Investigating Intra-Pulse Doppler Frequency Coupled in the Radar Echo Signal of a Plasma Sheath-Enveloped Target
"> Figure 1
<p>(<b>a</b>) PSh-enveloped target; (<b>b</b>) Spatial distribution characteristics of corresponding parameters of the plasma sheath.</p> "> Figure 2
<p>Diagram of the transmitted signal.</p> "> Figure 3
<p>Diagram of the echo signal.</p> "> Figure 4
<p>Flow chart of intra-pulse Doppler frequency extraction.</p> "> Figure 5
<p>Schematic diagram demonstrating computation results of the XOY slice of the flow field.</p> "> Figure 6
<p>Extraction process of I-D frequency.</p> "> Figure 7
<p>(<b>a</b>) Time-domain waveform of the transmitted signal; Echo signal at the ranges of (<b>b</b>) 80 km, (<b>c</b>) 100 km, and (<b>d</b>) 120 km.</p> "> Figure 8
<p>(<b>a</b>) Echo signal; (<b>b</b>) Frequency-domain echo signal; (<b>c</b>) Result of the FRFT of the echo signal; (<b>d</b>) Wigner–Ville transform result of the echo signal.</p> "> Figure 9
<p>(<b>a</b>) Time-frequency-domain of the echo after dechirp; (<b>b</b>) Frequency-domain of the echo after dechirp.</p> "> Figure 10
<p>Electron density distribution in simulated flow field at different flight altitudes: (<b>a</b>) H = 30 km; (<b>b</b>) H = 50 km; (<b>c</b>) H = 60 km; (<b>d</b>) H = 70 km.</p> "> Figure 11
<p>Velocity distribution of plasma sheath at different flight altitudes: (<b>a</b>) H = 30 km; (<b>b</b>) H = 50 km; (<b>c</b>) H = 60 km; (<b>d</b>) H = 70 km.</p> "> Figure 11 Cont.
<p>Velocity distribution of plasma sheath at different flight altitudes: (<b>a</b>) H = 30 km; (<b>b</b>) H = 50 km; (<b>c</b>) H = 60 km; (<b>d</b>) H = 70 km.</p> "> Figure 12
<p>Reflection coefficient of plasma sheath to electromagnetic wave at an altitude of 30 km: (<b>a</b>) <span class="html-italic">f</span><sub>c</sub> = 3.3 GHz; (<b>b</b>) <span class="html-italic">f</span><sub>c</sub> = 5.8 GHz; (<b>c</b>) <span class="html-italic">f</span><sub>c</sub> = 9.5 GHz; (<b>d</b>) <span class="html-italic">f</span><sub>c</sub> = 18 GHz.</p> "> Figure 13
<p>The Doppler spectrum of the echo at an altitude of 30 km: (<b>a</b>) <span class="html-italic">f</span><sub>c</sub> = 3.3 GHz; (<b>b</b>) <span class="html-italic">f</span><sub>c</sub> = 5.8 GHz; (<b>c</b>) <span class="html-italic">f</span><sub>c</sub> = 9.5 GHz; (<b>d</b>) <span class="html-italic">f</span><sub>c</sub> = 18 GHz.</p> "> Figure 14
<p>The Doppler spectrum of the echo at an altitude of 50 km: (<b>a</b>) <span class="html-italic">f</span><sub>c</sub> = 3.3 GHz; (<b>b</b>) <span class="html-italic">f</span><sub>c</sub> = 5.8 GHz; (<b>c</b>) <span class="html-italic">f</span><sub>c</sub> = 9.5 GHz; (<b>d</b>) <span class="html-italic">f</span><sub>c</sub> = 18 GHz.</p> "> Figure 14 Cont.
<p>The Doppler spectrum of the echo at an altitude of 50 km: (<b>a</b>) <span class="html-italic">f</span><sub>c</sub> = 3.3 GHz; (<b>b</b>) <span class="html-italic">f</span><sub>c</sub> = 5.8 GHz; (<b>c</b>) <span class="html-italic">f</span><sub>c</sub> = 9.5 GHz; (<b>d</b>) <span class="html-italic">f</span><sub>c</sub> = 18 GHz.</p> "> Figure 15
<p>The Doppler spectrum of the echo at an altitude of 60 km: (<b>a</b>) <span class="html-italic">f</span><sub>c</sub> = 3.3 GHz; (<b>b</b>) <span class="html-italic">f</span><sub>c</sub> = 5.8 GHz; (<b>c</b>) <span class="html-italic">f</span><sub>c</sub> = 9.5 GHz; (<b>d</b>) <span class="html-italic">f</span><sub>c</sub> = 18 GHz.</p> "> Figure 16
<p>The Doppler spectrum of the echo at an altitude of 70 km: (<b>a</b>) <span class="html-italic">f</span><sub>c</sub> = 3.3 GHz; (<b>b</b>) <span class="html-italic">f</span><sub>c</sub> = 5.8 GHz; (<b>c</b>) <span class="html-italic">f</span><sub>c</sub> = 9.5 GHz; (<b>d</b>) <span class="html-italic">f</span><sub>c</sub> = 18 GHz.</p> ">
Abstract
:1. Introduction
2. I-D Frequency Extraction of PSh-Enveloped Target Echo Signal
2.1. Radar Echo Model of the Target Enveloped in a PSh
2.2. Equivalent Time Delay Derivation
2.3. Estimating Pulse Parameter of the Echo
- ① When , Equation (19) can be rewritten as
- ② When , Equation (19) can be rewritten as
- ③ When , Equation (19) can be rewritten as
- ④ When , Equation (19) can be converted into
- ⑤ When , Equation (19) can be rewritten as
- ⑥ When , Equation (19) can be rewritten as
- ⑦ When , Equation (19) can be rewritten as
2.4. Extracting I-D Frequency
2.5. Analyzing Variation Law of I-D Frequency
3. Simulation Analysis of I-D Frequency Extraction
3.1. Pulse Parameter Extraction of Radar Echo Signal
3.2. I-D Frequency Extraction of Echo Signals
3.3. Velocity Distribution Characteristics of the PSh
3.4. Variation Law of the Coupled I-D Frequency in an Echo Signal under Typical Parameters
Maximum Velocity | fc = 3.3 GHz | fc = 5.8 GHz | fc = 9.5 GHz | fc = 18 GHz |
---|---|---|---|---|
H = 30 km | 16.63 Ma | 16.77 Ma | 16.68 Ma | 16.77 Ma |
H = 50 km | 22.32 Ma | 22.8 Ma | 22.71 Ma | 22.83 Ma |
H = 60 km | 21.72 Ma | 21.53 Ma | 24.06 Ma | 23.99 Ma |
H = 70 km | 24.17 Ma | 23.85 Ma | 23.92 Ma | 23.99 Ma |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hartunian, R.A.; Stewart, G.E.; Fergason, S.D.; Curtiss, T.J.; Seibold, R.W. Causes and Mitigation of Radio Frequency (RF) Blackout during Reentry of Reusable Launch Vehicles; Contractor Rep. ATR-2007(5309)-1; Aerospace Corporation: El Segundo, CA, USA, 2007. [Google Scholar]
- Dix, D.M. Typical Values of Plasma Parameters Around a Conical Re-Entry Vehicle; Scientific rept. AD295429; Aerospace Corporation: El Segundo, CA, USA, 1962. [Google Scholar]
- Bai, B.; Li, X.; Liu, Y.; Xu, J.; Shi, L.; Xie, K. Effects of hypersonic Plasma Sheath on the Polarization Properties of Obliquely Incident EM Waves. IEEE Trans. Plasma Sci. 2014, 42, 3365–3372. [Google Scholar] [CrossRef]
- Sha, Y.X.; Zhang, H.L.; Guo, X.Y.; Xia, M.Y. Analyses of Electromagnetic Properties of a Hypersonic Object With Plasma Sheath. IEEE Trans. Antennas Propag. 2019, 67, 2470–2481. [Google Scholar] [CrossRef]
- Rybak, J.P.; Churchill, R.J. Progress in Reentry Communications. IEEE Trans. Aerosp. Electron. Syst. 1971, AES-7, 879–894. [Google Scholar] [CrossRef]
- Shi, L.; Liu, Y.; Fang, S.; Li, X.; Yao, B.; Zhao, L.; Yang, M. Adaptive multistate Markov channel modeling method for reentry dynamic plasma sheaths. IEEE Trans. Plasma Sci. 2016, 44, 1083–1093. [Google Scholar] [CrossRef]
- Kojima, T.; Higashi, T. Reflection and transmission of electromagnetic waves obliquely incident upon a moving compressible plasma slab. IEEE Trans. Antennas Propag. 1972, 20, 398–400. [Google Scholar] [CrossRef]
- Chen, X.Y.; Li, K.X.; Liu, Y.Y.; Zhou, Y.G.; Li, X.P.; Liu, Y.M. Study of the influence of time-varying plasma sheath on radar echo signal. IEEE Trans. Plasma Sci. 2017, 45, 3166–3176. [Google Scholar] [CrossRef]
- Laroussi, M.; Roth, J.R. Numerical Calculation of the Reflection, Absorption, and Transmission of Microwaves by a Non-Uniform Plasma Slab. IEEE Trans. Plasma Sci. 1993, 21, 366–372. [Google Scholar] [CrossRef]
- Kalluri, D.K.; Goteti, V.R. WKB Solution for Wave Propagation in a Time-Varying Magneto plasma Medium: Longitudinal Propagation. IEEE Trans. Plasma Sci. 1993, 21, 70–76. [Google Scholar] [CrossRef]
- Lee, J.H.; Kalluri, D.K. Three-Dimensional FDTD Simulation of Electromagnetic Wave Transformation in a Dynamic Inhomogeneous Magnetized Plasma. IEEE Trans. Antennas Propag. 1999, 47, 1146–1151. [Google Scholar]
- Close, S.; Oppenheim, M.; Hunt, S.; Dyrud, L. Scattering characteristics of high-resolution meteor head echoes detected at multiple frequencies. J. Geophys. Res. Space Phys. 2002, 107, SIA-9-1–SIA-9-12. [Google Scholar] [CrossRef]
- Luo, C.R.; Ding, C.L.; Duan, L.B. 12th Five-Year Plan Textbooks: Electrodynamics; Publishing House of Electronics Industry: Beijing, China, 2016; pp. 150–176. [Google Scholar]
- Cao, C.Q. Basic Series of Modern Physics: Classical Electrodynamics; Science Press: Beijing, China, 2009; pp. 167–180. [Google Scholar]
- Kero, J.; Szasz, C.; Wannberg, G. On the meteoric head echo radar cross section angular dependence. Geophys. Res. Lett. 2008, 35, 154–162. [Google Scholar] [CrossRef]
- Ding, Y.; Bai, B.; Gao, H.; Niu, G.; Shen, F.; Liu, Y.; Li, X. An Analysis of Radar Detection on a Plasma Sheath Covered Reentry Target. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 4255–4268. [Google Scholar] [CrossRef]
- Ding, Y.; Bai, B.; Gao, H.; Liu, Y.; Li, X.; Zhao, M. Method of Detecting a Target Enveloped by a Plasma Sheath Based on Doppler Frequency Compensation. IEEE Trans. Plasma Sci. 2020, 48, 4103–4111. [Google Scholar] [CrossRef]
- Mudukutore, A.S.; Chandrasekar, V.; Keeler, R.J. Pulse compression for weather radars. IEEE Trans. Geosci. Remote Sens. 1998, 36, 125–142. [Google Scholar] [CrossRef]
- Su, J.; Xing, M.; Wang, G. High-velocity multi-target detection with narrow band radar. IET Radar Sonar Navig. 2010, 4, 595–603. [Google Scholar] [CrossRef]
- Huang, P.; Liao, G.; Yang, Z.; Xia, X.G.; Ma, J.T.; Zhang, X. A Fast SAR Imaging Method for Ground Moving Target Using a Second-Order WVD Transform. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1940–1956. [Google Scholar] [CrossRef]
- Stankovic, L. On the realization of the polynomial Wigner-Ville distribution for multi-component signals. IEEE Signal Process. Lett. 1998, 5, 157–159. [Google Scholar] [CrossRef]
- Zhan, M.; Huang, P.; Liu, X.; Liao, G.; Zhang, Z.; Wang, Z.; Hou, Q. Space Maneuvering Target Integration Detection and Parameter Estimation for a Spaceborne Radar System with Target Doppler Aliasing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3579–3594. [Google Scholar] [CrossRef]
- Li, X.; Sun, Z.; Yi, W.; Cui, G.; Kong, L. Radar Detection and Parameter Estimation of High-velocity Target Based on MART-LVT. IEEE Sens. J. 2019, 19, 1478–1486. [Google Scholar] [CrossRef]
- Chen, J.; He, C.; Liang, X.; Bai, L.; Bai, X.; Zhu, W.; Jin, R. Direction Finding of Linear Frequency Modulation Signal in Time Modulated Array with Pulse Compression. IEEE Trans. Antennas Propag. 2020, 68, 509–520. [Google Scholar] [CrossRef]
Parameter Type | Parameter Setting | Values |
---|---|---|
Parameters of target and flow field | Maximum plasma density | Nemax = 2.67 × 1020/m3 |
Height | H = 40 km | |
Shape of aircraft | Blunt cone | |
Velocity of vehicle | Vtar = 4521 m/s | |
Radar signal parameters | Carrier frequency | fc = 3.3 GHz |
Bandwidth | B = 5 MHz | |
Pulse width | Tp = 500 μs | |
Distance of target | R0 = 80 km/100 km/120 km |
FRFT | WVD | Proposed Method | |
---|---|---|---|
Minimum frequency interval | Δf = 0.14 MHz | Δf = 0.183 MHz | Δf = 0.0657 MHz |
Computation time | T = 6.5 s | T = 7.8 s | T = 1.4 s |
Critical SNR | SNR = −12 dB | SNR = −10 dB | SNR = −9 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, B.; Pu, B.; Zhang, K.; Yang, Y.; Li, X.; Liu, Y. Investigating Intra-Pulse Doppler Frequency Coupled in the Radar Echo Signal of a Plasma Sheath-Enveloped Target. Remote Sens. 2024, 16, 2811. https://doi.org/10.3390/rs16152811
Bai B, Pu B, Zhang K, Yang Y, Li X, Liu Y. Investigating Intra-Pulse Doppler Frequency Coupled in the Radar Echo Signal of a Plasma Sheath-Enveloped Target. Remote Sensing. 2024; 16(15):2811. https://doi.org/10.3390/rs16152811
Chicago/Turabian StyleBai, Bowen, Bailiang Pu, Ke Zhang, Yilin Yang, Xiaoping Li, and Yanming Liu. 2024. "Investigating Intra-Pulse Doppler Frequency Coupled in the Radar Echo Signal of a Plasma Sheath-Enveloped Target" Remote Sensing 16, no. 15: 2811. https://doi.org/10.3390/rs16152811