0.11) | (↑ 0.16) |
OAF + JPEG2000 | 168.12 | 68.93 | 56.46 | 49.95 | 44.81 | 38.97 |
OAF + JPEG2000() | 168.54 | 72.39 | 56.65 | 50.08 | 45.13 | 39.12 |
(↑ 0.42) | (↑ 3.46) | (↑ 0.19) | (↑ 0.13) | (↑ 0.32) | (↑ 0.15) |
(dB) | Compression Ratio | |||||
---|---|---|---|---|---|---|
2 | 4 | 8 | 16 | 32 | 64 | |
JPEG2000 | 81.80 | 59.14 | 51.33 | 45.60 | 39.83 | 34.22 |
() | () | () | () | () | () | |
Ballé | 85.62 | 67.18 | 61.74 | 54.38 | 48.77 | 44.67 |
() | () | () | () | () | () | |
BPG | 89.12 | 76.46 | 72.05 | 69.47 | 64.22 | 58.66 |
() | () | () | () | () | () | |
ADR + JPEG2000 | 103.56 | 61.19 | 52.19 | 45.51 | 39.71 | 35.04 |
() | () | () | () | () | () | |
LEC + JPEG2000 | 108.00 | 61.83 | 52.89 | 46.50 | 40.82 | 36.10 |
() | () | () | () | () | () | |
CQ (D = 4, S = 2) | 92.53 | 60.82 | 52.21 | 45.71 | 40.46 | 35.51 |
+ JPEG2000() | () | () | () | () | () | () |
CQ (D = 1024, S = 10) | 106.33 | 61.82 | 52.89 | 46.50 | 41.21 | 35.92 |
+ JPEG2000() | () | () | () | () | () | () |
OAF + JPEG2000() | 118.73 | 62.25 | 53.27 | 47.25 | 42.11 | 36.64 |
(dB) | Compression Ratio | |||||
---|---|---|---|---|---|---|
2 | 4 | 8 | 16 | 32 | 64 | |
JPEG2000 | 90.04 | 60.14 | 52.26 | 46.74 | 39.80 | 33.17 |
() | () | () | () | () | () | |
Ballé | 92.36 | 71.60 | 66.54 | 60.74 | 55.46 | 49.67 |
() | () | () | () | () | () | |
BPG | 95.68 | 76.82 | 72.90 | 69.66 | 64.53 | 59.09 |
() | () | () | () | () | () | |
ADR + JPEG2000 | 166.77 | 67.31 | 55.46 | 48.25 | 40.60 | 34.98 |
() | () | () | () | () | () | |
LEC + JPEG2000 | 167.48 | 68.92 | 56.30 | 49.38 | 41.99 | 36.29 |
() | () | () | () | () | () | |
CQ (D = 4, S = 2) | 127.82 | 64.76 | 55.02 | 48.13 | 42.66 | 37.83 |
+ JPEG2000() | () | () | () | () | () | () |
CQ (D = 1024, S = 10) | 167.16 | 68.60 | 56.29 | 49.38 | 43.89 | 38.64 |
+ JPEG2000() | () | () | () | () | () | () |
OAF + JPEG2000() | 168.54 | 72.39 | 56.55 | 49.98 | 44.83 | 39.12 |
(dB) | Compression Ratio | |||||
---|---|---|---|---|---|---|
2 | 4 | 8 | 16 | 32 | 64 | |
JPEG2000 | 117.59 | 63.72 | 54.27 | 48.75 | 42.81 | 37.21 |
() | () | () | () | () | () | |
Ballé | 117.88 | 73.90 | 69.23 | 64.02 | 57.78 | 51.25 |
() | () | () | () | () | () | |
BPG | 119.42 | 80.31 | 75.18 | 71.46 | 65.39 | 62.27 |
() | () | () | () | () | () | |
ADR + JPEG2000 | 166.83 | 113.41 | 60.68 | 51.48 | 44.14 | 38.55 |
() | () | () | () | () | () | |
LEC + JPEG2000 | 166.99 | 118.09 | 62.12 | 52.85 | 45.94 | 40.40 |
() | () | () | () | () | () | |
CQ (D = 4, S = 2) | 161.12 | 74.89 | 59.43 | 51.13 | 45.00 | 40.00 |
+ JPEG2000() | () | () | () | () | () | () |
CQ (D = 1024, S = 10) | 166.92 | 111.50 | 61.58 | 52.81 | 46.55 | 41.11 |
+ JPEG2000() | () | () | () | () | () | () |
OAF + JPEG2000() | 169.50 | 124.42 | 63.45 | 53.67 | 47.84 | 41.99 |
(dB) | Compression Ratio | |||||
---|---|---|---|---|---|---|
2 | 4 | 8 | 16 | 32 | 64 | |
Ballé | 85.62 | 67.18 | 61.74 | 54.38 | 48.77 | 44.67 |
CQ(D = 4, S = 2) | 93.90 | 68.43 | 63.59 | 55.27 | 49.64 | 44.89 |
+ Ballé | ||||||
OAF + Ballé | 119.63 | 72.23 | 66.82 | 58.29 | 51.38 | 45.06 |
BPG | 89.12 | 76.46 | 72.05 | 69.47 | 64.22 | 58.66 |
CQ(D = 4, S = 2) | 97.89 | 77.85 | 73.29 | 69.58 | 64.91 | 58.89 |
+ BPG | ||||||
OAF + BPG | 121.55 | 80.72 | 76.02 | 71.37 | 65.80 | 60.59 |
(dB) | Compression Ratio | |||||
---|---|---|---|---|---|---|
2 | 4 | 8 | 16 | 32 | 64 | |
Ballé | 92.36 | 71.60 | 66.54 | 60.74 | 55.46 | 49.67 |
CQ (D = 4, S = 2) | 114.39 | 73.21 | 69.92 | 61.98 | 57.56 | 51.02 |
+ Ballé | ||||||
OAF + Ballé | 160.58 | 76.60 | 71.85 | 63.06 | 58.62 | 51.99 |
BPG | 95.68 | 76.82 | 72.90 | 69.66 | 64.53 | 59.09 |
CQ (D = 4, S = 2) | 124.54 | 80.03 | 75.62 | 71.17 | 67.28 | 60.72 |
+ BPG | ||||||
OAF + BPG | 165.17 | 89.14 | 77.34 | 73.67 | 68.98 | 62.28 |
(dB) | Compression Ratio | |||||
---|---|---|---|---|---|---|
2 | 4 | 8 | 16 | 32 | 64 | |
Ballé | 117.88 | 73.90 | 69.23 | 64.02 | 57.78 | 51.25 |
CQ (D = 4, S = 2) | 149.84 | 81.19 | 74.40 | 68.67 | 60.32 | 54.27 |
+ Ballé | ||||||
OAF + Ballé | 163.15 | 110.77 | 79.29 | 72.08 | 62.96 | 56.34 |
BPG | 119.42 | 80.31 | 75.18 | 71.46 | 65.39 | 62.27 |
CQ (D = 4, S = 2) | 156.32 | 92.41 | 80.92 | 76.47 | 69.25 | 64.29 |
+ BPG | ||||||
OAF + BPG | 167.55 | 115.69 | 84.77 | 79.42 | 74.25 | 69.14 |
(dB) | Compression Ratio | |||||
---|---|---|---|---|---|---|
2 | 4 | 8 | 16 | 32 | 64 | |
JPEG2000 | 86.03 | 71.07 | 49.41 | 43.28 | 38.91 | 36.16 |
CQ (D = 4, S = 2) | 87.90 | 72.76 | 52.36 | 44.18 | 38.93 | 36.19 |
+ JPEG2000 | ||||||
OAF + JPEG2000 | 88.68 | 83.30 | 64.16 | 53.00 | 44.27 | 40.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Jia, J.; Zhou, P.; Ma, H.; Yang, L.; Liu, K.; Li, Y. Efficient On-Board Compression for Arbitrary-Shaped Cloud-Covered Remote Sensing Images via Adaptive Filling and Controllable Quantization. Remote Sens. 2024, 16, 3431. https://doi.org/10.3390/rs16183431
Wang K, Jia J, Zhou P, Ma H, Yang L, Liu K, Li Y. Efficient On-Board Compression for Arbitrary-Shaped Cloud-Covered Remote Sensing Images via Adaptive Filling and Controllable Quantization. Remote Sensing. 2024; 16(18):3431. https://doi.org/10.3390/rs16183431
Chicago/Turabian StyleWang, Keyan, Jia Jia, Peicheng Zhou, Haoyi Ma, Liyun Yang, Kai Liu, and Yunsong Li. 2024. "Efficient On-Board Compression for Arbitrary-Shaped Cloud-Covered Remote Sensing Images via Adaptive Filling and Controllable Quantization" Remote Sensing 16, no. 18: 3431. https://doi.org/10.3390/rs16183431
APA StyleWang, K., Jia, J., Zhou, P., Ma, H., Yang, L., Liu, K., & Li, Y. (2024). Efficient On-Board Compression for Arbitrary-Shaped Cloud-Covered Remote Sensing Images via Adaptive Filling and Controllable Quantization. Remote Sensing, 16(18), 3431. https://doi.org/10.3390/rs16183431