Joint Constant-Modulus Waveform and RIS Phase Shift Design for Terahertz Dual-Function MIMO Radar and Communication System
<p>RIS-aided THz dual-function MIMO radar and communication system with multiple targets and UEs.</p> "> Figure 2
<p>Sum rate versus the transmit SNR for different algorithms.</p> "> Figure 3
<p>Beampatterns of the transmit waveforms achieved by different algorithms.</p> "> Figure 4
<p>Auto-correlation functions achieved by different algorithms.</p> "> Figure 5
<p>Sum rate versus the transmit SNR of our algorithm under different weighting coefficients and RIS conditions.</p> "> Figure 6
<p>Beampatterns of the transmit waveforms of our algorithm under different weighting coefficients and RIS conditions.</p> "> Figure 7
<p>Average detection probability versus the radar transmit SNR of our algorithm under different weighting coefficients and RIS conditions.</p> "> Figure 8
<p>Auto-correlation functions of the transmit waveforms of our algorithm under different weighting coefficients and RIS conditions.</p> "> Figure 9
<p>Sum rate versus the transmit SNR under different channel conditions of THz system.</p> ">
Abstract
:1. Introduction
2. System Model
2.1. MIMO Radar Model
2.2. Communication Model
3. Problem Formulation and Algorithm Proposal
3.1. Optimization Problem Formulation
3.2. Joint Design with ACD Algorithm
3.2.1. Constant-Modulus Waveform Design
3.2.2. RIS Phase Shift Design
Algorithm 1 Proposed ACD algorithm for joint CM waveform and RIS phase shift design |
Input: , initial variables , and convergence tolerance . |
Output: , |
1 Repeat |
2 . |
3 Update : |
initialize |
for |
calculate via (16) and obtain its phase . |
Update via (20). |
4 Update : |
initialize |
for |
calculate via (24) and obtain its phase . |
Update via (26). |
5 Until . |
4. Numerical Simulations
4.1. Comparison of ACD Algorithm and Two Existing Optimization Algorithms
4.2. Impact of Weighting Coefficients and RIS on Radar and Communication Performance
4.3. Impact of Channel Conditions on the Performance of THz System
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, W.; Zhou, Q.; He, J.; Habibi, M.A.; Melnyk, S.; El-Absi, M.; Han, B.; Di Renzo, M.; Schotten, H.D.; Luo, F.L.; et al. Terahertz communications and sensing for 6G and beyond: A comprehensive review. IEEE Commun. Surv. Tutor. 2024. early access. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, K.; Li, L.; Chen, S.; Chen, W.; Wang, Z.; Zhang, B. Survey of Terahertz integrated communication and sensing technology. Sci. Sin. Inform. 2024, 54, 1215–1235. (In Chinese) [Google Scholar]
- Liu, F.; Zhou, L.; Masouros, C.; Li, A.; Luo, W.; Petropulu, A. Toward dual-functional radar-communication systems: Optimal waveform design. IEEE Trans. Signal Process. 2018, 66, 4264–4279. [Google Scholar] [CrossRef]
- Yang, J.; Cui, G.; Yu, X.; Kong, L. Dual-use signal design for radar and communication via ambiguity function sidelobe control. IEEE Trans. Veh. Technol. 2020, 69, 9781–9794. [Google Scholar] [CrossRef]
- Liu, R.; Li, M.; Liu, Q.; Swindlehurst, A.L. Dual-functional radar-communication waveform design: A symbol-level precoding approach. IEEE J. Sel. Top. Signal Process. 2021, 15, 1316–1331. [Google Scholar] [CrossRef]
- Liu, R.; Li, M.; Liu, Q.; Swindlehurst, A.L. Joint waveform and filter designs for STAP-SLP-based MIMO-DFRC systems. IEEE J. Sel. Areas Commun. 2022, 40, 1918–1931. [Google Scholar] [CrossRef]
- Yan, J.; Zheng, J. Low-complexity symbol-level precoding for dual-functional radar-communication system. In Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX, USA, 10–13 April 2022; pp. 234–239. [Google Scholar]
- Li, Y.; Wu, X.; Tao, R. Waveform design for the joint MIMO radar and communications with low integrated sidelobe levels and accurate information embedding. In Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 8263–8267. [Google Scholar]
- Huang, C.; Zhou, Q.; Huang, Z.; Li, Z.; Xu, Y.; Zhang, J. Unimodular waveform design for the DFRC system with constrained communication QoS. Remote Sens. 2023, 15, 5350. [Google Scholar] [CrossRef]
- Zhu, J.; Li, W.; Wong, K.K.; Jin, T.; An, K. Waveform design of DFRC system for target detection in clutter environment. IEEE Signal Process. Lett. 2023, 30, 1517–1521. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, Y.; Zhong, K.; Hu, J.; An, D. Unimodular waveform design for dual-function radar-communication systems under per-user MUI energy constraint. IEEE Signal Process. Lett. 2024, 31, 1064–1068. [Google Scholar] [CrossRef]
- Ucan, S.; Arikan, O.; Karabulut Kurt, G.; Özdemir, Ö. Modelling of THz band graphene based reconfigurable intelligent surfaces with high directivity. In Proceedings of the 2022 30th Signal Processing and Communications Applications Conference (SIU), Safranbolu, Turkey, 15–18 May 2022; pp. 1–4. [Google Scholar]
- Wen, F.; Shi, J.; Lin, Y.; Gui, G.; Yuen, C.; Sari, H. Joint DOD and DOA estimation for NLOS target using IRS-aided bistatic MIMO radar. IEEE Trans. Veh. Technol. 2024. early access. [Google Scholar] [CrossRef]
- Wang, X.; Fei, Z.; Huang, J.; Yu, H. Joint waveform and discrete phase shift design for RIS-assisted integrated sensing and communication system under Cramer-Rao bound constraint. IEEE Trans. Veh. Technol. 2021, 71, 1004–1009. [Google Scholar] [CrossRef]
- Wang, X.; Fei, Z.; Zheng, Z.; Guo, J. Joint waveform design and passive beamforming for RIS-assisted dual-functional radar-communication system. IEEE Trans. Veh. Technol. 2021, 70, 5131–5136. [Google Scholar] [CrossRef]
- Liu, R.; Li, M.; Liu, Y.; Wu, Q.; Liu, Q. Joint transmit waveform and passive beamforming design for RIS-aided DFRC systems. IEEE J. Sel. Top. Signal Process. 2022, 16, 995–1010. [Google Scholar] [CrossRef]
- Shi, M.; Li, X.; Liu, J.; Lv, S. Constant modulus waveform design for RIS-aided ISAC system. IEEE Trans. Veh. Technol. 2024, 73, 8648–8659. [Google Scholar] [CrossRef]
- Zhong, K.; Hu, J.; Pan, C.; Deng, M.; Fang, J. Joint waveform and beamforming design for RIS-aided ISAC systems. IEEE Signal Process. Lett. 2023, 30, 165–169. [Google Scholar] [CrossRef]
- Zhen, Y.; Shi, C.; Li, Y.; Tao, R. Design of spatial-slow-time constant-modulus waveform transmission and receive adaptive filter for dual-function radar communications with reconfigurable intelligent surface. In Proceedings of the 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024; pp. 8771–8775. [Google Scholar]
- Wang, X.; Guo, Y.; Wen, F.; He, J.; Truong, T.K. EMVS-MIMO radar with sparse Rx geometry: Tensor modeling and 2D direction finding. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 8062–8075. [Google Scholar] [CrossRef]
- Mohammed, S.K.; Larsson, E.G. Per-antenna constant envelope precoding for large multi-user MIMO systems. IEEE Trans. Commun. 2013, 61, 1059–1071. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Z.; Wang, G. A low complexity algorithm for intelligent reflective surface-assisted Tera Hertz channel estimation. J. Electron. Inform. Technol. 2023, 45, 3640–3647. (In Chinese) [Google Scholar]
- Bertsekas, D.P. Nonlinear programming. J. Oper. Res. Soc. 1997, 48, 334. [Google Scholar] [CrossRef]
- Absil, P.A.; Mahony, R.; Sepulchre, R. Optimization Algorithms on Matrix Manifolds; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Khawar, A.; Abdelhadi, A.; Clancy, C. Target detection performance of spectrum sharing MIMO radars. IEEE Sens. J. 2015, 15, 4928–4940. [Google Scholar] [CrossRef]
- Ma, Y.; Miao, C.; Long, W.; Zhang, R.; Chen, Q.; Zhang, J.; Wu, W. Time-modulated arrays in scanning mode using wideband signals for range-doppler estimation with time-frequency filtering and fusion. IEEE Trans. Aerosp. Electron. Syst. 2023, 60, 980–990. [Google Scholar] [CrossRef]
- Zhang, R.; Cheng, L.; Wang, S.; Lou, Y.; Gao, Y.; Wu, W.; Ng, D.W.K. Integrated sensing and communication with massive MIMO: A unified tensor approach for channel and target parameter estimation. IEEE Trans. Wirel. Commun. 2024. early access. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.; Jiang, H.; Qu, L. Joint Constant-Modulus Waveform and RIS Phase Shift Design for Terahertz Dual-Function MIMO Radar and Communication System. Remote Sens. 2024, 16, 3083. https://doi.org/10.3390/rs16163083
Yang R, Jiang H, Qu L. Joint Constant-Modulus Waveform and RIS Phase Shift Design for Terahertz Dual-Function MIMO Radar and Communication System. Remote Sensing. 2024; 16(16):3083. https://doi.org/10.3390/rs16163083
Chicago/Turabian StyleYang, Rui, Hong Jiang, and Liangdong Qu. 2024. "Joint Constant-Modulus Waveform and RIS Phase Shift Design for Terahertz Dual-Function MIMO Radar and Communication System" Remote Sensing 16, no. 16: 3083. https://doi.org/10.3390/rs16163083
APA StyleYang, R., Jiang, H., & Qu, L. (2024). Joint Constant-Modulus Waveform and RIS Phase Shift Design for Terahertz Dual-Function MIMO Radar and Communication System. Remote Sensing, 16(16), 3083. https://doi.org/10.3390/rs16163083