Optimal Mapping of Soil Erodibility in a Plateau Lake Watershed: Empirical Models Empowered by Machine Learning
<p>Location of the Qilu Lake watershed and 216 soil samples.</p> "> Figure 2
<p>Soil-texture classification triangle and SOC distribution.</p> "> Figure 3
<p>The distribution of K_EPIC, K_Shirazi and K_Torri is depicted in the box plots.</p> "> Figure 4
<p>Scatter plot of the relationship between soil-erodibility model estimate (K_EPIC, K_Shirazi and K_Torri) and soil texture and SOC.</p> "> Figure 5
<p>The spatial distribution maps of estimation K.</p> "> Figure 6
<p>The uncertainty maps of estimation K.</p> "> Figure 7
<p>Importance of the environmental covariates of K_EPIC (<b>a</b>), K_Shirazi (<b>b</b>), and K_Torri (<b>c</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Samples
2.2. Estimation of K Values
2.3. Environmental Covariates
2.4. Modeling and Mapping
2.4.1. Random Forests (RFs)
2.4.2. Gradient-Boosting Decision Tree (GBDT)
2.4.3. Accuracy Evaluation
3. Results
3.1. Descriptive Statistics
3.2. Characteristics of the Distribution of the K Value
3.3. Prediction Model Performance
3.4. Spatial Distribution and Uncertainty Maps
3.5. Importance of Environmental Covariates
4. Discussion
4.1. Distinct Soil-Erodibility Map
4.2. Environmental Mechanisms on Soil Erodibility Models
4.3. Optimal Soil-Erodibility Map Based on Empirical Models Empowered by Machine Learning
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lal, R. Soil Erosion and the Global Carbon Budget. Environ. Int. 2003, 29, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and Human Security in the 21st Century. Science 2015, 348, 1261071. [Google Scholar] [CrossRef] [PubMed]
- Van Oost, K.; Quine, T.A.; Govers, G.; De Gryze, S.; Six, J.; Harden, J.W.; Ritchie, J.C.; McCarty, G.W.; Heckrath, G.; Kosmas, C.; et al. The Impact of Agricultural Soil Erosion on the Global Carbon Cycle. Science 2007, 318, 626–629. [Google Scholar] [CrossRef]
- Qian, M.; Zhou, W.; Wang, S.; Li, Y.; Cao, Y. The Influence of Soil Erodibility and Saturated Hydraulic Conductivity on Soil Nutrients in the Pingshuo Opencast Coalmine, China. Int. J. Environ. Res. Public Health 2022, 19, 4762. [Google Scholar] [CrossRef]
- Ganasri, B.P.; Ramesh, H. Assessment of Soil Erosion by RUSLE Model Using Remote Sensing and GIS—A Case Study of Nethravathi Basin. Geosci. Front. 2016, 7, 953–961. [Google Scholar] [CrossRef]
- Pimentel, D.; Kounang, N. Ecology of Soil Erosion in Ecosystems. Ecosystems 1998, 1, 416–426. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; van der Putten, W.H.; et al. The Significance of Soils and Soil Science towards Realization of the United Nations Sustainable Development Goals. SOIL 2016, 2, 111–128. [Google Scholar] [CrossRef]
- Kastridis, A.; Stathis, D.; Sapountzis, M.; Theodosiou, G. Insect Outbreak and Long-Term Post-Fire Effects on Soil Erosion in Mediterranean Suburban Forest. Land 2022, 11, 911. [Google Scholar] [CrossRef]
- Baartman, J.E.M.; Nunes, J.P.; van Delden, H.; Vanhout, R.; Fleskens, L. The Effects of Soil Improving Cropping Systems (SICS) on Soil Erosion and Soil Organic Carbon Stocks across Europe: A Simulation Study. Land 2022, 11, 943. [Google Scholar] [CrossRef]
- Ferro, V. Deducing the USLE Mathematical Structure by Dimensional Analysis and Self-Similarity Theory. Biosyst. Eng. 2010, 106, 216–220. [Google Scholar] [CrossRef]
- Jin, F.; Yang, W.; Fu, J.; Li, Z. Effects of Vegetation and Climate on the Changes of Soil Erosion in the Loess Plateau of China. Sci. Total Environ. 2021, 773, 145514. [Google Scholar] [CrossRef]
- Rozos, D.; Skilodimou, H.D.; Loupasakis, C.; Bathrellos, G.D. Application of the Revised Universal Soil Loss Equation Model on Landslide Prevention. An Example from N. Euboea (Evia) Island, Greece. Environ. Earth Sci. 2013, 70, 3255–3266. [Google Scholar] [CrossRef]
- Williams, J.R.; Greenwood, D.J.; Nye, P.H.; Walker, A. The Erosion-Productivity Impact Calculator (EPIC) Model: A Case History. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 1997, 329, 421–428. [Google Scholar] [CrossRef]
- Shirazi, M.A.; Boersma, L. A Unifying Quantitative Analysis of Soil Texture. Soil Sci. Soc. Am. J. 1984, 48, 142–147. [Google Scholar] [CrossRef]
- Torri, D.; Poesen, J.; Borselli, L. Predictability and Uncertainty of the Soil Erodibility Factor Using a Global Dataset. CATENA 1997, 31, 1–22. [Google Scholar] [CrossRef]
- Raj, R.; Saharia, M.; Chakma, S. Mapping Soil Erodibility over India. CATENA 2023, 230, 107271. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An Assessment of the Global Impact of 21st Century Land Use Change on Soil Erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Wei, H.; Jia, L.; Daryanto, S.; Zhang, X.; Liu, Y. Soil Erodibility and Its Influencing Factors on the Loess Plateau of China: A Case Study in the Ansai Watershed. Solid Earth 2018, 9, 1507–1516. [Google Scholar] [CrossRef]
- Zhang, K.L.; Shu, A.P.; Xu, X.L.; Yang, Q.K.; Yu, B. Soil Erodibility and Its Estimation for Agricultural Soils in China. J. Arid Environ. 2008, 72, 1002–1011. [Google Scholar] [CrossRef]
- Wadoux, A.M.J.-C.; Minasny, B.; McBratney, A.B. Machine Learning for Digital Soil Mapping: Applications, Challenges and Suggested Solutions. Earth-Sci. Rev. 2020, 210, 103359. [Google Scholar] [CrossRef]
- Wadoux, A.; Samuel-Rosa, A.; Poggio, L.; Mulder, V.L. A Note on Knowledge Discovery and Machine Learning in Digital Soil Mapping. Eur. J. Soil Sci. 2019, 71, 133–136. [Google Scholar] [CrossRef]
- Yang, X. Deriving RUSLE Cover Factor from Time-Series Fractional Vegetation Cover for Hillslope Erosion Modelling in New South Wales. Soil Res. 2014, 52, 253–261. [Google Scholar] [CrossRef]
- Ding, J.; Yang, S.; Shi, Q.; Wei, Y.; Wang, F. Using Apparent Electrical Conductivity as Indicator for Investigating Potential Spatial Variation of Soil Salinity across Seven Oases along Tarim River in Southern Xinjiang, China. Remote Sens. 2020, 12, 2601. [Google Scholar] [CrossRef]
- Ding, J.; Yang, A.; Wang, J.; Sagan, V.; Yu, D. Machine-Learning-Based Quantitative Estimation of Soil Organic Carbon Content by VIS/NIR Spectroscopy. PeerJ 2018, 6, e5714. [Google Scholar] [CrossRef] [PubMed]
- Panagos, P.; Meusburger, K.; Ballabio, C.; Borrelli, P.; Alewell, C. Soil Erodibility in Europe: A High-Resolution Dataset Based on LUCAS. Sci. Total Environ. 2014, 479–480, 189–200. [Google Scholar] [CrossRef]
- Sun, L.; Liu, F.; Zhu, X.; Zhang, G. High-Resolution Digital Mapping of Soil Erodibility in China. Geoderma 2024, 444, 116853. [Google Scholar] [CrossRef]
- Yu, W.; Jiang, Y.; Liang, W.; Wan, D.; Liang, B.; Shi, Z. High-Resolution Mapping and Driving Factors of Soil Erodibility in Southeastern Tibet. CATENA 2023, 220, 106725. [Google Scholar] [CrossRef]
- Wang, S.; Nie, X.; Ran, F.; Liao, W.; Yang, C.; Xiao, T.; Liu, Y.; Liu, Y.; Li, Z. Human Activities Control the Source of Eroded Organic Carbon in Lake Sediments over the Last 100 Years: Evidence from Stable Isotope Fingerprinting. Fundam. Res. 2023, 4. [Google Scholar] [CrossRef]
- Doetterl, S.; Six, J.; Van Wesemael, B.; Van Oost, K. Carbon Cycling in Eroding Landscapes: Geomorphic Controls on Soil Organic C Pool Composition and C Stabilization. Glob. Change Biol. 2012, 18, 2218–2232. [Google Scholar] [CrossRef]
- Xiao, T.; Ran, F.; Li, Z.; Wang, S.; Nie, X.; Liu, Y.; Yang, C.; Tan, M.; Feng, S. Sediment Organic Carbon Dynamics Response to Land Use Change in Diverse Watershed Anthropogenic Activities. Environ. Int. 2023, 172, 107788. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Nie, X.; Li, Z.; Wang, S.; Chen, J.; Ran, F. The Applicability of Commonly-Used Tracers in Identifying Eroded Organic Matter Sources. J. Hydrol. 2021, 603, 126949. [Google Scholar] [CrossRef]
- Cooper, R.J.; Pedentchouk, N.; Hiscock, K.M.; Disdle, P.; Krueger, T.; Rawlins, B.G. Apportioning Sources of Organic Matter in Streambed Sediments: An Integrated Molecular and Compound-Specific Stable Isotope Approach. Sci. Total Environ. 2015, 520, 187–197. [Google Scholar] [CrossRef]
- Rao, W.; Shen, Z.; Duan, X. Spatiotemporal Patterns and Drivers of Soil Erosion in Yunnan, Southwest China: RULSE Assessments for Recent 30 Years and Future Predictions Based on CMIP6. CATENA 2023, 220, 106703. [Google Scholar] [CrossRef]
- Yu, P.; Fennell, S.; Chen, Y.; Liu, H.; Xu, L.; Pan, J.; Bai, S.; Gu, S. Positive Impacts of Farmland Fragmentation on Agricultural Production Efficiency in Qilu Lake Watershed: Implications for Appropriate Scale Management. Land Use Policy 2022, 117, 106108. [Google Scholar] [CrossRef]
- Chen, J.; Yang, X.; Dao, H.; Gu, H.; Chen, G.; Mao, C.; Bai, S.; Gu, S.; Zhou, Z.; Yan, Z. Analyses on Characteristics of Spatial Distribution and Matching of the Human–Land–Water–Heat System on the Yunnan Plateau. Water 2024, 16, 867. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, Y.; Wang, J.; Wang, B.; Yu, P.; Hong, Y.; Zhu, L. Unveiling the Explanatory Power of Environmental Variables in Soil Organic Carbon Mapping: A Global-Local Analysis Framework. Geoderma 2024. accepted. [Google Scholar]
- Sun, Z.; Liu, F.; Wang, D.; Wu, H.; Zhang, G. Improving 3D Digital Soil Mapping Based on Spatialized Lab Soil Spectral Information. Remote Sens. 2023, 15, 5228. [Google Scholar] [CrossRef]
- Gessler, P.E.; Chadwick, O.A.; Chamran, F.; Althouse, L.; Holmes, K. Modeling Soil–Landscape and Ecosystem Properties Using Terrain Attributes. Soil Sci. Soc. Am. J. 2000, 64, 2046–2056. [Google Scholar] [CrossRef]
- McGarigal, K.S.; Cushman, S.; Neel, M.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps; University of Massachusetts: Amherst, MA, USA, 2002. [Google Scholar]
- McGarigal, K.; Tagil, S.; Cushman, S.A. Surface Metrics: An Alternative to Patch Metrics for the Quantification of Landscape Structure. Landsc. Ecol. 2009, 24, 433–450. [Google Scholar] [CrossRef]
- Geng, J.; Tan, Q.; Lv, J.; Fang, H. Assessing Spatial Variations in Soil Organic Carbon and C: N Ratio in Northeast China’s Black Soil Region: Insights from Landsat-9 Satellite and Crop Growth Information. Soil Tillage Res. 2024, 235, 105897. [Google Scholar] [CrossRef]
- Zhang, X.; Xue, J.; Chen, S.; Wang, N.; Xie, T.; Xiao, Y.; Chen, X.; Shi, Z.; Huang, Y.; Zhuo, Z. Fine Resolution Mapping of Soil Organic Carbon in Croplands with Feature Selection and Machine Learning in Northeast Plain China. Remote Sens. 2023, 15, 5033. [Google Scholar] [CrossRef]
- Peters, J.; Baets, B.D.; Verhoest, N.E.C.; Samson, R.; Degroeve, S.; Becker, P.D.; Huybrechts, W. Random Forests as a Tool for Ecohydrological Distribution Modelling. Ecol. Model. 2007, 207, 304–318. [Google Scholar] [CrossRef]
- Carlisle, D.; Falcone, J.; Wolock, D.; Meador, M.; Norris, R. Predicting the Natural Flow Regime: Models for Assessing Hydrological Alteration in Streams. River Res. Appl. 2009, 26, 118–136. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 7–9 December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 3149–3157. [Google Scholar]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, Y.; Han, Y.; Zhou, J.; Liu, J.; Wu, J. Mapping Farmland Soil Organic Carbon Density in Plains with Combined Cropping System Extracted from NDVI Time-Series Data. Sci. Total Environ. 2021, 754, 142120. [Google Scholar] [CrossRef]
- Jia, L.Z.; Zhang, J.H.; Zhang, Z.H.; Wang, Y. Assessment of Gravelly Soil Redistribution Caused by a Two-Tooth Harrow in Mountainous Landscapes of the Yunnan-Guizhou Plateau, China. Soil Tillage Res. 2017, 168, 11–19. [Google Scholar] [CrossRef]
- Kimaro, D.N.; Deckers, J.A.; Poesen, J.; Kilasara, M.; Msanya, B.M. Short and Medium Term Assessment of Tillage Erosion in the Uluguru Mountains, Tanzania. Soil Tillage Res. 2005, 81, 97–108. [Google Scholar] [CrossRef]
- Ziegler, A.D.; Giambelluca, T.W.; Sutherland, R.A.; Nullet, M.A.; Vien, T.D. Soil Translocation by Weeding on Steep-Slope Swidden Fields in Northern Vietnam. Soil Tillage Res. 2007, 96, 219–233. [Google Scholar] [CrossRef]
- Bao, Y.; He, X.; Wen, A.; Gao, P.; Tang, Q.; Yan, D.; Long, Y. Dynamic Changes of Soil Erosion in a Typical Disturbance Zone of China’s Three Gorges Reservoir. CATENA 2018, 169, 128–139. [Google Scholar] [CrossRef]
- Siqueira, A.G.; Azevedo, A.A.; Dozzi, L.F.S.; Duarte, H. Monitoring Program of Reservoir Bank Erosion at Porto Primavera Dam, Parana River, SP/MS, Brazil. Engineering Geology for Society and Territory; Lollino, G., Arattano, M., Rinaldi, M., Giustolisi, O., Marechal, J.C., Grant, G.E., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 3, pp. 351–355. [Google Scholar]
- Saint-Laurent, D.; Touileb, B.N.; Saucet, J.P.; Whalen, A.; Gagnon, B.; Nzakimuena, T. Effects of Simulated Water Level Management on Shore Erosion Rates. Case Study: Baskatong Reservoir, Québec, Canada. Can. J. Civ. Eng. 2001, 28, 482–495. [Google Scholar] [CrossRef]
- Auerswald, K.; Fiener, P.; Martin, W.; Elhaus, D. Use and Misuse of the K Factor Equation in Soil Erosion Modeling: An Alternative Equation for Determining USLE Nomograph Soil Erodibility Values. CATENA 2014, 118, 220–225. [Google Scholar] [CrossRef]
- Bonilla, C.A.; Johnson, O.I. Soil Erodibility Mapping and Its Correlation with Soil Properties in Central Chile. Geoderma 2012, 189–190, 116–123. [Google Scholar] [CrossRef]
- Mallick, J.; Al-Wadi, H.; Rahman, A.; Ahmed, M.; Abad Khan, R. Spatial Variability of Soil Erodibility and Its Correlation with Soil Properties in Semi-Arid Mountainous Watershed, Saudi Arabia. Geocarto Int. 2016, 31, 661–681. [Google Scholar] [CrossRef]
- Efthimiou, N. The Importance of Soil Data Availability on Erosion Modeling. CATENA 2018, 165, 551–566. [Google Scholar] [CrossRef]
- Geng, J.; Cheng, S.; Fang, H.; Pei, J.; Xu, M.; Lu, M.; Yang, Y.; Cao, Z. Nitrogen Fertilization Changes the Molecular Composition of Soil Organic Matter in a Subtropical Plantation Forest. Soil Sci. Soc. Am. J. 2020, 84, 68–81. [Google Scholar] [CrossRef]
- Ostovari, Y.; Ghorbani-Dashtaki, S.; Kumar, L.; Shabani, F. Soil Erodibility and Its Prediction in Semi-Arid Regions. Arch. Agron. Soil Sci. 2019, 65, 1688–1703. [Google Scholar] [CrossRef]
- Chen, S.; Arrouays, D.; Angers, D.A.; Martin, M.P.; Walter, C. Soil Carbon Stocks under Different Land Uses and the Applicability of the Soil Carbon Saturation Concept. Soil Tillage Res. 2019, 188, 53–58. [Google Scholar] [CrossRef]
- Saha, R.; Tomar, J.M.S.; Ghosh, P.K. Evaluation and Selection of Multipurpose Tree for Improving Soil Hydro-Physical Behaviour under Hilly Eco-System of North East India. Agrofor. Syst. 2007, 69, 239–247. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, D.; Shi, X.; Xiangyan, Z.; Hongjie, W.; Zhu-jun, G. Uncertainty in Prediction of Soil Erodibility K-Factor in Subtropical China. Acta Pedol. Sin. 2009, 46, 185–191. [Google Scholar]
- Zhang, Z.; Chen, Y.; Wu, K.; Hong, Y.; Shi, T.; Mouazen, A.M. On the Parsimony, Interpretability, and Predictive Capability of a Physically-Based Model in the Optical Domain for Estimating Soil Moisture Content. Geoderma 2024, 49, 116996. [Google Scholar] [CrossRef]
Category | Covariate | Description |
---|---|---|
Topography | DEM | Elevation above sea level (m) |
TWI | Topographic wetness index | |
RDLS | Relief degree of land surface | |
aspect | Aspect derived from elevation | |
slope | Slope derived from elevation (%) | |
Soil properties | SBD | Bulk density measured in the laboratory |
SP | Soil porosity measured in the laboratory | |
Location | Dis_con | Distance to construction land (m) |
Dis_lake | Distance to lakes (m) | |
Dis_river | Distance to rivers (m) | |
Dis_road | Distance to roads (m) | |
Vegetation | NDVI | Normalized Difference Vegetation Index |
EVI | Enhanced Vegetation Index | |
TVI | Transformed Vegetation Index | |
NDSI | Normalized Difference Soil Index | |
Surface moisture | SMC | Soil moisture content measured in the laboratory |
NDWI | Normalized Difference Water Index | |
MSI | Moisture Stress Index | |
NSDSI1 | Normalized Shortwave–Infrared (SWIR) Difference Bare Soil Moisture Indices | |
NSDSI2 | ||
NSDSI3 | ||
Landscape | DIVISION | Landscape division index |
LPI | Largest patch index | |
LSI | Landscape shape index | |
IJI | Interspersion and juxtaposition index | |
NP | Number of patches | |
SHID | Shannon’s diversity index | |
COHESION | Patch cohesion index |
Soil Properties | Maximum | Minimum | Mean | Standard Deviation | Coefficient of Variation | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
SOC | 115.00 | 2.80 | 34.97 | 20.58 | 0.59 | 0.82 | 0.89 |
Sand | 83.47 | 2.42 | 19.95 | 15.12 | 0.76 | 1.31 | 1.56 |
Clay | 46.05 | 3.81 | 20.25 | 7.87 | 0.39 | 1.02 | 1.10 |
Silt | 82.12 | 12.72 | 59.79 | 12.70 | 0.21 | −0.83 | 0.75 |
RF | GBDT | |||||
---|---|---|---|---|---|---|
EPIC | Shirazi | Torri | EPIC | Shirazi | Torri | |
R2 | 0.38 | 0.43 | 0.45 | 0.38 | 0.43 | 0.37 |
RMSE | 0.0046 | 0.0050 | 0.0099 | 0.0046 | 0.0050 | 0.0106 |
MAE | 0.0031 | 0.0038 | 0.0079 | 0.0031 | 0.0038 | 0.0085 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wei, Y.; Sun, Z.; Gu, S.; Bai, S.; Chen, J.; Chen, J.; Hong, Y.; Chen, Y. Optimal Mapping of Soil Erodibility in a Plateau Lake Watershed: Empirical Models Empowered by Machine Learning. Remote Sens. 2024, 16, 3017. https://doi.org/10.3390/rs16163017
Wang J, Wei Y, Sun Z, Gu S, Bai S, Chen J, Chen J, Hong Y, Chen Y. Optimal Mapping of Soil Erodibility in a Plateau Lake Watershed: Empirical Models Empowered by Machine Learning. Remote Sensing. 2024; 16(16):3017. https://doi.org/10.3390/rs16163017
Chicago/Turabian StyleWang, Jiaxue, Yujiao Wei, Zheng Sun, Shixiang Gu, Shihan Bai, Jinming Chen, Jing Chen, Yongsheng Hong, and Yiyun Chen. 2024. "Optimal Mapping of Soil Erodibility in a Plateau Lake Watershed: Empirical Models Empowered by Machine Learning" Remote Sensing 16, no. 16: 3017. https://doi.org/10.3390/rs16163017
APA StyleWang, J., Wei, Y., Sun, Z., Gu, S., Bai, S., Chen, J., Chen, J., Hong, Y., & Chen, Y. (2024). Optimal Mapping of Soil Erodibility in a Plateau Lake Watershed: Empirical Models Empowered by Machine Learning. Remote Sensing, 16(16), 3017. https://doi.org/10.3390/rs16163017