Trends and Innovations in Surface Water Monitoring via Satellite Altimetry: A 34-Year Bibliometric Review
<p>Flowchart of the technological roadmap.</p> "> Figure 2
<p>Graph of publication volume and citation frequency of the literature.</p> "> Figure 3
<p>Information on the 20 authors with the most publications: (<b>a</b>) Research Output, (<b>b</b>) Centrality Index, (<b>c</b>) H-index.</p> "> Figure 4
<p>Author partnership analysis: (<b>a</b>) CiteSpace partnership analysis, (<b>b</b>) VOSviewer–based partnership network.</p> "> Figure 5
<p>Journal and discipline analysis: (<b>a</b>) journal titles; (<b>b</b>) disciplines.</p> "> Figure 6
<p>Literature co-citation network diagram.</p> "> Figure 7
<p>Statistics of hotspot areas: (<b>a</b>) is the percentage of each water body in the total number of documents; (<b>b</b>) represents the top 5 hotspot research areas in the water body.</p> "> Figure 8
<p>Keyword co-occurrence network diagram.</p> "> Figure 9
<p>Keyword emergence analysis chart, visualizing 52 keywords. The solid circle in the figure marks the peak research year for the keyword during this timeframe, with its size indicative of the volume of literature published on the keyword in that year.</p> "> Figure 10
<p>Comparison of citation counts between Web of Science, Google Scholar, and Scopus.</p> ">
Abstract
:1. Introduction
2. Data Collection and Research Methodology
2.1. Database
2.2. Construction of the Literature Dataset
2.3. Scientometric Software
2.4. Technological Roadmap
3. Results
3.1. Analysis of Publication Volume and Citation Frequency
- (1)
- The period from 1988 to 1995 marks the nascent phase of development, coinciding with the pioneering era of satellite altimetry technology. During this time, satellites such as GEOSAT (GEOdetic Satellite) and Seasat emerged as prominent figures, laying the foundational stones for monitoring surface water via satellite altimetry [26]. Satellites were mainly for watching sea surface topography. Early satellites had trouble seeing clearly and staying steady. Because of this, not many papers were written (under 150). Most papers were first shared at academic conferences.
- (2)
- Between 1996 and 2011, satellite altimetry entered its mature phase, characterized by the remarkable success of a series of satellite missions, such as the ERS (European Remote Sensing) family and T/P (Topex/Poseidon) family satellites. During this period, the technology of satellite altimeters saw consistent refinements, resulting in remarkable enhancements in their accuracy and stability. For example, Jason-1 was primarily tasked with providing high-precision heights to ensure the continuity of ocean monitoring. Compared to T/P, Jason-1 reduced in mass and power consumption without compromising performance, capable of measuring ocean topography at the centimeter level [27]. These improvements paved the way for the progressive adoption of altimetry satellites in the monitoring of inland water bodies [28,29].
- (3)
- From 2011 to 2022, the number and types of altimetry satellites rose sharply, leading to a wealth of academic papers. A key event was China’s launch of the HY-2 (HaiYang-2) satellite in 2011, equipped with four instruments for global marine environmental monitoring [30]. Over these 11 years, Chinese researchers published 2067 papers, averaging 188 annually. The United States also stepped up its publication rate in this field, with an average of 95 papers per year in the first two phases, jumping to 204 papers per year during this period. Other countries like France and the UK (United Kingdom) have similarly boosted their publication output.
3.2. Author
3.2.1. Author Centrality and H-Index Analysis
3.2.2. Author Cooperation Analysis
3.3. Journal Publication Volume and Discipline
3.4. Literature Co-Citation Analysis
3.5. Research Area
3.6. Keywords
3.6.1. Keyword Co-Occurrence Analysis
3.6.2. Keyword Burst Analysis
4. Discussion
4.1. Database Comparison
4.2. Top Paper Analysis
4.2.1. Analysis of Hot Papers
4.2.2. GPT4.0 Literature Reading
4.3. Satellite Sensor
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2021, 540, 418–422. [Google Scholar] [CrossRef]
- Chuai, X.; Yuan, Y.; Zhao, R.; Song, S. High-Resolution Monitoring of Inland Water Bodies across China in Long Time Series and Water Resource Changes. Environ. Dev. Sustain. 2021, 23, 3673–3695. [Google Scholar] [CrossRef]
- DeConto, R.M.; Pollard, D.; Alley, R.B.; Velicogna, I.; Gasson, E.; Gomez, N.; Sadai, S.; Condron, A.; Gilford, D.M.; Ashe, E.L.; et al. The Paris Climate Agreement and future sea-level rise from Antarctica. Nature 2021, 593, 83–89. [Google Scholar] [CrossRef]
- Yao, F.; Livneh, B.; Rajagopalan, B.; Wang, J.; Crétaux, J.F.; Wada, Y.; Berge-Nguyen, M. Satellites reveal widespread decline in global lake water storage. Science 2023, 380, 743–749. [Google Scholar] [CrossRef]
- Farouk, M.I.H.Z.; Jamil, Z.; Latip, M.F.A. Towards Online Surface Water Quality Monitoring Technology: A Review. Environ. Res. 2023, 238, 117147. [Google Scholar] [CrossRef] [PubMed]
- Prigent, C.; Jimenez, C.; Bousquet, P. Satellite-derived global surface water extent and dynamics over the last 25 years (GIEMS-2). J. Geophys. Res. Atmos. 2020, 125, e2019JD030711. [Google Scholar] [CrossRef]
- Yan, Q.; Liu, S.; Chen, T.; Jin, S.; Xie, T.; Huang, W. Mapping Surface Water Fraction Over the Pan-tropical Region Using CYGNSS Data. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–14. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, Extracting, and Monitoring Surface Water from Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Huang, Z.; Wu, X.; Wang, H.; Hwang, C.; He, X. Monitoring Inland Water Quantity Variations: A Comprehensive Analysis of Multi-Source Satellite Observation Technology Applications. Remote Sens. 2023, 15, 3945. [Google Scholar] [CrossRef]
- Schwatke, C.; Dettmering, D.; Bosch, W.; Seitz, F. DAHITI–an Innovative Approach for Estimating Water Level Time Series over Inland Waters Using Multi-Mission Satellite Altimetry. Hydro. Earth Syst. Sci. 2015, 19, 4345–4364. [Google Scholar] [CrossRef]
- Church, J.A.; White, N.J. Sea-Level Rise from the Late 19th to the Early 21st Century. Surv. Geophys. 2011, 32, 585–602. [Google Scholar] [CrossRef]
- Xu, N.; Ma, Y.; Wei, Z.; Huang, C.; Li, G.; Zheng, H.; Wang, X.H. Satellite observed recent rising water levels of global lakes and reservoirs. Environ. Res. Lett. 2022, 17, 074013. [Google Scholar] [CrossRef]
- Kouraev, A.V.; Shimaraev, M.N.; Buharizin, P.I.; Naumenko, M.A.; Crétaux, J.-F.; Mognard, N.; Legrésy, B.; Rémy, F. Ice and Snow Cover of Continental Water Bodies from Simultaneous Radar Altimetry and Radiometry Observations. Surv. Geophys. 2008, 29, 271–295. [Google Scholar] [CrossRef]
- Li, J.; Goerlandt, F.; Reniers, G. An Overview of Scientometric Mapping for the Safety Science Community: Methods, Tools, and Framework. Saf. Sci. 2021, 134, 105093. [Google Scholar] [CrossRef]
- Eito-Brun, R. A Quantitative Approach to the Scientific Production on Radar Altimetry. Adv. Space Res. 2021, 68, 1216–1224. [Google Scholar] [CrossRef]
- Yang, L.; Lin, L.; Fan, L.; Liu, N.; Huang, L.; Xu, Y.; Mertikas, S.P.; Jia, Y.; Lin, M. Satellite Altimetry: Achievements and Future Trends by a Scientometrics Analysis. Remote Sens. 2022, 14, 3332. [Google Scholar] [CrossRef]
- Huang, J.; Tan, M. The Role of ChatGPT in Scientific Communication: Writing Better Scientific Review Articles. Am. J. Cancer Res. 2023, 13, 1148–1154. [Google Scholar] [PubMed]
- Biswas, S.; Dobaria, D.; Cohen, H.L. Focus: Big Data: ChatGPT and the Future of Journal Reviews: A Feasibility Study. Yale J. Biol. Med. 2023, 96, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Singh, P.; Karmakar, M.; Leta, J.; Mayr, P. The Journal Coverage of Web of Science, Scopus and Dimensions: A Comparative Analysis. Scientometrics 2021, 126, 5113–5142. [Google Scholar] [CrossRef]
- Liu, W. The Data Source of This Study Is Web of Science Core Collection? Not Enough. Scientometrics 2019, 121, 1815–1824. [Google Scholar] [CrossRef]
- Noruzi, A. Google Scholar: The New Generation of Citation Indexes. libri 2005, 55, 170–180. [Google Scholar] [CrossRef]
- Moya-Anegón, F.; Chinchilla-Rodríguez, Z.; Vargas-Quesada, B.; Corera-Álvarez, E.; Muñoz-Fernández, F.J.; González-Molina, A.; Herrero-Solana, V. Coverage Analysis of Scopus: A Journal Metric Approach. Scientometrics 2007, 73, 53–78. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature. J. Am. Soc. Inf. Sci. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Van Eck, N.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Jian, F.; Jingda, D. Comparison of Visualization Principles between Citespace and Vosviewer. J. Libr. Inf. Sci. Agric. 2019, 31, 31–37. [Google Scholar]
- Porter, D.L.; Glenn, S.M.; Dobson, E.B.; Crowley, M.F. Extension and Validation of a Gulf Stream GEOSAT Synthetic Geoid. J. Atmos. Ocean. Technol. 1996, 13, 514–531. [Google Scholar] [CrossRef]
- Ménard, Y.; Fu, L.-L.; Escudier, P.; Parisot, F.; Perbos, J.; Vincent, P.; Desai, S.; Haines, B.; Kunstmann, G. The Jason-1 Mission Special Issue: Jason-1 Calibration/Validation. Mar. Geod. 2003, 26, 131–146. [Google Scholar] [CrossRef]
- Crétaux, J.-F.; Calmant, S.; Romanovski, V.; Shabunin, A.; Lyard, F.; Bergé-Nguyen, M.; Cazenave, A.; Hernandez, F.; Perosanz, F. An Absolute Calibration Site for Radar Altimeters in the Continental Domain: Lake Issykkul in Central Asia. J. Geod. 2009, 83, 723–735. [Google Scholar] [CrossRef]
- Cheng, K.-C.; Kuo, C.-Y.; Tseng, H.-Z.; Yi, Y.; Shum, C.K. Lake Surface Height Calibration of Jason-1 and Jason-2 Over the Great Lakes. Mar. Geod. 2010, 33, 186–203. [Google Scholar] [CrossRef]
- Jiang, X.; Lin, M.; Liu, J.; Zhang, Y.; Xie, X.; Peng, H.; Zhou, W. The HY-2 Satellite and Its Preliminary Assessment. Inter. J. Digi. Earth 2012, 5, 266–281. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proc. R. Soc. London. Ser. A 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Zheng, K.; Wang, X. Publications on the Association between Cognitive Function and Pain from 2000 to 2018: A Bibliometric Analysis Using CiteSpace. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 8940–8951. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, J.E. An Index to Quantify an Individual’s Scientific Research Output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [PubMed]
- Kay, J.; Memon, M.; De Sa, D.; Simunovic, N.; Duong, A.; Karlsson, J.; Ayeni, O.R. The H-Index of Editorial Board Members Correlates Positively with the Impact Factor of Sports Medicine Journals. Orthop. J. Sports Med. 2017, 5, 232596711769402. [Google Scholar] [CrossRef]
- Fu, L.-L.; Chelton, D.B.; Le Traon, P.-Y.; Morrow, R. Eddy Dynamics from Satellite Altimetry. Oceanography 2010, 23, 14–25. [Google Scholar] [CrossRef]
- Armitage, T.W.K.; Bacon, S.; Ridout, A.L.; Thomas, S.F.; Aksenov, Y.; Wingham, D.J. Arctic Sea Surface Height Variability and Change from Satellite Radar Altimetry and GRACE, 2003–2014. J. Geophys. Res. Ocean. 2016, 121, 4303–4322. [Google Scholar] [CrossRef]
- Minster, J.F.; Cazenave, A.; Serafini, Y.V.; Mercier, F.; Gennero, M.C.; Rogel, P. Annual Cycle in Mean Sea Level from Topex–Poseidon and ERS-1: Inference on the Global Hydrological Cycle. Glob. Planet. Chang. 1999, 20, 57–66. [Google Scholar] [CrossRef]
- Seyler, F.; Calmant, S.; Da Silva, J.S.; Moreira, D.M.; Mercier, F.; Shum, C.K. From TOPEX/Poseidon to Jason-2/OSTM in the Amazon Basin. Adv. Space Res. 2013, 51, 1542–1550. [Google Scholar] [CrossRef]
- Cipollini, P.; Calafat, F.M.; Jevrejeva, S.; Melet, A.; Prandi, P. Monitoring Sea Level in the Coastal Zone with Satellite Altimetry and Tide Gauges. Integr. Study Mean Sea Level Its Compon. 2017, 38, 33–57. [Google Scholar]
- Fu, L.-L.; Christensen, E.J.; Yamarone, C.A.; Lefebvre, M.; Ménard, Y.; Dorrer, M.; Escudier, P. TOPEX/POSEIDON Mission Overview. J. Geophys. Res. 1994, 99, 24369–24381. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global Observations of Nonlinear Mesoscale Eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D. The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2): Science Requirements, Concept, and Implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Sun, Z.; Guan, B.; Zhai, Z.; Ouyang, M. Research progress of ocean satellite altimetry and its recovery of global marine gravity field and seafloor topography model. Acta Geod. Cartogr. Sin. 2022, 51, 923–934. [Google Scholar]
- Jarihani, A.; Callow, J.; Johansen, K.; Gouweleeuw, B. Evaluation of multiple satellite altimetry data for studying inland water bodies and river floods. J. Hydrol. 2013, 505, 78–90. [Google Scholar] [CrossRef]
- Shu, S.; Liu, H.; Beck, R.; Frappart, F.; Korhonen, J.; Lan, M.; Xu, M.; Yang, B.; Huang, Y. Evaluation of historic and operational satellite radar altimetry missions for constructing consistent long-term lake water level records. Hydrol. Earth Syst. Sci. 2021, 25, 1643–1670. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, X.; Gong, P.; Huang, H.; Li, Z.; Li, X. Earth science applications of ICESat/GLAS: A review. Inter. J. Remote Sens. 2011, 32, 8837–8864. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, J.; Zhang, X.X. Monitoring lakes and reservoirs using satellite radar altimetry: Theory, methods, and progresses. J. Remote Sens. 2022, 26, 104–114. [Google Scholar] [CrossRef]
- Jiang, L.; Nielsen, K.; Andersen, O.B. Improvements in Mountain Lake Monitoring from Satellite Altimetry over the Past 30 Years–Lessons Learned from Tibetan Lakes. Remote Sens. Environ. 2023, 295, 113702. [Google Scholar] [CrossRef]
- Hwang, C.; Wei, S.-H.; Cheng, Y.-S.; Abulaitijiang, A.; Andersen, O.B.; Chao, N.; Peng, H.-Y.; Tseng, K.-H.; Lee, J.-C. Glacier and Lake Level Change from TOPEX-Series and CryoSat-2 Altimeters in Tanggula: Comparison with Satellite Imagery. Terr. Atmos. Ocean. Sci. 2021, 32, 1–20. [Google Scholar] [CrossRef]
- Schwatke, C.; Dettmering, D.; Börgens, E.; Bosch, W. Potential of SARAL/AltiKa for Inland Water Applications. Mar. Geod. 2015, 38, 626–643. [Google Scholar] [CrossRef]
- Gardner, A.S.; Moholdt, G.; Cogley, J.G.; Wouters, B.; Arendt, A.A.; Wahr, J.; Berthier, E.; Hock, R.; Pfeffer, W.T.; Kaser, G.; et al. A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science 2013, 340, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Baumhoer, C.A.; Dietz, A.J.; Kneisel, C.; Kuenzer, C. Automated Extraction of Antarctic Glacier and Ice Shelf Fronts from Sentinel-1 Imagery Using Deep Learning. Remote Sens. 2019, 11, 2529. [Google Scholar] [CrossRef]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and Weaknesses. FASEB J. 2008, 22, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Martín-Martín, A.; Orduna-Malea, E.; Thelwall, M.; López-Cózar, E.D. Google Scholar, Web of Science, and Scopus: A Systematic Comparison of Citations in 252 Subject Categories. J. Infect. 2018, 12, 1160–1177. [Google Scholar] [CrossRef]
- Adriaanse, L.S.; Rensleigh, C. Web of Science, Scopus and Google Scholar: A Content Comprehensiveness Comparison. Electr. Power Libr. 2013, 31, 727–744. [Google Scholar] [CrossRef]
- Gavel, Y.; Iselid, L. Web of Science and Scopus: A Journal Title Overlap Study. Online Inf. Rev. 2008, 32, 8–21. [Google Scholar] [CrossRef]
- Abraham, J.P.; Baringer, M.; Bindoff, N.L.; Boyer, T.; Cheng, L.J.; Church, J.A.; Conroy, J.L.; Domingues, C.M.; Fasullo, J.T.; Gilson, J.; et al. A Review of Global Ocean Temperature Observations: Implications for Ocean Heat Content Estimates and Climate Change. Rev. Geophys. 2013, 51, 450–483. [Google Scholar] [CrossRef]
- Garcia-Soto, C.; Cheng, L.; Caesar, L.; Schmidtko, S.; Jewett, E.B.; Cheripka, A.; Rigor, I.; Caballero, A.; Chiba, S.; Báez, J.C. An Overview of Ocean Climate Change Indicators: Sea Surface Temperature, Ocean Heat Content, Ocean pH, Dissolved Oxygen Concentration, Arctic Sea Ice Extent, Thickness and Volume, Sea Level and Strength of the AMOC (Atlantic Meridional Overturning Circulation). Front. Mar. Sci. 2021, 8, 642372. [Google Scholar]
- Legeais, J.-F.; Ablain, M.; Zawadzki, L.; Zuo, H.; Johannessen, J.A.; Scharffenberg, M.G.; Fenoglio-Marc, L.; Fernandes, M.J.; Andersen, O.B.; Rudenko, S. An Improved and Homogeneous Altimeter Sea Level Record from the ESA Climate Change Initiative. Earth Syst. Sci. Data 2018, 10, 281–301. [Google Scholar] [CrossRef]
- Woodworth, P.L.; Melet, A.; Marcos, M.; Ray, R.D.; Wöppelmann, G.; Sasaki, Y.N.; Cirano, M.; Hibbert, A.; Huthnance, J.M.; Monserrat, S.; et al. Forcing Factors Affecting Sea Level Changes at the Coast. Surv. Geophys. 2019, 40, 1351–1397. [Google Scholar] [CrossRef]
- Cazenave, A.; Meyssignac, B.; Ablain, M.; Balmaseda, M.; Bamber, J.; Barletta, V.; Beckley, B.; Benveniste, J.; Berthier, E.; Blazquez, A. Global Sea-Level Budget 1993-Present. Earth Syst. Sci. Data 2018, 10, 1551–1590. [Google Scholar]
- Wöppelmann, G.; Marcos, M. Vertical Land Motion as a Key to Understanding Sea Level Change and Variability. Rev. Geophys. 2016, 54, 64–92. [Google Scholar] [CrossRef]
- Taburet, G.; Sanchez-Roman, A.; Ballarotta, M.; Pujol, M.-I.; Legeais, J.-F.; Fournier, F.; Faugere, Y.; Dibarboure, G. DUACS DT2018: 25 Years of Reprocessed Sea Level Altimetry Products. Ocean Sci. 2019, 15, 1207–1224. [Google Scholar] [CrossRef]
- Laxon, S.W.; Giles, K.A.; Ridout, A.L.; Wingham, D.J.; Willatt, R.; Cullen, R.; Kwok, R.; Schweiger, A.; Zhang, J.; Haas, C.; et al. CryoSat-2 Estimates of Arctic Sea Ice Thickness and Volume. Geophys. Res. Lett. 2013, 40, 732–737. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, C.; Xi, X.; Nie, S.; Yang, X.; Li, D. Research progress of ICESat-2/ATLAS data processing and applications. Infrared Laser Eng. 2020, 49, 76–85. [Google Scholar]
- Xu, N.; Wang, L.; Zhang, H.S.; Tang, S.; Mo, F.; Ma, X. Machine learning based estimation of coastal bathymetry from ICESat-2 and Sentinel-2 data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 17, 1748–1755. [Google Scholar] [CrossRef]
- Chen, G.; Yang, J.; Zhang, B.; Ma, C. Thoughts and Prospects on the New Generation of Marine Science Satellites. Peri. Ocean Univ.China 2019, 49, 110–117. [Google Scholar]
- Ma, J.; Xiao, Y. Autonomous orbit determination and precise measurement of relative position of formation constellation. J. Beijing Univ. Aeronaut. Astronaut. 2008, 34, 665–668. [Google Scholar]
Type | Number |
---|---|
Documents | 13,500 |
Authors | 23,677 |
Countries/Regions | 97 |
Institutions | 4725 |
Sources | 1593 |
Average Times Citing per Item | 38.76 |
Average Times Cited per Item | 31.65 |
Questions Pertaining to the Literature Review | Accuracy | Questions Pertaining to the Academic Literature | Accuracy |
---|---|---|---|
What is the structure of this literature? | 92% | What are the research methods used in this literature? | 89% |
What is the current state of research in this literature? | 92% | What datasets were analyzed in this research? | 89% |
What innovative viewpoints does the author present? | 88% | What impact does this literature have on its field? | 86% |
What is the summary of the key points in this literature? | 92% | What is the summary of the key points in this literature? | 89% |
Satellite | Country/Institution | Launch Year | Scientific Mission | Altimeter |
---|---|---|---|---|
GEOSAT | USA/USN | 1985 | Military, Geodesy and Oceanography | GRAS |
ERS-1 | Europe/ESA | 1991 | Land and Ocean Surface Change | RA-1 |
TOPEX/Poseidon | USA/NASA France/CNES | 1992 | Ocean Surface Topography Mission | Poseidon-1 |
ERS-2 | Europe/ESA | 1995 | Land and Ocean Surface Change | RA-1 |
Jason-1 | USA/NASA France/CNES | 2001 | Ocean Surface Topography Mission | Poseidon-2 |
ENVISAT | Europe/ESA | 2002 | Earth Observation | RA-2 |
ICESat | USA/NASA | 2003 | Ice Sheet Mass Balance, Cloud and Aerosol Heights | GLAS |
Jason-2 | USA/NASA France/CNES | 2008 | Ocean Surface Topography Mission | Poseidon-3 |
CryoSat-2 | Europe/ESA | 2010 | Polar Sea Ice Thickness and Ice Sheets | SIRAL |
HY-2 | China/CNSA | 2011 | Ocean Dynamic and Environmental Parameters | RA |
SARAL | India/ISRO France/CNES | 2013 | Earth Observation | AltiKa |
Sentinel-3 | Europe/ESA | 2016 | Ocean and Land Observation | SRAL |
Jason-3 | USA/NASA France/CNES | 2016 | Oceanography Mission | Poseidon-3b |
ICESat-2 | USA/NASA | 2018 | Ice Sheet Elevation and Sea Ice Thickness | ATLAS |
SWOT | USA/NASA France/CNES | 2022 | Surface Water and Ocean Topography Mission | KaRin, Poseidon-3C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Sun, R.; Wang, H.; Wu, X. Trends and Innovations in Surface Water Monitoring via Satellite Altimetry: A 34-Year Bibliometric Review. Remote Sens. 2024, 16, 2886. https://doi.org/10.3390/rs16162886
Huang Z, Sun R, Wang H, Wu X. Trends and Innovations in Surface Water Monitoring via Satellite Altimetry: A 34-Year Bibliometric Review. Remote Sensing. 2024; 16(16):2886. https://doi.org/10.3390/rs16162886
Chicago/Turabian StyleHuang, Zhengkai, Rumiao Sun, Haihong Wang, and Xin Wu. 2024. "Trends and Innovations in Surface Water Monitoring via Satellite Altimetry: A 34-Year Bibliometric Review" Remote Sensing 16, no. 16: 2886. https://doi.org/10.3390/rs16162886