Aerosol Optical Properties Retrieved by Polarization Raman Lidar: Methodology and Strategy of a Quality-Assurance Tool
<p>Flowchart of automatic retrieval algorithm for polarization Raman lidar.</p> "> Figure 2
<p>Flowchart of automatic gluing algorithm.</p> "> Figure 3
<p>Example of automatic gluing. (<b>a</b>,<b>c</b>,<b>e</b>) are the RCS of the parallel polarization, Raman, and cross-polarization channels before gluing, respectively. (<b>b</b>,<b>d</b>,<b>f</b>) are the gluing results. The black box marks the signal gluing interval. The red point is the gluing point. The numbers under the black boxes in parentheses and below are the signal gluing interval and the score of gluing. P and S denote the parallel-polarization and cross-polarization channels, respectively. H and L denote the far-range and near-range, respectively.</p> "> Figure 4
<p>Flowchart of the Rayleigh-fit procedure.</p> "> Figure 5
<p>Examples of Rayleigh fit. (<b>a</b>–<b>c</b>) are the results of Rayleigh fit for three scenarios. The green-shaded height regions are the Rayleigh-fit intervals. (<b>d</b>–<b>f</b>) are the differences between the RCS of lidar signals and atmospheric molecular Rayleigh fit signals.</p> "> Figure 6
<p>Simulated lidar profiles of the atmospheric scene described in the main body of the text. Shown are the (<b>a</b>) aerosol extinction coefficients, (<b>b</b>) aerosol backscatter coefficients, (<b>c</b>) lidar ratios, and (<b>d</b>) linear particle depolarization ratios (PDR) at 355 nm and 532 nm, respectively.</p> "> Figure 7
<p>Range-corrected signal (RCS) of the simulated case. P and S denote the parallel-polarization and cross-polarization channels, respectively. (<b>a</b>) show the RCSs at 355 nm and 386 nm. (<b>b</b>) show the RCSs at 532 nm and 607 nm.</p> "> Figure 8
<p>Relative errors of aerosol optical properties caused by trigger delay deviation from the true value. Shown are the relative errors of the (<b>a</b>,<b>e</b>) aerosol extinction coefficients, (<b>b</b>,<b>f</b>) aerosol backscatter coefficients, (<b>c</b>,<b>g</b>) lidar ratios, and (<b>d</b>,<b>h</b>) linear PDRs at 355 nm and 532 nm, respectively.</p> "> Figure 9
<p>Relative errors of aerosol optical properties caused by nonlinearity of the lidar system. Shown are the relative errors of the (<b>a</b>,<b>d</b>) aerosol backscatter coefficients, (<b>b</b>,<b>e</b>) lidar ratios, and (<b>c</b>,<b>f</b>) linear PDRs at 355 nm and 532 nm, respectively.</p> "> Figure 10
<p>Relative errors of linear VDR and linear PDR caused by polarization crosstalk. (<b>a</b>,<b>b</b>,<b>e</b>,<b>f</b>) the depolarization ratio is uncalibrated, (<b>c</b>,<b>d</b>,<b>g</b>,<b>h</b>) the depolarization ratio is calibrated.</p> "> Figure 11
<p>Relative errors of the aerosol optical properties caused by Raman crosstalk. Shown are the relative errors of the (<b>a</b>,<b>e</b>) aerosol extinction coefficients, (<b>b</b>,<b>f</b>) aerosol backscatter coefficients, (<b>c</b>,<b>g</b>) lidar ratios, and (<b>d</b>,<b>h</b>) linear PDRs at 355 nm and 532 nm, respectively.</p> "> Figure 12
<p>Diagram of the area-integrated ratio method that is used for defining the overlap score.</p> "> Figure 13
<p>Relative errors of the aerosol optical properties caused by temperature deviations. Shown are the relative errors of (<b>a</b>,<b>f</b>) aerosol extinction coefficients, (<b>b</b>,<b>g</b>) aerosol backscatter coefficients, (<b>c</b>,<b>h</b>) lidar ratios, (<b>d</b>,<b>i</b>) linear VDRs, and (<b>e</b>,<b>j</b>) linear PDRs at 355 nm and 532 nm, respectively.</p> "> Figure 14
<p>Relative errors of the aerosol optical properties caused by pressure deviations. The meaning of the <span class="html-italic">x</span>-axis titles (<b>a</b>–<b>j</b>) is the same as in <a href="#remotesensing-16-00207-f013" class="html-fig">Figure 13</a>.</p> "> Figure 15
<p>(<b>a</b>) curtain-plot of the range corrected signal acquired between 20:00 and 08:50 LT on 6 and 7 February 2020. Profiles of the RCS at (<b>b</b>) 355 nm, (<b>c</b>) 386 nm, and (<b>d</b>,<b>e</b>) are the profiles of the SNR corresponding to (<b>b</b>,<b>c</b>), respectively. The measurement time is between 06:00 and 06:30 LT on 7 February 2020; see the red box in (<b>a</b>). The dashed lines represent the SNR of 3. The temporal and spatial resolutions are 1 min and 15 m for (<b>a</b>) and 60 min and 60 m for (<b>b</b>–<b>e</b>), respectively.</p> "> Figure 16
<p>Aerosol optical properties between 06:00 and 06:30 LT on 7 February 2020. Shown are (<b>a</b>) aerosol extinction coefficients, (<b>b</b>) aerosol backscatter coefficients, (<b>c</b>) lidar ratios, (<b>d</b>) linear VDR, and (<b>e</b>) linear PDR. The temporal and spatial resolutions are 60 min and 15 m for the aerosol extinction coefficient, and 60 min and 60 m for the aerosol backscatter coefficients, lidar ratios, linear VDR and linear PDR, respectively.</p> "> Figure 17
<p>(<b>a</b>) curtain-plot of the range corrected signals acquired between 18:00 and 06:55 LT on 8 and 9 December 2019. The measurement time is between 18:30 and 19:00 LT on 8 December 2019; see the red box in (<b>a</b>). The meaning of symbols, lines, and colors (<b>b</b>–<b>e</b>) are the same as in <a href="#remotesensing-16-00207-f015" class="html-fig">Figure 15</a>.</p> "> Figure 18
<p>Aerosol optical properties between 18:30 and 19:00 LT on 8 December 2019. The meaning of symbols, lines, and colors (<b>a</b>–<b>e</b>) are the same as in <a href="#remotesensing-16-00207-f016" class="html-fig">Figure 16</a>.</p> "> Figure 19
<p>(<b>a</b>) curtain-plot of the range corrected signals on 5 February 2021. The measurement time is between 00:30 and 01:00 LT; see the red box in (<b>a</b>). The meaning of symbols, lines, and colors (<b>b</b>–<b>e</b>) are the same as in <a href="#remotesensing-16-00207-f015" class="html-fig">Figure 15</a>.</p> "> Figure 20
<p>Aerosol optical properties at 532 nm between 00:30 and 01:00 LT on 5 February 2021. The meaning of symbols, lines, and colors (<b>a</b>–<b>e</b>) are the same as in <a href="#remotesensing-16-00207-f016" class="html-fig">Figure 16</a>.</p> "> Figure 21
<p>(<b>a</b>) curtain-plot of the range corrected signals acquired between 00:00 and 21:40 LT on 16 March 2021. The measurement time is between 19:30 and 20:00 LT; see the red box in (<b>a</b>). The meaning of symbols, lines, and colors (<b>b</b>–<b>e</b>) are the same as in <a href="#remotesensing-16-00207-f015" class="html-fig">Figure 15</a>.</p> "> Figure 22
<p>Aerosol optical properties at 532 nm between 19:30 and 20:00 LT on 16 March 2021. The meaning of symbols, lines, and colors (<b>a</b>–<b>e</b>) are the same as in <a href="#remotesensing-16-00207-f016" class="html-fig">Figure 16</a>.</p> ">
Abstract
:1. Introduction
2. Automatic Retrieval Algorithm
2.1. Gluing
2.2. Rayleigh Fit
3. Quality Assessment Method
3.1. Assessment of Static Characteristic Factors
3.1.1. Trigger Delay
3.1.2. Transmitter–Receiver Alignment
3.1.3. Linearity
3.1.4. Raman Signal
3.1.5. Polarization Crosstalk
3.1.6. Raman Crosstalk
3.1.7. Overlap
3.2. Assessment of Dynamic Characteristic Factors
3.2.1. Dead-Time Correction
3.2.2. Background Noise
3.2.3. Gluing
3.2.4. Meteorological Data
3.2.5. Rayleigh Fit
3.2.6. Electronic Interference
4. Results
4.1. Aerosol Raman Lidars
4.2. Experimental Assessment
4.2.1. High-Mountain Environment
4.2.2. Suburban Environment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ansmann, A.; Riebesell, M.; Weitkamp, C. Measurement of atmospheric aerosol extinction profiles with a Raman lidar. Opt. Lett. 1990, 15, 746–748. [Google Scholar] [CrossRef] [PubMed]
- Müller, D.; Franke, K.; Wagner, F.; Althausen, D.; Ansmann, A.; Heintzenberg, J.; Verver, G. Vertical profiling of optical and physical particle properties over the tropical Indian Ocean with six-wavelength lidar: 2. Case studies. J. Geophys. Res. Atmos. 2001, 106, 28577–28595. [Google Scholar] [CrossRef]
- Heese, B.; Baars, H.; Bohlmann, S.; Althausen, D.; Deng, R. Continuous vertical aerosol profiling with a multi-wavelength Raman polarization lidar over the Pearl River Delta, China. Atmos. Chem. Phys. 2017, 17, 6679–6691. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, H.; Goloub, P.; Li, Z.; Veselovskii, I.; Podvin, T.; Li, K.; Korenskiy, M. The characterization of Taklamakan dust properties using a multiwavelength Raman polarization lidar in Kashi, China. Atmos. Chem. Phys. 2020, 20, 13817–13834. [Google Scholar] [CrossRef]
- Fiorani, L. Lidar: A powerful tool for atmospheric measurements. J. Optoelectron. Adv. Mater. 1999, 1, 3–11. [Google Scholar]
- Mamouri, R.-E.; Ansmann, A. Potential of polarization/Raman lidar to separate fine dust, coarse dust, maritime, and anthropogenic aerosol profiles. Atmos. Meas. Tech. 2017, 10, 3403–3427. [Google Scholar] [CrossRef]
- Ansmann, A.; Baars, H.; Tesche, M.; Müller, D.; Althausen, D.; Engelmann, R.; Pauliquevis, T.; Artaxo, P. Dust and smoke transport from Africa to South America: Lidar profiling over Cape Verde and the Amazon rainforest. Geophys. Res. Lett. 2009, 36, L11802. [Google Scholar] [CrossRef]
- Su, T.; Li, Z.; Kahn, R. Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: Regional pattern and influencing factors. Atmos. Chem. Phys. 2018, 18, 15921–15935. [Google Scholar] [CrossRef]
- McFarquhar, G.M.; Bretherton, C.S.; Marchand, R.; Protat, A.; DeMott, P.J.; Alexander, S.P.; Roberts, G.C.; Twohy, C.H.; Toohey, D.; Siems, S.; et al. Observations of Clouds, Aerosols, Precipitation, and Surface Radiation over the Southern Ocean: An Overview of CAPRICORN, MARCUS, MICRE, and SOCRATES. Bull. Am. Meteorol. Soc. 2021, 102, E894–E928. [Google Scholar] [CrossRef]
- Ansmann, A.; Riebesell, M.; Wandinger, U.; Weitkamp, C.; Voss, E.; Lahmann, W.; Michaelis, W. Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio. Appl. Phys. B 1992, 55, 18–28. [Google Scholar] [CrossRef]
- Cao, Y.; Xie, C.; Wang, B.; Cheng, L.; Fang, Z.; Li, L.; Zhuang, P.; Yang, H.; Shao, J.; Jiang, H.; et al. Design and optimization of Mie scattering lidar detection system. In Proceedings of the Sixth Symposium on Novel Optoelectronic Detection Technology and Applications, Beijing, China, 3–5 December 2019. [Google Scholar]
- Whiteman, D.; Melfi, S.; Ferrare, R. Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere. Appl. Opt. 1992, 31, 3068–3082. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Yi, F. Lidar-measured atmospheric N2 vibrational-rotational Raman spectra and consequent temperature retrieval. Opt. Express 2014, 22, 27833–27844. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Yang, H.; Sun, D.; Qi, X.; Xian, J. Lidar system with a fast scanning speed for sea fog detection. Opt. Express 2022, 30, 27462–27471. [Google Scholar] [CrossRef] [PubMed]
- Kral, L. Automatic beam alignment system for a pulsed infrared laser. Rev. Sci. Instrum. 2009, 80, 013102. [Google Scholar] [CrossRef] [PubMed]
- Wandinger, U.; Freudenthaler, V.; Baars, H.; Amodeo, A.; Engelmann, R.; Mattis, I.; Groß, S.; Pappalardo, G.; Giunta, A.; D’Amico, G.; et al. EARLINET instrument intercomparison campaigns: Overview on strategy and results. Atmos. Meas. Tech. 2016, 9, 1001–1023. [Google Scholar] [CrossRef]
- Wang, L.; Yin, Z.; Bu, Z.; Wang, A.; Mao, S.; Yi, Y.; Müller, D.; Chen, Y.; Wang, X. Quality assessment of aerosol lidars at 1064 nm in the framework of the MEMO campaign. Atmos. Meas. Tech. 2023, 16, 4307–4318. [Google Scholar] [CrossRef]
- Freudenthaler, V.; Linné, H.; Chaikovski, A.; Rabus, D.; Groß, S. EARLINET lidar quality assurance tools. Atmos. Meas. Tech. Discuss. 2018. [Google Scholar] [CrossRef]
- Pappalardo, G.; Freudenthaler, V.; Nicolae, D.; Mona, L.; Belegante, L.; D’Amico, G. Lidar Calibration Centre. EPJ Web Conf. 2016, 119, 19003. [Google Scholar] [CrossRef]
- Matthais, V.; Freudenthaler, V.; Amodeo, A.; Balin, I.; Balis, D.; Bösenberg, J.; Chaikovsky, A.; Chourdakis, G.; Comeron, A.; Delaval, A.; et al. Aerosol lidar intercomparison in the framework of the EARLINET project. 1.Instruments. Appl. Opt. 2004, 43, 961–976. [Google Scholar] [CrossRef]
- Córdoba-Jabonero, C.; Ansmann, A.; Jiménez, C.; Baars, H.; López-Cayuela, M.-Á.; Engelmann, R. Experimental assessment of a micro-pulse lidar system in comparison with reference lidar measurements for aerosol optical properties retrieval. Atmos. Meas. Tech. 2021, 14, 5225–5239. [Google Scholar] [CrossRef]
- Bockmann, C.; Wandinger, U.; Ansmann, A.; Bosenberg, J.; Amiridis, V.; Boselli, A.; Delaval, A.; De Tomasi, F.; Frioud, M.; Grigorov, I.V.; et al. Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms. Appl. Opt. 2004, 43, 977–989. [Google Scholar] [CrossRef] [PubMed]
- Pappalardo, G.; Amodeo, A.; Pandolfi, M.; Wandinger, U.; Ansmann, A.; Bösenberg, J.; Matthias, V.; Amiridis, V.; De Tomasi, F.; Frioud, M.; et al. Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio. Appl. Opt. 2004, 43, 5370–5385. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, G.; Amodeo, A.; Baars, H.; Binietoglou, I.; Freudenthaler, V.; Mattis, I.; Wandinger, U.; Pappalardo, G. EARLINET Single Calculus Chain—Overview on methodology and strategy. Atmos. Meas. Tech. 2015, 8, 4891–4916. [Google Scholar] [CrossRef]
- D’Amico, G.; Amodeo, A.; Mattis, I.; Freudenthaler, V.; Pappalardo, G. EARLINET Single Calculus Chain–technical—Part 1: Pre-processing of raw lidar data. Atmos. Meas. Tech. 2016, 9, 491–507. [Google Scholar] [CrossRef]
- Mattis, I.; D’Amico, G.; Baars, H.; Amodeo, A.; Madonna, F.; Iarlori, M. EARLINET Single Calculus Chain–technical—Part 2: Calculation of optical products. Atmos. Meas. Tech. 2016, 9, 3009–3029. [Google Scholar] [CrossRef]
- Mao, S.; Bu, Z.; Chen, Y.; Dai, Y.; Wang, A.; Zhao, B.; Wang, X. An assessment algorithm for quality reliability of atmospheric lidar aerosol optical properties. Meteorol. Sci. Technol. 2023, 51, 309–318. [Google Scholar] [CrossRef]
- Weitkamp, C. (Ed.) Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere; Springer Series in Optical Sciences; Springer: New York, NY, USA, 2005; Volume 102. [Google Scholar]
- Cavcar, M. The international standard atmosphere (ISA). Anadolu Univ. Turk. 2000, 30, 1–6. [Google Scholar]
- Klett, J.D. Stable analytical inversion solution for processing lidar returns. Appl. Opt. 1981, 20, 211–220. [Google Scholar] [CrossRef]
- Fernald, F.G. Analysis of atmospheric lidar observations: Some comments. Appl. Opt. 1984, 23, 652–653. [Google Scholar] [CrossRef]
- Preißler, J.; Wagner, F.; Guerrero-Rascado, J.L.; Silva, A.M. Two years of free-tropospheric aerosol layers observed over Portugal by lidar. J. Geophys. Res.-Atmos. 2013, 118, 3676–3686. [Google Scholar] [CrossRef]
- Floutsi, A.A.; Baars, H.; Engelmann, R.; Althausen, D.; Ansmann, A.; Bohlmann, S.; Heese, B.; Hofer, J.; Kanitz, T.; Haarig, M.; et al. DeLiAn—A growing collection of depolarization ratio, lidar ratio and Ångström exponent for different aerosol types and mixtures from ground-based lidar observations. Atmos. Meas. Tech. 2023, 16, 2353–2379. [Google Scholar] [CrossRef]
- Vaughan, M.A.; Liu, Z.; McGill, M.J.; Hu, Y.; Obland, M.D. On the spectral dependence of backscatter from cirrus clouds: Assessing CALIOP’s 1064 nm calibration assumptions using cloud physics lidar measurements. J. Geophys. Res.-Atmos. 2010, 115, D14206. [Google Scholar] [CrossRef]
- Belegante, L.; Bravo-Aranda, J.A.; Freudenthaler, V.; Nicolae, D.; Nemuc, A.; Ene, D.; Alados-Arboledas, L.; Amodeo, A.; Pappalardo, G.; D’Amico, G.; et al. Experimental techniques for the calibration of lidar depolarization channels in EARLINET. Atmos. Meas. Tech. 2018, 11, 1119–1141. [Google Scholar] [CrossRef]
- Freudenthaler, V. The telecover test: A quality assurance tool for the optical part of a lidar system. In Proceedings of the 24th International Laser Radar Conference, Boulder, CO, USA, 23–27 June 2008. [Google Scholar]
- Tian, X.; Liu, D.; Xu, J.; Wang, Z.; Wang, B.; Wu, D.; Zhong, Z.; Xie, C.; Wang, Y. Charactering lidar optical subsystem using four quadrants method. In Proceedings of the Fourth Seminar on Novel Optoelectronic Detection Technology and Application, Nanjing, China, 24–26 October 2017. [Google Scholar]
- Engelmann, R.; Kanitz, T.; Baars, H.; Heese, B.; Althausen, D.; Skupin, A.; Wandinger, U.; Komppula, M.; Stachlewska, I.S.; Amiridis, V.; et al. The automated multiwavelength Raman polarization and water-vapor lidar Polly XT: The neXT generation. Atmos. Meas. Tech. 2016, 9, 1767–1784. [Google Scholar] [CrossRef]
- Di Paolantonio, M.; Dionisi, D.; Liberti, G.L. A semi-automated procedure for the emitter–receiver geometry characterization of motor-controlled lidars. Atmos. Meas. Tech. 2022, 15, 1217–1231. [Google Scholar] [CrossRef]
- Speidel, J.; Vogelmann, H. Correct(ed) Klett-Fernald algorithm for elastic aerosol backscatter retrievals: A sensitivity analysis. Appl. Opt. 2023, 62, 861–868. [Google Scholar] [CrossRef]
- Lu, X.; Hu, Y.; Omar, A.; Baize, R.; Vaughan, M.; Rodier, S.; Kar, J.; Getzewich, B.; Lucker, P.; Trepte, C.; et al. Global Ocean Studies from CALIOP/CALIPSO by Removing Polarization Crosstalk Effects. Remote Sens. 2021, 13, 2769. [Google Scholar] [CrossRef]
- Freudenthaler, V.; Esselborn, M.; Wiegner, M.; Heese, B.; Tesche, M.; Ansmann, A.; MüLler, D.; Althausen, D.; Wirth, M.; Fix, A.; et al. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus B Chem. Phys. Meteorol. 2017, 61, 165–179. [Google Scholar] [CrossRef]
- Cairo, F.; Di Donfrancesco, G.; Adriani, A.; Pulvirenti, L.; Fierli, F. Comparison of various linear depolarization parameters measured by lidar. Appl. Opt. 1999, 38, 4425–4432. [Google Scholar] [CrossRef]
- Tomine, K.; Hirayama, C.; Michimoto, K.; Takeuchi, N. Experimental determination of the crossover function in the laser radar equation for days with a light mist. Appl. Opt. 1989, 28, 2194–2195. [Google Scholar] [CrossRef]
- Stelmaszczyk, K.; Dell’Aglio, M.; Chudzynski, S.; Stacewicz, T.; Woste, L. Analytical function for lidar geometrical compression form-factor calculations. Appl. Opt. 2005, 44, 1323–1331. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Gong, W.; Mao, F.; Pan, Z. Physical constraint method to determine optimal overlap factor of Raman lidar. J. Opt. 2017, 47, 83–90. [Google Scholar] [CrossRef]
- Padma Kumari, B.; Londhe, A.L.; Trimbake, H.K.; Jadhav, D.B. Comparison of aerosol vertical profiles derived by passive and active remote sensing techniques—A case study. Atmos. Environ. 2004, 38, 6679–6685. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, Y.; Wang, Q.; Li, Z.; Wang, Z.; Liu, D. A new cloud and aerosol layer detection method based on micropulse lidar measurements. J. Geophys. Res. Atmos. 2014, 119, 6788–6802. [Google Scholar] [CrossRef]
- Guo, J.; Miao, Y.; Zhang, Y.; Liu, H.; Li, Z.; Zhang, W.; He, J.; Lou, M.; Yan, Y.; Bian, L.; et al. The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data. Atmos. Chem. Phys. 2016, 16, 13309–13319. [Google Scholar] [CrossRef]
- Pappalardo, G.; Amodeo, A.; Apituley, A.; Comeron, A.; Freudenthaler, V.; Linné, H.; Ansmann, A.; Bösenberg, J.; D’Amico, G.; Mattis, I.; et al. EARLINET: Towards an advanced sustainable European aerosol lidar network. Atmos. Meas. Tech. 2014, 7, 2389–2409. [Google Scholar] [CrossRef]
- Bu, Z.; Wang, Y.; Liu, J.; Wang, X.; Li, F.; Nan, S.; Zhou, Z.; Hu, X.; Chen, Y.; Wang, X. Comparison and Analysis of Aerosol Lidar Network in Mega City of Beijing Using Real Lidar. In Proceedings of the 2019 International Conference on Meteorology Observations (ICMO), Chengdu, China, 28–31 December 2019; pp. 1–3. [Google Scholar]
Parameters | Value | Parameters | Value |
---|---|---|---|
Emitted wavelength (nm) | 355, 532 | Detected wavelength (nm) | 355, 386, 532, 607 |
Laser pulse energy (mJ) | 1 (355 nm) 2 (532 nm) | Pulse repetition rate (Hz) | 100 |
Telescope diameter (mm) | 250 | Signal accumulation time (min) | 30 |
Gain ratio between parallel and cross-polarization channels | 0.01 | Vertical resolution of profiles (m) | 15 |
Aerosol Optical Properties | α | β | S | δV | δP | |
---|---|---|---|---|---|---|
Static characteristic factors | Trigger delay | 0.2 | 0.1 | 0.2 | 0.15 | 0.1 |
Telecover | 0.1 | 0.15 | 0.1 | 0.25 | 0.15 | |
Linearity | 0.1 | 0.15 | 0.1 | 0.25 | 0.15 | |
Raman signal | 0.2 | 0.25 | 0.2 | 0 | 0.2 | |
Crosstalk E-R | 0.3 | 0.35 | 0.3 | 0 | 0.1 | |
Crosstalk P-S | 0 | 0 | 0 | 0.35 | 0.3 | |
Overlap | 0.1 | 0 | 0.1 | 0 | 0 | |
Dynamic characteristic factors | Dead time | 0.2 | 0.16 | 0.16 | 0.25 | 0.16 |
Background | 0.3 | 0.28 | 0.28 | 0.35 | 0.28 | |
Gluing | 0.15 | 0.12 | 0.12 | 0.15 | 0.12 | |
Meteorological data | 0.15 | 0.12 | 0.12 | 0 | 0.12 | |
Rayleigh fit | 0 | 0.16 | 0.16 | 0 | 0.16 | |
Electronic interference | 0.2 | 0.16 | 0.16 | 0.25 | 0.16 |
Site | Location | Longitude | Latitude | Altitude | Received Wavelength |
---|---|---|---|---|---|
Lijiang | High mountain | 100°01′E | 26°43′N | 3170 m | 355, 386 nm |
Beijing | Suburb | 116°28′E | 39°48′N | 23.6 m | 532, 607 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, S.; Yin, Z.; Wang, L.; Wei, Y.; Bu, Z.; Chen, Y.; Dai, Y.; Müller, D.; Wang, X. Aerosol Optical Properties Retrieved by Polarization Raman Lidar: Methodology and Strategy of a Quality-Assurance Tool. Remote Sens. 2024, 16, 207. https://doi.org/10.3390/rs16010207
Mao S, Yin Z, Wang L, Wei Y, Bu Z, Chen Y, Dai Y, Müller D, Wang X. Aerosol Optical Properties Retrieved by Polarization Raman Lidar: Methodology and Strategy of a Quality-Assurance Tool. Remote Sensing. 2024; 16(1):207. https://doi.org/10.3390/rs16010207
Chicago/Turabian StyleMao, Song, Zhenping Yin, Longlong Wang, Yubin Wei, Zhichao Bu, Yubao Chen, Yaru Dai, Detlef Müller, and Xuan Wang. 2024. "Aerosol Optical Properties Retrieved by Polarization Raman Lidar: Methodology and Strategy of a Quality-Assurance Tool" Remote Sensing 16, no. 1: 207. https://doi.org/10.3390/rs16010207
APA StyleMao, S., Yin, Z., Wang, L., Wei, Y., Bu, Z., Chen, Y., Dai, Y., Müller, D., & Wang, X. (2024). Aerosol Optical Properties Retrieved by Polarization Raman Lidar: Methodology and Strategy of a Quality-Assurance Tool. Remote Sensing, 16(1), 207. https://doi.org/10.3390/rs16010207