Analysis of the Effect of Tilted Corner Cube Reflector Arrays on Lunar Laser Ranging
<p>CCR arrays. The figure displays all the CCR arrays on the lunar surface, along with some additional details. (Source: adapted from an image search result for “lunar corner cube reflector” on Bing, <a href="https://bing.com/" target="_blank">https://bing.com/</a>, accessed on 5 May 2024).</p> "> Figure 2
<p>The CCR array sites on the Moon. (Source: adapted from an image search result for “lunar corner cube reflector” on Bing, <a href="https://bing.com/" target="_blank">https://bing.com/</a>, accessed on 5 May 2024).</p> "> Figure 3
<p>Lunar libration amplitude (1 January 2000–31 December 2009. 10 years).</p> "> Figure 4
<p>Lunar libration amplitude (1 January 2000–31 December 2000. 1 year).</p> "> Figure 5
<p>Schematic diagram of a tilted CCR array with laser incidence.</p> "> Figure 6
<p>Schematic diagram of the Apollo 11 and 14 LLR reflector arrays (d = 46 mm, <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> = 38 mm).</p> "> Figure 7
<p>Envelope of different laser pulses due to the tilt of the CCR array (Apollo 11 and 14).</p> "> Figure 8
<p>Range echo envelopes of the CCR arrays (Apollo 11 and 14) at different tilt angles.</p> "> Figure 9
<p>Echo plot for the laser ranging simulation of the Apollo 11 CCR array.</p> "> Figure 10
<p>A schematic diagram of the local experiment.</p> "> Figure 11
<p>The experimental CCR array (the left image shows the 6 × 6 array of CCRs used in the experiments, the middle image depicts a single CCR, and the right image displays the manually adjustable tilt table that is capable of adjusting angles in two directions).</p> "> Figure 12
<p>The experimental CCR array fixed on the exterior facade of the iron tower.</p> "> Figure 13
<p>The optical system of the Yunnan Observatories’ 53 cm binocular telescope.</p> "> Figure 14
<p>Experimental procedure (<b>left</b>: photo of adjusting the telescope direction and the size of the incident spot; <b>middle</b>: plane mirror attached to the array surface for adjusting the array tilt angle; <b>right</b>: photo of the incident laser.)</p> "> Figure 15
<p>Laser vertically incident echos for different numbers of reflectors.</p> "> Figure 16
<p>Echoes of the experimental CCR array at different tilt angles.</p> "> Figure 17
<p>The peak value of the echo histogram changes with the tilt angle of the CCR array.</p> "> Figure 18
<p>The residual echoes and their histograms at different tilt angles for the experimental CCR array using two columns.</p> "> Figure 19
<p>The experimental results for the CCR array with three columns.</p> "> Figure 20
<p>The experimental results for the CCR array with three columns.</p> ">
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Effect of CCR Array on the Precision of LLR
2.1.1. CCR Arrays
2.1.2. Lunar Libration
2.1.3. Laser Broadening
2.2. Mathematical Model
2.2.1. CCR Array Model
2.2.2. Echo and Noise Energy Model
2.2.3. Detection Model
2.3. Results Analysis
3. Ground Experiment
3.1. Setup
- Experimenting with laser ranging at various angles by placing a CCR in the center of the blank reflector array;
- Conducting ranging experiments at various angles with a 36-CCR array;
- Only the first and sixth columns of the CCR array were kept operational, while the other reflectors were blocked with black shading, and ranging experiments were conducted at various angles;
- Blocking the second, third, and fifth columns of the array with black shading and conducting ranging experiments at various angles.
3.2. Experimental Results
4. Results
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bender, P.L.; Currie, D.G.; Poultney, S.K.; Alley, C.O.; Dicke, R.H.; Wilkinson, D.T.; Eckhardt, D.H.; Faller, J.E.; Kaula, W.M.; Mulholland, J.D.; et al. The Lunar Laser Ranging Experiment. Science 1973, 182, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Dickey, J.O.; Bender, P.L.; Faller, J.E.; Newhall, X.X.; Ricklefs, R.L.; Ries, J.G.; Shelus, P.J.; Veillet, C.; Whipple, A.L.; Wiant, J.R.; et al. Lunar Laser Ranging: A Continuing Legacy of the Apollo Program. Science 1994, 265, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Murphy, T. Lunar laser ranging: The millimeter challenge. Rep. Prog. Phys. 2013, 76, 076901. [Google Scholar] [CrossRef] [PubMed]
- Chabé, J.; Courde, C.; Torre, J.; Bouquillon, S.; Bourgoin, A.; Aimar, M.; Albanèse, D.; Chauvineau, B.; Mariey, H.; Martinot-Lagarde, G.; et al. Recent Progress in Lunar Laser Ranging at Grasse Laser Ranging Station. Earth Space Sci. 2020, 7, e2019EA000785. [Google Scholar] [CrossRef]
- Courde, C.; Torre, J.M.; Samain, E.; Martinot-Lagarde, G.; Aimar, M.; Albanese, D.; Exertier, P.; Fienga, A.; Mariey, H.; Metris, G.; et al. Lunar laser ranging in infrared at the Grasse laser station. Astron. Astrophys. 2017, 602, A90. [Google Scholar] [CrossRef]
- Battat, J.B.R.; Murphy, T.W.; Adelberger, E.G.; Gillespie, B.; Hoyle, C.D.; McMillan, R.J.; Michelsen, E.L.; Nordtvedt, K.; Orin, A.E.; Stubbs, C.W.; et al. The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO): Two Years of Millimeter-Precision Measurements of the Earth-Moon Range1. Publ. Astron. Soc. Pac. 2009, 121, 29–40. [Google Scholar] [CrossRef]
- Murphy, T., Jr.; Adelberger, E.; Strasburg, J.; Stubbs, C.; Nordtvedt, K. Testing gravity via next-generation lunar laser-ranging. Nucl. Phys. B-Proc. Suppl. 2004, 134, 155–162. [Google Scholar] [CrossRef]
- Merkowitz, S.M. Tests of Gravity Using Lunar Laser Ranging. Living Rev. Relativ. 2010, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.G.; Boggs, D.H.; Yoder, C.F.; Ratcliff, J.T.; Dickey, J.O. Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. Planets 2001, 106, 27933–27968. [Google Scholar] [CrossRef]
- Williams, J.G.; Newhall, X.; Dickey, J.O. Lunar moments, tides, orientation, and coordinate frames. Planet. Space Sci. 1996, 44, 1077–1080. [Google Scholar] [CrossRef]
- Turyshev, S.G.; Williams, J.G.; Folkner, W.M.; Gutt, G.M.; Baran, R.T.; Hein, R.C.; Somawardhana, R.P.; Lipa, J.A.; Wang, S. Corner-cube retro-reflector instrument for advanced lunar laser ranging. Exp. Astron. 2013, 36, 105–135. [Google Scholar] [CrossRef]
- Murphy, T.; Strasburg, J.; Stubbs, C.; Adelberger, E.; Tom, L.; Orin, A.; Michelsen, E.; Battat, J.; Hoyle, C.; Swanson, E.; et al. APOLLO: Meeting the millimeter goal. In Proceedings of the 14th International Workshop on Laser Ranging, San Fernando, Spain, 7–11 June 2004. [Google Scholar]
- Murphy, T.; Adelberger, E.G.; Battat, J.; Carey, L.; Hoyle, C.D.; LeBlanc, P.; Michelsen, E.; Nordtvedt, K.; Orin, A.; Strasburg, J.D.; et al. The apache point observatory lunar laser-ranging operation: Instrument description and first detections. Publ. Astron. Soc. Pac. 2008, 120, 20. [Google Scholar] [CrossRef]
- Martini, M.; Dell’Agnello, S.; Currie, D.; Delle Monache, G.; Vittori, R.; Chandler, J.F.; Cantone, C.; Boni, A.; Berardi, S.; Patrizi, G.; et al. MoonLIGHT: A USA–Italy lunar laser ranging retroreflector array for the 21st century. Planet. Space Sci. 2012, 74, 276–282. [Google Scholar] [CrossRef]
- Currie, D.; Dell’Agnello, S.; Delle Monache, G. A Lunar Laser Ranging Retroreflector Array for the 21st Century. Acta Astronaut. 2011, 68, 667–680. [Google Scholar] [CrossRef]
- Dehant, V.; Park, R.; Dirkx, D.; Iess, L.; Neumann, G.; Turyshev, S.; Van Hoolst, T. Survey of capabilities and applications of accurate clocks: Directions for planetary science. Space Sci. Rev. 2017, 212, 1433–1451. [Google Scholar] [CrossRef]
- Zhang, M.; Müller, J.; Biskupek, L.; Singh, V.V. Characteristics of differential lunar laser ranging. Astron. Astrophys. 2022, 659, A148. [Google Scholar] [CrossRef]
- Samain, E.; Mangin, J.F.; Veillet, C.; Torre, J.M.; Fridelance, P.; Chabaudie, J.E.; Féraudy, D.; Glentzlin, M.; Pham Van, J.; Furia, M.; et al. Millimetric Lunar Laser Ranging at OCA (Observatoire de la Côte d’Azur). Astron. Astrophys. Suppl. Ser. 1998, 130, 235–244. [Google Scholar] [CrossRef]
- Kokurin, Y.L. Lunar laser ranging: 40 years of research. Quantum Electron. 2003, 33, 45–47. [Google Scholar] [CrossRef]
- Alley, C.; Chang, R.; Curri, D.; Mullendore, J.; Poultney, S.; Rayner, J.; Silverberg, E.; Steggerda, C.; Plotkin, H.; Williams, W.; et al. Apollo 11 laser ranging retro-reflector: Initial measurements from the McDonald Observatory. Science 1970, 167, 368–370. [Google Scholar] [CrossRef]
- Ćuk, M.; Hamilton, D.P.; Lock, S.J.; Stewart, S.T. Tidal evolution of the Moon from a high-obliquity, high-angular-momentum Earth. Nature 2016, 539, 402–406. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, L.; Yang, Y.; Ye, M.; Li, Y. Dynamical Model of Rotation and Orbital Coupling for Deimos. Remote Sens. 2024, 16, 1174. [Google Scholar] [CrossRef]
- Williams, J.G.; Turyshev, S.G.; Boggs, D.H.; Ratcliff, J.T. Lunar laser ranging science: Gravitational physics and lunar interior and geodesy. Adv. Space Res. 2006, 37, 67–71. [Google Scholar] [CrossRef]
- Newhall, X.X.; Williams, J.G. Estimation of the Lunar Physical Librations. Int. Astron. Union Colloq. 1997, 165, 21–30. [Google Scholar] [CrossRef]
- Eckhardt, D.H. Theory of the libration of the Moon. Moon Planets 1981, 25, 3–49. [Google Scholar] [CrossRef]
- Rambaux, N.; Williams, J. The Moon’s physical librations and determination of their free modes. Celest. Mech. Dyn. Astron. 2011, 109, 85–100. [Google Scholar] [CrossRef]
- Yang, Y.Z.; Li, J.L.; Ping, J.S.; Hanada, H. Determination of the free lunar libration modes from ephemeris DE430. Res. Astron. Astrophys. 2017, 17, 127. [Google Scholar] [CrossRef]
- Märki, A. A Critical Review of the Lunar Laser Ranging. arXiv 2018, arXiv:1805.05863. [Google Scholar] [CrossRef]
- Degnan, J.J. Millimeter accuracy satellite laser ranging: A review. Contrib. Space Geod. Geodyn. Technol. 1993, 25, 133–162. [Google Scholar]
- Ye, S.h. Activities of astro-geodynamics research in China. Int. Astron. Union Colloq. 1981, 63, 181–188. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, F.; Chen, W. Calculation and measurement of the effective reflective area of space-born retro-reflectors. Opto-Electron. Eng. 2007, 34, 25–29. [Google Scholar]
Random Error Source | Time Uncertainty (ps) | Range Error (mm) |
---|---|---|
Retroreflector Array Orientation | 100–300 | 15–45 |
APD Illumination | 60 | 9 |
APD Intrinsic | 50 | 7 |
Laser Pulse Width | 45 | 6.5 |
Timing Electronics | 20 | 3 |
GPS-disciplined Clock | 7 | 1 |
Total Random Uncertainty | 136–314 | 20–47 |
Data | Time/UTC | Lat/° | Lon/° | Data Width/ps | RMS/mm |
---|---|---|---|---|---|
20221017 | 040747–074936 | −6.20 | −0.35 | ±150 | 19.64 |
20230302 | 185320–221847 | −5.97 | 2.93 | ±200 | 24.00 |
20230301 | 172841–173459 | −6.05 | 3.40 | ±300 | 33.33 |
20220314 | 195433–214837 | −6.42 | −4.95 | ±400 | 57.61 |
20220411 | 173054–212050 | −6.71 | −5.78 | ±400 | 59.94 |
Tilt Angle/° | /mm | /ps |
---|---|---|
2 | 1.6054 | 10.7 |
4 | 3.2088 | 21.4 |
6 | 4.8083 | 32.1 |
8 | 6.4020 | 42.7 |
LAT/° | 0 | 2 | 4 | 6 | 8 | |
---|---|---|---|---|---|---|
LON/° | ||||||
0 | 0.0 | 30.8 | 61.5 | 92.1 | 122.7 | |
2 | 30.8 | 43.5 | 68.7 | 97.1 | 126.4 | |
4 | 61.5 | 68.7 | 86.8 | 110.6 | 137.0 | |
6 | 92.1 | 97.1 | 110.6 | 129.9 | 152.9 | |
8 | 122.7 | 126.4 | 137.0 | 152.9 | 172.6 |
LAT/° | 0 | 2 | 4 | 6 | 8 | |
---|---|---|---|---|---|---|
LON/° | ||||||
0 | 0.0 | 72.0 | 143.8 | 215.5 | 287.0 | |
2 | 39.4 | 82.0 | 149.0 | 219.0 | 289.5 | |
4 | 78.8 | 106.6 | 163.8 | 229.2 | 297.2 | |
6 | 118.1 | 138.1 | 185.7 | 245.2 | 309.6 | |
8 | 157.3 | 172.7 | 212.6 | 266.0 | 326.2 |
Parameter | Value |
---|---|
Laser wavelength () | 532 nm |
Pulse energy () | 0.1 J |
Laser repetition rate | 100 Hz |
Telescope aperture | 1.06 m |
Laser divergence angle () | 2″ |
Pointing error () | 1″ |
Reflector divergence angle () | 8″ |
Detector efficiency () | 0.2 |
Transmit optics efficiency () | 0.4 |
Receive system efficiency () | 0.2 |
Atmospheric transmittance () | 0.6 |
Transmissivity of cirrus clouds () | 1 |
Average echo photons for A11 () | 0.079 |
Parameter | Value |
---|---|
Laser wavelength (nm) | 532 |
Pulse energy (mJ) | 1 |
Telescope aperture (cm) | 51 |
Pulse width (ps) | 100 |
Repetition rate (Hz) | 1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; Tang, R.; Huang, K.; Li, Z.; Yang, Y.; Huang, K.; Li, J.; Li, Y. Analysis of the Effect of Tilted Corner Cube Reflector Arrays on Lunar Laser Ranging. Remote Sens. 2024, 16, 3030. https://doi.org/10.3390/rs16163030
Cao J, Tang R, Huang K, Li Z, Yang Y, Huang K, Li J, Li Y. Analysis of the Effect of Tilted Corner Cube Reflector Arrays on Lunar Laser Ranging. Remote Sensing. 2024; 16(16):3030. https://doi.org/10.3390/rs16163030
Chicago/Turabian StyleCao, Jin, Rufeng Tang, Kai Huang, Zhulian Li, Yongzhang Yang, Kai Huang, Jintao Li, and Yuqiang Li. 2024. "Analysis of the Effect of Tilted Corner Cube Reflector Arrays on Lunar Laser Ranging" Remote Sensing 16, no. 16: 3030. https://doi.org/10.3390/rs16163030