Assessing Sentinel-2, Sentinel-1, and ALOS-2 PALSAR-2 Data for Large-Scale Wildfire-Burned Area Mapping: Insights from the 2017–2019 Canada Wildfires
<p>Spatial and temporal coverage of the established wildfire-burned area dataset in Canada.</p> "> Figure 2
<p>Workflow of dataset construction: pre-/post-fire images acquired by Sentinel-2, Sentinel-1, and ALOS-2 PALSAR-2, and the reference mask rasterized from the official wildfire perimeter derived from Landsat data.</p> "> Figure 3
<p>Land cover distribution of the proposed wildfire-burned area dataset.</p> "> Figure 4
<p>The Comparison between the distribution of post-fire NBR, dNBR, and RdNBR with respect to land cover.</p> "> Figure 5
<p>Comparison among post-fire and log-ratio differenced Sentinel-1 ND, VH, and VV with respect to land cover.</p> "> Figure 6
<p>Comparison among post-fire and log-ratio differenced ALOS ND, VH, and VV with respect to land cover.</p> "> Figure 7
<p>Network architectures: (<b>a</b>) UNet-EF. (<b>b</b>) Siam-UNet-conc. (<b>c</b>) Siam-UNet-diff. (<b>d</b>) Dual-UNet-LF.</p> "> Figure 8
<p>Comparison between the mean IoU (mIoU) and total IoU scores on the testing set (the setting names VV, VH, and ND denote that only a single band from pre-fire and post-fire images were used as input data; please refer to <a href="#remotesensing-16-00556-t001" class="html-table">Table 1</a>).</p> "> Figure 9
<p>U-Net performance comparison of train, validation, and test sets.</p> "> Figure 10
<p>The comparison on network architectures based on bi-temporal data acquired by a single sensor or any two sensors from Sentinel-2, Sentinel-1, and ALOS-2 PALSAR-2.</p> "> Figure 11
<p>Visual comparison of the CA-2019-NT-8 wildfire event. In the top row, they are Sentinel-1 pre-event SAR image, Sentinel-1 post-event SAR image, ALOS PALSAR pre-event SAR image, ALOS PALSAR post-event image, Sentinel-2 pre-event MSI image, Sentinel-2 post-event MSI. All SAR images are visualized in the false-color composite of R = ND, G = VH (or HV), B = VV (or HH). The bottom two rows show the results comparing the ground truth, where the dark red denotes true positive (TP) pixels, the green denotes false positive (FP), the pink represents false negative (FN) while the white denotes true negative (TN).</p> "> Figure 12
<p>Visual comparison of the CA-2019-AB-172 wildfire event. In the top row, they are Sentinel-1 pre-event SAR image, Sentinel-1 post-event SAR image, ALOS PALSAR pre-event SAR image, ALOS PALSAR post-event image, Sentinel-2 pre-event MSI image, Sentinel-2 post-event MSI. All SAR images are visualized in the false-color composite of R = ND, G = VH (or HV), B = VV (or HH). The bottom two rows show the results comparing the ground truth, where the dark red denotes true positive (TP) pixels, the green denotes false positive (FP), the pink represents false negative (FN) while the white denotes true negative (TN).</p> "> Figure 13
<p>Visual comparison of the CA-2019-QC-808 wildfire event. In the top row, they are Sentinel-1 pre-event SAR image, Sentinel-1 post-event SAR image, ALOS PALSAR pre-event SAR image, ALOS PALSAR post-event image, Sentinel-2 pre-event MSI image, Sentinel-2 post-event MSI; All SAR images are visualized in the false-color composite of R = ND, G = VH (or HV), B = VV (or HH). The bottom two rows show the results comparing the ground truth, where the dark red denotes true positive (TP) pixels, the green denotes false positive (FP), the pink represents false negative (FN) while the white denotes true negative (TN).</p> "> Figure 14
<p>Visual comparison of the CA-2019-ON-730 wildfire event. In the top row, they are Sentinel-1 pre-event SAR image, Sentinel-1 post-event SAR image, ALOS PALSAR pre-event SAR image, ALOS PALSAR post-event image, Sentinel-2 pre-event MSI image, Sentinel-2 post-event MSI. All SAR images are visualized in the false-color composite of R = ND, G = VH (or HV), B = VV (or HH). The bottom two rows show the results compared to the ground truth, where the dark red denotes true positive (TP) pixels, the green denotes false positive (FP), the pink represents false negative (FN) while the white denotes true negative (TN).</p> "> Figure 15
<p>IoU boxplot of U-Net predictions on the 58 testing events with respect to various land cover types, such as non-water areas, closed forest, open forest, shrubs, and grassland (S1, AL, and S2 are short for Sentinel-1, ALOS-2 PALSAR-2, and Sentinel-2).</p> "> Figure 16
<p>F1 boxplot of U-Net predictions on the 58 testing events with respect to various land cover types, such as non-water areas, closed forest, open forest, shrubs, and grassland (S1, AL, and S2 are short for Sentinel-1, ALOS-2 PALSAR-2, and Sentinel-2).</p> "> Figure 17
<p>IoU boxplot comparison between Sentinel-2 and MODIS-Based Burned Area Products across various vegetation types (S2_UNet denotes the UNet prediction based on Sentinel-2 pre-fire and post-fire images, S2_dNBR_TH0.1 denotes the detection by thresholding S2_dNBR with the specified threshold 0.1, while MCD64A1.061 and FireCCI51 are two global burned area products based on MODIS).</p> ">
Abstract
:1. Introduction
- To the best of our knowledge, it is the first large-scale wildfire satellite image dataset that includes both pre-fire and post-fire images captured by C-Band Sentinel-1, Multispectral Sentinel-2, and L-Band ALOS-2 PALSAR-2 satellites, respectively.
- We systematically analyzed the established large-scale multi-sensor satellite imagery dataset, quantitatively compared the difference between MSI spectra and SAR backscattering in burned and unburned areas, and the difference in temporal changes across various land cover types.
- We evaluated several simple but widely used deep learning architectures for wildfire-burned area mapping, i.e., U-Net and its Siamese variants. We also investigated three fusion strategies, including early fusion, late fusion, and intermediate fusion.
2. Wildfire-S1S2ALOS-Canada Dataset
2.1. Data Sources
2.2. Dataset Preparation
2.3. Dataset Structure
3. Optical and Radar Responses to Burned Areas
3.1. Land Cover Distribution
3.2. Sentinel-2 Spectral Responses
3.3. Sentinel-1 C-Band SAR Backscatter Responses
3.4. ALOS-2 PALSAR-2 L-Band SAR Backscatter Responses
4. Deep Learning for Wildfire-Burned Area Mapping
- Siam-UNet-Conc [27]: Siamese U-Net with intermediate feature concatenation, in which two encoder branches handle bi-temporal images, respectively, and the concatenated feature representation along the channel is stacked together with the corresponding decoder features of the same width and height (see Figure 7b);
5. Experimental Results
5.1. Channel Evaluation with U-Net
5.2. Single-Sensor vs. Multi-Sensor Fusion
5.3. Visual Comparison
5.4. Land Cover-Specific Assessment
5.5. Comparison between Sentinel-2 and MODIS-Based Burned Area Products
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lizundia-Loiola, J.; Otón, G.; Ramo, R.; Chuvieco, E. A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data. Remote Sens. Environ. 2020, 236, 111493. [Google Scholar] [CrossRef]
- Shi, K.; Touge, Y. Characterization of global wildfire burned area spatiotemporal patterns and underlying climatic causes. Sci. Rep. 2022, 12, 644. [Google Scholar] [CrossRef] [PubMed]
- Loehman, R.A.; Reinhardt, E.; Riley, K.L. Wildland Fire Emissions, Carbon, and Climate: Seeing the Forest and the Trees—A Cross-Scale Assessment of Wildfire and Carbon Dynamics in Fire-prone, Forested Ecosystems. For. Ecol. Manag. 2014, 317, 9–19. [Google Scholar] [CrossRef]
- Lasslop, G.; Coppola, A.I.; Voulgarakis, A.; Yue, C.; Veraverbeke, S. Influence of Fire on the Carbon Cycle and Climate. Curr. Clim. Chang. Rep. 2019, 5, 112–123. [Google Scholar] [CrossRef]
- Palm, E.C.; Suitor, M.J.; Joly, K.; Herriges, J.D.; Kelly, A.P.; Hervieux, D.; Russell, K.L.; Bentzen, T.W.; Larter, N.C.; Hebblewhite, M. Increasing Fire Frequency and Severity will Increase Habitat Loss for a Boreal Forest Indicator Species. Ecol. Appl. 2022, 32, e2549. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, P.; Ban, Y. Large-scale burn severity mapping in multispectral imagery using deep semantic segmentation models. ISPRS J. Photogramm. Remote Sens. 2023, 196, 228–240. [Google Scholar] [CrossRef]
- Chuvieco, E.; Mouillot, F.; van der Werf, G.R.; San Miguel, J.; Tanase, M.; Koutsias, N.; García, M.; Yebra, M.; Padilla, M.; Gitas, I.; et al. Historical Background and Current Developments for Mapping Burned Area from Satellite Earth Observation. Remote Sens. Environ. 2019, 225, 45–64. [Google Scholar] [CrossRef]
- Roy, D.P.; Boschetti, L.; Trigg, S.N. Remote Sensing of Fire Severity: Assessing the Performance of the Normalized Burn Ratio. IEEE Geosci. Remote Sens. Lett. 2006, 3, 112–116. [Google Scholar] [CrossRef]
- Massetti, A.; Rüdiger, C.; Yebra, M.; Hilton, J. The Vegetation Structure Perpendicular Index (VSPI): A forest condition index for wildfire predictions. Remote Sens. Environ. 2019, 224, 167–181. [Google Scholar] [CrossRef]
- Katagis, T.; Gitas, I.Z. Assessing the accuracy of MODIS MCD64A1 C6 and FireCCI51 burned area products in Mediterranean ecosystems. Remote Sens. 2022, 14, 602. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Tyukavina, A.; Potapov, P.; Hansen, M.C.; Pickens, A.H.; Stehman, S.V.; Turubanova, S.; Parker, D.; Zalles, V.; Lima, A.; Kommareddy, I.; et al. Global trends of forest loss due to fire from 2001 to 2019. Front. Remote Sens. 2022, 3, 825190. [Google Scholar] [CrossRef]
- Tanase, M.A.; Santoro, M.; de La Riva, J.; Fernando, P.; Le Toan, T. Sensitivity of X-, C-, and L-band SAR backscatter to burn severity in Mediterranean pine forests. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3663–3675. [Google Scholar] [CrossRef]
- Tanase, M.A.; Santoro, M.; Wegmüller, U.; de la Riva, J.; Pérez-Cabello, F. Properties of X-, C-and L-band repeat-pass interferometric SAR coherence in Mediterranean pine forests affected by fires. Remote Sens. Environ. 2010, 114, 2182–2194. [Google Scholar] [CrossRef]
- Reiche, J.; Verhoeven, R.; Verbesselt, J.; Hamunyela, E.; Wielaard, N.; Herold, M. Characterizing tropical forest cover loss using dense Sentinel-1 data and active fire alerts. Remote Sens. 2018, 10, 777. [Google Scholar] [CrossRef]
- Engelbrecht, J.; Theron, A.; Vhengani, L.; Kemp, J. A simple normalized difference approach to burnt area mapping using multi-polarisation C-Band SAR. Remote Sens. 2017, 9, 764. [Google Scholar] [CrossRef]
- Belenguer-Plomer, M.A.; Tanase, M.A.; Fernandez-Carrillo, A.; Chuvieco, E. Burned area detection and mapping using Sentinel-1 backscatter coefficient and thermal anomalies. Remote Sens. Environ. 2019, 233, 111345. [Google Scholar] [CrossRef]
- Ban, Y.; Zhang, P.; Nascetti, A.; Bevington, A.R.; Wulder, M.A. Near real-time wildfire progression monitoring with Sentinel-1 SAR time series and deep learning. Sci. Rep. 2020, 10, 1322. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Ban, Y.; Nascetti, A. Learning U-Net without forgetting for near real-time wildfire monitoring by the fusion of SAR and optical time series. Remote Sens. Environ. 2021, 261, 112467. [Google Scholar] [CrossRef]
- Zhang, Q.; Ge, L.; Zhang, R.; Metternicht, G.I.; Du, Z.; Kuang, J.; Xu, M. Deep-Learning-Based Burned Area Mapping Using the Synergy of Sentinel-1&2 Data. Remote Sens. Environ. 2021, 264, 112575. [Google Scholar]
- Belenguer-Plomer, M.A.; Tanase, M.A.; Chuvieco, E.; Bovolo, F. CNN-based burned area mapping using radar and optical data. Remote Sens. Environ. 2021, 260, 112468. [Google Scholar] [CrossRef]
- Zhang, P.; Ban, Y. Unsupervised Geospatial Domain Adaptation for Large-Scale Wildfire Burned Area Mapping Using Sentinel-2 MSI and Sentinel-1 SAR Data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS’2023), Pasadena, CA, USA, 16–21 July 2023; pp. 5742–5745. [Google Scholar]
- Loehman, R.A. Drivers of wildfire carbon emissions. Nat. Clim. Chang. 2020, 10, 1070–1071. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, X.; Ban, Y. Wildfire-S1S2-Canada: A Large-Scale Sentinel-1/2 Wildfire Burned Area Mapping Dataset Based on the 2017–2019 Wildfires in Canada. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS’2022), Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 7954–7957. [Google Scholar]
- Hall, R.; Skakun, R.; Metsaranta, J.; Landry, R.; Fraser, R.; Raymond, D.; Gartrell, M.; Decker, V.; Little, J. Generating Annual Estimates of Forest Fire Disturbance in Canada: The National Burned Area Composite. Int. J. Wildland Fire 2020, 29, 878–891. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Daudt, R.C.; Le Saux, B.; Boulch, A. Fully Convolutional Siamese Networks for Change Detection. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 4063–4067. [Google Scholar]
- Hafner, S.; Nascetti, A.; Azizpour, H.; Ban, Y. Sentinel-1 and Sentinel-2 Data Fusion for Urban Change Detection Using a Dual Stream U-Net. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
Satellite | Setting Name | Bands | Pre-Fire | Post-Fire |
---|---|---|---|---|
Sentinel-2 (S2) | post | B4, B8, B12 | √ | |
prepost | B4, B8, B12 | √ | √ | |
Sentinel-1 (S1) | VV | VV | √ | √ |
VH | VH | √ | √ | |
ND | ND | √ | √ | |
post | ND, VH, VV | √ | ||
prepost | ND, VH, VV | √ | √ | |
ALOS-2 PALSAR-2 (AL) | HH | HH | √ | √ |
HV | HV | √ | √ | |
ND | ND | √ | √ | |
post | ND, HV, HH | √ | ||
prepost | ND, HV, HH | √ | √ |
Product | Non_Water | Closed_Forest | Open_Forest | Shrubs | Grassland | Others | |
---|---|---|---|---|---|---|---|
IoU | S2_UNet | 0.89 | 0.91 | 0.82 | 0.73 | 0.62 | 0.67 |
MCD64A1.061 | 0.56 | 0.58 | 0.50 | 0.43 | 0.33 | 0.40 | |
FireCCI51 | 0.56 | 0.60 | 0.48 | 0.39 | 0.29 | 0.38 | |
S2_dNBR_TH0.1 | 0.64 | 0.72 | 0.41 | 0.26 | 0.20 | 0.25 | |
F1 | S2_UNet | 0.94 | 0.95 | 0.90 | 0.84 | 0.76 | 0.80 |
MCD64A1.061 | 0.71 | 0.73 | 0.66 | 0.60 | 0.49 | 0.57 | |
FireCCI51 | 0.72 | 0.75 | 0.65 | 0.56 | 0.45 | 0.55 | |
S2_dNBR_TH0.1 | 0.78 | 0.84 | 0.58 | 0.41 | 0.34 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Hu, X.; Ban, Y.; Nascetti, A.; Gong, M. Assessing Sentinel-2, Sentinel-1, and ALOS-2 PALSAR-2 Data for Large-Scale Wildfire-Burned Area Mapping: Insights from the 2017–2019 Canada Wildfires. Remote Sens. 2024, 16, 556. https://doi.org/10.3390/rs16030556
Zhang P, Hu X, Ban Y, Nascetti A, Gong M. Assessing Sentinel-2, Sentinel-1, and ALOS-2 PALSAR-2 Data for Large-Scale Wildfire-Burned Area Mapping: Insights from the 2017–2019 Canada Wildfires. Remote Sensing. 2024; 16(3):556. https://doi.org/10.3390/rs16030556
Chicago/Turabian StyleZhang, Puzhao, Xikun Hu, Yifang Ban, Andrea Nascetti, and Maoguo Gong. 2024. "Assessing Sentinel-2, Sentinel-1, and ALOS-2 PALSAR-2 Data for Large-Scale Wildfire-Burned Area Mapping: Insights from the 2017–2019 Canada Wildfires" Remote Sensing 16, no. 3: 556. https://doi.org/10.3390/rs16030556