Disentangling Satellite Precipitation Estimate Errors of Heavy Rainfall at the Daily and Sub-Daily Scales in the Western Mediterranean
<p>(<b>a</b>) Digital elevation model of the study region and network of automatic weather stations (red dots); (<b>b</b>) Histograms of altitude distribution of the terrain (% of Catalonia’s area, dark shaded gray) and automatic weather stations (unfilled contours); (<b>c</b>) Number of rain gauges per IMERG pixel.</p> "> Figure 2
<p>Point precipitation extremes for different temporal aggregations observed by RG (black) and estimated by IMERG Late (blue) and Early (green) in Catalonia between 2014 and 2023. The solid lines correspond to the power-law fits, and the black dashed line corresponds to the scaling of the upper envelope of the observed data. The dashed red lines show different ratios of the upper reference envelope.</p> "> Figure 3
<p>Spatial representation of the half-hourly IMERG and RG extremes, accounting for 18% of the envelope curve. The frequency of IMERG extremes included events identified by both the Early and Late products. The grid represents that at the original IMERG resolution.</p> "> Figure 4
<p>(<b>Top panel</b>) BIAS and (<b>Bottom panel</b>) MAE comparing IMERG Early (IMERG_E) and IMERG Late (IMERG_L) products and RG records greater than or equal to 18% of the envelope curve. For reference, the dotted red lines indicate perfect scores.</p> "> Figure 5
<p>(<b>a</b>,<b>b</b>) POD and (<b>c</b>,<b>d</b>) FAR scores for different temporal aggregations and precipitation intensity thresholds of the IMERG Early (IMERG_E) and Late (IMERG_L) products.</p> "> Figure 5 Cont.
<p>(<b>a</b>,<b>b</b>) POD and (<b>c</b>,<b>d</b>) FAR scores for different temporal aggregations and precipitation intensity thresholds of the IMERG Early (IMERG_E) and Late (IMERG_L) products.</p> "> Figure 6
<p>(<b>Top row</b>) Scatter plot for each IMERG source versus rain gauge observations. The RG rainfall intensities stratified into different envelope curve thresholds (1%, 5%, 10%, and 18%) are plotted in different colors. The regression adjustment line with 95% confidence error is also plotted (gray line with grayish shading). (<b>Bottom row</b>) Percentage of distributions of hits, false alarms, and misses for each IMERG source and for each rain gauge precipitation intensity.</p> "> Figure 7
<p>Scatter plot of Rbias (mm) versus MAE (mm) for each IMERG data source (PMW, MORPH, and MORPH+IR) and stratified according to rain gauge precipitation intensities (1%, 5%, 10%, and 18%). The marked point (black star) is the reference for no errors, whereas the bottom right is the location with the highest errors.</p> "> Figure 8
<p>Probability distributions of the cloud properties described in <a href="#sec2dot2dot3-remotesensing-16-00457" class="html-sec">Section 2.2.3</a>, based on all time steps of intense precipitation greater than or equal to 1% of the envelope curve in the RG (gray shading), IMERG, and its sources (colored lines), separated into (<b>a</b>–<b>c</b>) ice cloud tops and (<b>d</b>–<b>f</b>) warm/liquid cloud tops and (<b>g</b>–<b>i</b>) mixed cloud tops. The vertical colored lines in each plot indicate the median values of the respective distribution.</p> "> Figure 9
<p>Percentage of sensors contributing to hits, false alarms, and misses of IMERG estimates according to cloud phase (<b>a</b>–<b>c</b>) ice, (<b>d</b>–<b>f</b>) liquid, and (<b>g</b>–<b>i</b>) mixed and RG intensity thresholds. The missing intensity representation (panels d and g) is due to the absence of data for these cases.</p> "> Figure 9 Cont.
<p>Percentage of sensors contributing to hits, false alarms, and misses of IMERG estimates according to cloud phase (<b>a</b>–<b>c</b>) ice, (<b>d</b>–<b>f</b>) liquid, and (<b>g</b>–<b>i</b>) mixed and RG intensity thresholds. The missing intensity representation (panels d and g) is due to the absence of data for these cases.</p> "> Figure 10
<p>As in <a href="#remotesensing-16-00457-f008" class="html-fig">Figure 8</a>, but for the elements of the standard contingency table.</p> "> Figure A1
<p>Probability distributions of the cloud properties described in <a href="#sec2dot2dot3-remotesensing-16-00457" class="html-sec">Section 2.2.3</a> based on all time steps of intense precipitation greater than or equal to (<b>a</b>–<b>c</b>) 5%, (<b>d</b>–<b>f</b>) 10%, and (<b>g</b>–<b>i</b>) 18% of the envelope curve in the RG (gray shading), IMERG, and its sources (colored lines), only for ice cloud tops. The vertical colored lines in each plot indicate the median values of the respective distribution.</p> "> Figure A1 Cont.
<p>Probability distributions of the cloud properties described in <a href="#sec2dot2dot3-remotesensing-16-00457" class="html-sec">Section 2.2.3</a> based on all time steps of intense precipitation greater than or equal to (<b>a</b>–<b>c</b>) 5%, (<b>d</b>–<b>f</b>) 10%, and (<b>g</b>–<b>i</b>) 18% of the envelope curve in the RG (gray shading), IMERG, and its sources (colored lines), only for ice cloud tops. The vertical colored lines in each plot indicate the median values of the respective distribution.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. GPM IMERG V06B Data
2.2.2. Rain Gauge Data
2.2.3. CMIC NW SAF Product
2.3. Methodology
2.3.1. Definition and Selection of Extreme Precipitation Events
2.3.2. Point-Pixel Validation Measures
3. Results
3.1. General Characteristics of Extreme Precipitation Events
3.2. Evaluation of IMERG at Multiple Time Scales and Intensity Thresholds
Categorical Scores
3.3. Assessing the Contribution of Sensors on a Semi-Hourly Scale
3.4. Relationship between IMERG Sources and Microphysical Properties of the Clouds
Origin of Hits, Misses, and False Alarms
4. Discussion
5. Conclusions
- IMERG shows a marked tendency to underestimate precipitation as the rainfall intensity threshold increases and the temporal resolution increases. IMERG_L does not offer relevant advantages over the IMERG_E product in the detection of extreme events.
- Although the underestimate of intense precipitation in IMERG is found for all source types, the negative bias is weaker when recoveries are due to PMW-direct data and increases when information from IR sensors is incorporated.
- PMW-direct sensors generate high false-alarm rates, while the recovery algorithm with MORPH+IR sources is associated with the highest miss rates of precipitation events.
- IMERG performs dramatically better in the presence of precipitating ice clouds than in warm and mixed clouds. Uncertainties in the occurrence of extreme precipitation associated with ice clouds are related to COT characteristics, as in the mixed phase. However, the estimation of intense precipitation associated with warm clouds shows the worst results and is related to other microphysical characteristics, such as COT and .
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Interval 1 (15 min) | Interval 2 (15 min) | Resulting Phase (30 min) |
---|---|---|
liquid | ice | mixed |
liquid | liquid | liquid |
ice | ice | ice |
mixed | mixed | mixed |
liquid/ice | mixed | liquid/ice |
liquid/ice/mixed | cloud-free/undefined | liquid/ice/mixed |
Appendix B
Score | IMERG | 0.5 h | 1 h | 3 h | 6 h | 9 h | 12 h | 24 h |
---|---|---|---|---|---|---|---|---|
≥1% | ||||||||
Rbias | E | −29.25 | −19.80 | −7.91 | −3.78 | −3.00 | −0.65 | −0.35 |
L | −29.64 | −17.96 | −3.99 | 0.71 | 1.85 | 3.34 | 3.57 | |
≥5% | ||||||||
Rbias | E | −68.45 | −54.79 | −33.52 | −25.82 | −24.42 | −21.44 | −20.63 |
L | −67.40 | −52.02 | −29.12 | −21.19 | −19.26 | −17.02 | −15.76 | |
≥10% | ||||||||
Rbias | E | −77.22 | −68.32 | −46.72 | −32.33 | −29.47 | −27.34 | −25.05 |
L | −76.58 | −66.52 | −42.66 | −27.70 | −23.20 | −22.91 | −19.15 | |
≥18% | ||||||||
Rbias | E | −83.20 | −77.01 | −56.39 | −36.50 | −32.58 | −30.16 | −27.69 |
L | −83.39 | −76.57 | −53.57 | −33.38 | −25.43 | −24.69 | −20.73 |
Appendix C
References
- Insua-Costa, D.; Lemus-Cánovas, M.; Miguez-Macho, G.; Llasat, M.C. Climatology and Ranking of Hazardous Precipitation Events in the Western Mediterranean Area. Atmos. Res. 2021, 255, 105521. [Google Scholar] [CrossRef]
- Michaelides, S.; Karacostas, T.; Sánchez, J.L.; Retalis, A.; Pytharoulis, I.; Homar, V.; Romero, R.; Zanis, P.; Giannakopoulos, C.; Bühl, J. Reviews and Perspectives of High Impact Atmospheric Processes in the Mediterranean. Atmos. Res. 2018, 208, 4–44. [Google Scholar] [CrossRef]
- Panegrossi, G.; Casella, D.; Dietrich, S.; Marra, A.C.; Sanò, P.; Mugnai, A.; Baldini, L.; Roberto, N.; Adirosi, E.; Cremonini, R.; et al. Use of the GPM Constellation for Monitoring Heavy Precipitation Events Over the Mediterranean Region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2733–2753. [Google Scholar] [CrossRef]
- Rigo, T.; Llasat, M.C. A Methodology for the Classification of Convective Structures Using Meteorological Radar: Application to Heavy Rainfall Events on the Mediterranean Coast of the Iberian Peninsula. Nat. Hazards Earth Syst. Sci. 2004, 4, 59–68. [Google Scholar] [CrossRef]
- Siena, M.; Levizzani, V.; Marra, F. A Method to Derive Satellite-Based Extreme Precipitation Return Levels in Poorly Gauged Areas. J. Hydrol. 2023, 626, 130295. [Google Scholar] [CrossRef]
- del Jesus, M.; Diez-Sierra, J. Climate Change Effects on Sub-Daily Precipitation in Spain. Hydrol. Sci. J. 2023, 68, 1065–1077. [Google Scholar] [CrossRef]
- Toreti, A.; Naveau, P.; Zampieri, M.; Schindler, A.; Scoccimarro, E.; Xoplaki, E.; Dijkstra, H.A.; Gualdi, S.; Luterbacher, J. Projections of Global Changes in Precipitation Extremes from Coupled Model Intercomparison Project Phase 5 Models. Geophys. Res. Lett. 2013, 40, 4887–4892. [Google Scholar] [CrossRef]
- Zittis, G.; Bruggeman, A.; Lelieveld, J. Revisiting Future Extreme Precipitation Trends in the Mediterranean. Weather Clim. Extrem. 2021, 34, 100380. [Google Scholar] [CrossRef] [PubMed]
- IMERG: Integrated Multi-Satellite Retrievals for GPM | NASA Global Precipitation Measurement Mission. Available online: https://gpm.nasa.gov/data/imerg (accessed on 17 January 2024).
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.-L.; Joyce, R.J.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Stocker, E.F.; Tan, J.; et al. Integrated Multi-Satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG). In Satellite Precipitation Measurement; Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J., Eds.; Advances in Global Change Research; Springer International Publishing: Cham, Switzerland, 2020; Volume 1, pp. 343–353. ISBN 978-3-030-24568-9. [Google Scholar]
- Li, Z.; Tang, G.; Kirstetter, P.; Gao, S.; Li, J.-L.F.; Wen, Y.; Hong, Y. Evaluation of GPM IMERG and Its Constellations in Extreme Events over the Conterminous United States. J. Hydrol. 2022, 606, 127357. [Google Scholar] [CrossRef]
- Maranan, M.; Fink, A.H.; Knippertz, P.; Amekudzi, L.K.; Atiah, W.A.; Stengel, M. A Process-Based Validation of GPM IMERG and Its Sources Using a Mesoscale Rain Gauge Network in the West African Forest Zone. J. Hydrometeorol. 2020, 21, 729–749. [Google Scholar] [CrossRef]
- Mazzoglio, P.; Laio, F.; Balbo, S.; Boccardo, P.; Disabato, F. Improving an Extreme Rainfall Detection System with GPM IMERG Data. Remote Sens. 2019, 11, 677. [Google Scholar] [CrossRef]
- Watters, D.C.; Gatlin, P.N.; Bolvin, D.T.; Huffman, G.J.; Joyce, R.; Kirstetter, P.; Nelkin, E.J.; Ringerud, S.; Tan, J.; Wang, J.; et al. Oceanic Validation of IMERG-GMI Version 6 Precipitation Using the GPM Validation Network. J. Hydrometeorol. 2023, 1, 125–142. [Google Scholar] [CrossRef]
- Nascimento, J.G.; Althoff, D.; Bazame, H.C.; Neale, C.M.U.; Duarte, N.S.; Ruhoff, L.A.; Gonçalves, I.Z. Evaluating the Latest IMERG Products in a Subtropical Climate: The Case of Paraná State, Brazil. Remote Sens. 2021, 13, 906. [Google Scholar] [CrossRef]
- Moazami, S.; Na, W.; Najafi, M.R.; de Souza, C. Spatiotemporal Bias Adjustment of IMERG Satellite Precipitation Data across Canada. Adv. Water Resour. 2022, 168, 104300. [Google Scholar] [CrossRef]
- Peinó, E.; Bech, J.; Udina, M. Performance Assessment of GPM IMERG Products at Different Time Resolutions, Climatic Areas and Topographic Conditions in Catalonia. Remote Sens. 2022, 14, 5085. [Google Scholar] [CrossRef]
- Fang, J.; Yang, W.; Luan, Y.; Du, J.; Lin, A.; Zhao, L. Evaluation of the TRMM 3B42 and GPM IMERG Products for Extreme Precipitation Analysis over China. Atmos. Res. 2019, 223, 24–38. [Google Scholar] [CrossRef]
- Guo, H.; Chen, S.; Bao, A.; Behrangi, A.; Hong, Y.; Ndayisaba, F.; Hu, J.; Stepanian, P.M. Early Assessment of Integrated Multi-Satellite Retrievals for Global Precipitation Measurement over China. Atmos. Res. 2016, 176–177, 121–133. [Google Scholar] [CrossRef]
- Tian, F.; Hou, S.; Yang, L.; Hu, H.; Hou, A. How Does the Evaluation of the GPM IMERG Rainfall Product Depend on Gauge Density and Rainfall Intensity? J. Hydrometeorol. 2018, 19, 339–349. [Google Scholar] [CrossRef]
- Wang, T.; Li, Z.; Ma, Z.; Gao, Z.; Tang, G. Diverging Identifications of Extreme Precipitation Events from Satellite Observations and Reanalysis Products: A Global Perspective Based on an Object-Tracking Method. Remote Sens. Environ. 2023, 288, 113490. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, M.; Ma, M.; Tang, G.; Wang, T.; Zhao, X.; Ma, S.; Wu, J.; Wang, W. Can GPM IMERG Capture Extreme Precipitation in North China Plain? Remote Sens. 2022, 14, 928. [Google Scholar] [CrossRef]
- Pradhan, R.K.; Markonis, Y.; Vargas Godoy, M.R.; Villalba-Pradas, A.; Andreadis, K.M.; Nikolopoulos, E.I.; Papalexiou, S.M.; Rahim, A.; Tapiador, F.J.; Hanel, M. Review of GPM IMERG Performance: A Global Perspective. Remote Sens. Environ. 2022, 268, 112754. [Google Scholar] [CrossRef]
- Tan, J.; Petersen, W.A.; Tokay, A. A Novel Approach to Identify Sources of Errors in IMERG for GPM Ground Validation. J. Hydrometeorol. 2016, 17, 2477–2491. [Google Scholar] [CrossRef]
- Gebregiorgis, A.S.; Kirstetter, P.-E.; Hong, Y.E.; Gourley, J.J.; Huffman, G.J.; Petersen, W.A.; Xue, X.; Schwaller, M.R. To What Extent Is the Day 1 GPM IMERG Satellite Precipitation Estimate Improved as Compared to TRMM TMPA-RT? J. Geophys. Res. Atmos. 2018, 123, 1694–1707. [Google Scholar] [CrossRef]
- Rajagopal, M.; Zipser, E.; Huffman, G.; Russell, J.; Tan, J. Comparisons of IMERG Version 06 Precipitation at and between Passive Microwave Overpasses in the Tropics. J. Hydrometeorol. 2021, 22, 2117–2130. [Google Scholar] [CrossRef]
- Servei Meteorològic de Catalunya. Atles Climàtic 1991–2020. Available online: https://www.meteo.cat/wpweb/climatologia/el-clima/atles-climatic/ (accessed on 16 January 2024).
- Trapero, L.; Bech, J.; Duffourg, F.; Esteban, P.; Lorente, J. Mesoscale Numerical Analysis of the Historical November 1982 Heavy Precipitation Event over Andorra (Eastern Pyrenees). Nat. Hazards Earth Syst. Sci. 2013, 13, 2969–2990. [Google Scholar] [CrossRef]
- Llasat, M.C.; Marcos, R.; Turco, M.; Gilabert, J.; Llasat-Botija, M. Trends in Flash Flood Events versus Convective Precipitation in the Mediterranean Region: The Case of Catalonia. J. Hydrol. 2016, 541, 24–37. [Google Scholar] [CrossRef]
- Llasat, M.C.; Puigcerver, M. Total Rainfall and Convective Rainfall in Catalonia, Spain. Int. J. Climatol. 1997, 17, 1683–1695. [Google Scholar] [CrossRef]
- Navarro, A.; García-Ortega, E.; Merino, A.; Sánchez, J.L.; Tapiador, F.J. Orographic Biases in IMERG Precipitation Estimates in the Ebro River Basin (Spain): The Effects of Rain Gauge Density and Altitude. Atmos. Res. 2020, 244, 105068. [Google Scholar] [CrossRef]
- Trapero, L.; Bech, J.; Rigo, T.; Pineda, N.; Forcadell, D. Uncertainty of Precipitation Estimates in Convective Events by the Meteorological Service of Catalonia Radar Network. Atmos. Res. 2009, 93, 408–418. [Google Scholar] [CrossRef]
- Furl, C.; Ghebreyesus, D.; Sharif, H.O. Assessment of the Performance of Satellite-Based Precipitation Products for Flood Events across Diverse Spatial Scales Using GSSHA Modeling System. Geosciences 2018, 8, 191. [Google Scholar] [CrossRef]
- Tan, J.; Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. IMERG V06: Changes to the Morphing Algorithm. J. Atmos. Ocean. Technol. 2019, 36, 2471–2482. [Google Scholar] [CrossRef]
- Hong, Y.; Hsu, K.-L.; Sorooshian, S.; Gao, X. Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System. J. Appl. Meteorol. Climatol. 2004, 43, 1834–1853. [Google Scholar] [CrossRef]
- Llabrés-Brustenga, A.; Rius, A.; Rodríguez-Solà, R.; Casas-Castillo, M.C.; Redaño, A. Quality Control Process of the Daily Rainfall Series Available in Catalonia from 1855 to the Present. Theor. Appl. Clim. 2019, 137, 2715–2729. [Google Scholar] [CrossRef]
- Llabrés-Brustenga, A.; Rius, A.; Rodríguez-Solà, R.; Casas-Castillo, M.C. Influence of Regional and Seasonal Rainfall Patterns on the Ratio between Fixed and Unrestricted Measured Intervals of Rainfall Amounts. Theor. Appl. Clim. 2020, 140, 389–399. [Google Scholar] [CrossRef]
- WMO E-Library. Available online: https://library.wmo.int (accessed on 30 December 2023).
- CMIC_description—NWCSAF. Available online: https://www.nwcsaf.org/cmic_description (accessed on 19 December 2023).
- NWC SAF; EUMETSAT. Algorithm Theoretical Basis Document for the Cloud Product Processors of the NWC/GEO MTG-I Day-1; EUMETSAT: Darmstadt, Germany, 2019. [Google Scholar]
- Mahmoud, M.T.; Mohammed, S.A.; Hamouda, M.A.; Mohamed, M.M. Impact of Topography and Rainfall Intensity on the Accuracy of IMERG Precipitation Estimates in an Arid Region. Remote Sens. 2021, 13, 13. [Google Scholar] [CrossRef]
- Lasser, M.; Sungmin, O.; Foelsche, U. Evaluation of GPM-DPR Precipitation Estimates with WegenerNet Gauge Data. Atmos. Meas. Tech. 2019, 12, 5055–5070. [Google Scholar] [CrossRef]
- Jennings, A.H. World’s Greatest Observed Point Rainfalls. Mon. Weather Rev. 1950, 78, 4–5. [Google Scholar] [CrossRef]
- Breña-Naranjo, J.A.; Pedrozo-Acuña, A.; Rico-Ramirez, M.A. World’s Greatest Rainfall Intensities Observed by Satellites. Atmos. Sci. Lett. 2015, 16, 420–424. [Google Scholar] [CrossRef]
- Galmarini, S.; Steyn, D.G.; Ainslie, B. The Scaling Law Relating World Point-Precipitation Records to Duration. Int. J. Climatol. 2004, 24, 533–546. [Google Scholar] [CrossRef]
- Gonzalez, S.; Bech, J. Extreme Point Rainfall Temporal Scaling: A Long Term (1805–2014) Regional and Seasonal Analysis in Spain. Int. J. Climatol. 2017, 37, 5068–5079. [Google Scholar] [CrossRef]
- González-Herrero, S.; Vasallo, F.; Bech, J.; Gorodetskaya, I.; Elvira, B.; Justel, A. Extreme Precipitation Records in Antarctica. Int. J. Climatol. 2023, 43, 3125–3138. [Google Scholar] [CrossRef]
- Servei Meteorològic de Catalunya. Situació Meteorològica de Perill. Available online: https://www.meteo.cat/wpweb/divulgacio/la-prediccio-meteorologica/situacio-meteorologica-de-perill/ (accessed on 11 December 2023).
- Gaona, M.F.R.; Overeem, A.; Leijnse, H.; Uijlenhoet, R. First-Year Evaluation of GPM Rainfall over the Netherlands: IMERG Day 1 Final Run (V03D). J. Hydrometeorol. 2016, 17, 2799–2814. [Google Scholar] [CrossRef]
- Khodadoust Siuki, S.; Saghafian, B.; Moazami, S. Comprehensive Evaluation of 3-Hourly TRMM and Half-Hourly GPM-IMERG Satellite Precipitation Products. Int. J. Remote Sens. 2017, 38, 558–571. [Google Scholar] [CrossRef]
- Kirstetter, P.-E.; Petersen, W.A.; Kummerow, C.D.; Wolff, D.B. Integrated Multi-Satellite Evaluation for the Global Precipitation Measurement: Impact of Precipitation Types on Spaceborne Precipitation Estimation. In Satellite Precipitation Measurement; Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J., Eds.; Advances in Global Change Research; Springer International Publishing: Cham, Switzerland, 2020; Volume 2, pp. 583–608. ISBN 978-3-030-35798-6. [Google Scholar]
- Petersen, W.A.; Kirstetter, P.-E.; Wang, J.; Wolff, D.B.; Tokay, A. The GPM Ground Validation Program. In Satellite Precipitation Measurement; Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J., Eds.; Advances in Global Change Research; Springer International Publishing: Cham, Switzerland, 2020; Volume 2, pp. 471–502. ISBN 978-3-030-35798-6. [Google Scholar]
- Kühnlein, M.; Thies, B.; Nauß, T.; Bendix, J. Rainfall-Rate Assignment Using MSG SEVIRI Data—A Promising Approach to Spaceborne Rainfall-Rate Retrieval for Midlatitudes. J. Appl. Meteorol. Climatol. 2010, 49, 1477–1495. [Google Scholar] [CrossRef]
- Kazamias, A.-P.; Sapountzis, M.; Lagouvardos, K. Evaluation of GPM-IMERG Rainfall Estimates at Multiple Temporal and Spatial Scales over Greece. Atmos. Res. 2022, 269, 106014. [Google Scholar] [CrossRef]
- Yu, C.; Hu, D.; Liu, M.; Wang, S.; Di, Y. Spatio-Temporal Accuracy Evaluation of Three High-Resolution Satellite Precipitation Products in China Area. Atmos. Res. 2020, 241, 104952. [Google Scholar] [CrossRef]
- Da Freitas, E.S.; Coelho, V.H.R.; Xuan, Y.; de Melo, C.D.; Gadelha, A.N.; Santos, E.A.; de Galvão, C.O.; Ramos Filho, G.M.; Barbosa, L.R.; Huffman, G.J.; et al. The Performance of the IMERG Satellite-Based Product in Identifying Sub-Daily Rainfall Events and Their Properties. J. Hydrol. 2020, 589, 125128. [Google Scholar] [CrossRef]
Estimated Rainfall | Observed Rainfall | |
---|---|---|
Gauge ≥ Threshold | Gauge < Threshold | |
IMERG ≥ threshold | Hits (H) | False alarms (F) |
IMERG < threshold | Misses (M) | Correct Negatives |
Name | Formula | Perfect Score |
---|---|---|
Probability of detection (POD) | 1 | |
False-Alarm Ratio (FAR) | 0 | |
False-Alarm Rate (POFD) | 0 | |
Hansen and Kuipers (HK) | 1 |
Name | Formula | Unit | Perfect Score |
---|---|---|---|
Spearman’s correlation coefficient | - | 1 | |
Mean Error (Bias) | Mm | 0 | |
Relative Bias (Rbias) | % | 0 | |
Mean Absolute Error (MAE) | Mm | 0 | |
Root Mean Square Error (RMSE) | Mm | 0 |
Temporal Aggregation (h) | 1% (mm) | 5% (mm) | 10% (mm) | 18% (mm) |
---|---|---|---|---|
0.5 | 1.1 | 5.6 | 11.3 | 20.3 |
1 | 1.4 | 7.2 | 14.3 | 25.8 |
3 | 2.1 | 10.5 | 21.1 | 37.9 |
6 | 2.7 | 13.4 | 26.8 | 48.3 |
9 | 3.1 | 15.4 | 30.9 | 55.6 |
12 | 3.4 | 17.1 | 34.2 | 61.5 |
24 | 4.4 | 21.8 | 43.5 | 78.3 |
Score | IMERG | 0.5 h | 1 h | 3 h | 6 h | 9 h | 12 h | 24 h |
---|---|---|---|---|---|---|---|---|
≥1% | ||||||||
BIAS | E | −1.81 | −0.88 | −0.21 | −0.08 | −0.05 | −0.02 | −0.07 |
L | −1.83 | −0.79 | −0.11 | 0.00 | 0.02 | 0.03 | −0.03 | |
MAE | E | 4.87 | 3.52 | 2.06 | 1.37 | 1.03 | 0.86 | 0.74 |
L | 4.63 | 3.39 | 2.02 | 1.36 | 1.03 | 0.86 | 0.74 | |
≥5% | ||||||||
BIAS | E | −14.42 | −7.16 | −2.09 | −1.03 | −0.75 | −0.55 | −0.33 |
L | −14.20 | −6.80 | −1.82 | −0.85 | −0.59 | −0.44 | −0.26 | |
MAE | E | 16.01 | 9.30 | 4.24 | 2.62 | 1.93 | 1.57 | 0.92 |
L | 15.58 | 8.94 | 4.09 | 2.56 | 1.90 | 1.56 | 0.92 | |
≥10% | ||||||||
BIAS | E | −26.75 | −15.07 | −4.92 | −2.18 | −1.55 | −1.17 | −0.68 |
L | −26.54 | −14.68 | −4.51 | −1.87 | −1.23 | −0.98 | −0.52 | |
MAE | E | 27.48 | 16.30 | 6.80 | 4.01 | 2.94 | 2.34 | 1.39 |
L | 27.17 | 15.86 | 6.46 | 3.87 | 2.89 | 2.29 | 1.34 | |
≥18% | ||||||||
BIAS | E | −44.02 | −26.83 | −9.24 | −3.94 | −2.55 | −2.00 | −1.05 |
L | −44.21 | −26.68 | −8.82 | −3.62 | −2.01 | −1.63 | −0.79 | |
MAE | E | 44.17 | 27.30 | 10.65 | 5.69 | 3.74 | 3.15 | 1.71 |
L | 44.31 | 27.02 | 10.13 | 5.44 | 3.65 | 3.00 | 1.61 |
Contingency-Table-Based Measures | Continuous Errors Measures | |||||||
---|---|---|---|---|---|---|---|---|
Cloud Phase | Source | POD | HK | FAR | BIAS (mm) | Rbias (%) | MAE (mm) | RMSE (mm) |
Ice phase | IMERG_E | 0.61 | 0.38 | 0.68 | −1.28 | −27.44 | 4.30 | 6.98 |
PMW-direct | 0.76 | 0.46 | 0.64 | 0.23 | 4.91 | 4.36 | 7.12 | |
MORPH-only | 0.69 | 0.44 | 0.69 | −0.35 | −7.62 | 4.15 | 6.71 | |
MORPH+IR | 0.54 | 0.33 | 0.68 | −2.04 | −43.89 | 3.89 | 6.44 | |
Liquid phase | IMERG_E | 0.16 | 0.07 | 0.91 | −3.00 | −82.24 | 3.22 | 4.98 |
PMW-direct | 0.11 | 0.02 | 0.88 | −2.32 | −84.79 | 2.42 | 3.28 | |
MORPH-only | 0.24 | 0.12 | 0.88 | −2.43 | −79.35 | 2.43 | 2.96 | |
MORPH+IR | 0.21 | 0.10 | 0.92 | −3.74 | −85.43 | 3.85 | 6.66 | |
Mixed phase | IMERG_E | 0.22 | 0.11 | 0.80 | −2.64 | −71.55 | 3.58 | 5.63 |
PMW-direct | 0.26 | 0.16 | 0.64 | −2.26 | −70.55 | 2.87 | 4.01 | |
MORPH-only | 0.44 | 0.29 | 0.72 | −1.34 | −42.11 | 2.90 | 4.28 | |
MORPH+IR | 0.14 | 0.02 | 0.89 | −3.12 | −78.87 | 3.70 | 6.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peinó, E.; Bech, J.; Udina, M.; Polls, F. Disentangling Satellite Precipitation Estimate Errors of Heavy Rainfall at the Daily and Sub-Daily Scales in the Western Mediterranean. Remote Sens. 2024, 16, 457. https://doi.org/10.3390/rs16030457
Peinó E, Bech J, Udina M, Polls F. Disentangling Satellite Precipitation Estimate Errors of Heavy Rainfall at the Daily and Sub-Daily Scales in the Western Mediterranean. Remote Sensing. 2024; 16(3):457. https://doi.org/10.3390/rs16030457
Chicago/Turabian StylePeinó, Eric, Joan Bech, Mireia Udina, and Francesc Polls. 2024. "Disentangling Satellite Precipitation Estimate Errors of Heavy Rainfall at the Daily and Sub-Daily Scales in the Western Mediterranean" Remote Sensing 16, no. 3: 457. https://doi.org/10.3390/rs16030457