Evaluation of the Spatiotemporal Change of Ecological Quality under the Context of Urban Expansion—A Case Study of Typical Urban Agglomerations in China
"> Figure 1
<p>Spatial location and land cover (LC) information in 2020 of study area. (<b>a</b>) Location of three major urban agglomeration in China; (<b>b</b>–<b>d</b>) LC information of BTH, CYRD, and PRD, respectively, in 2020. The land cover information was extracted from the China Land Cover Dataset (CLCD) which can be obtained from the link at Data Availability Statement section.</p> "> Figure 2
<p>Technical route of this study.</p> "> Figure 3
<p>The spatial and statistical patterns of EQI in urban agglomerations. (<b>a</b>–<b>c</b>) Spatial distribution, histogram distribution, and fitted kernel density curves of EQI for BTH in 2001 and 2020. (<b>d</b>–<b>f</b>) Spatial and statistical distribution of EQI of CYRD in 2001 and 2020. (<b>g</b>–<b>i</b>) PRD.</p> "> Figure 4
<p>The EQI conversion statistics at all levels of urban agglomerations. (<b>a</b>–<b>c</b>) EQI conversion statistics of BTH, CYRD, and PRD, respectively.</p> "> Figure 5
<p>The spatial location and EQI transfer conditions of urban core and expansion areas in urban agglomerations. (<b>a</b>–<b>c</b>) Spatial location of urban core and expansion areas by region. (<b>d</b>–<b>f</b>) EQI transfer rate between EQI levels in urban core region of BTH, CYRD, and PRD, respectively. (<b>g</b>–<b>i</b>) EQI transfer rate in urban expansion region of BTH, CYRD, and PRD, respectively.</p> "> Figure 6
<p>EQI values of each city in the three major urban agglomerations in 2001 and 2020.</p> "> Figure 7
<p>Scatter chart of EQI change intensity, urban expansion intensity, and synergistic index of all cities in three urban agglomerations. The red balls represent two supercities, Beijing and Shanghai.</p> "> Figure 8
<p>Comparison of spatial distribution and statistics between EQI and RSEI. (<b>a</b>–<b>c</b>) Spatial distribution and level changes of ecological quality in BTH, CYRD, and PRD respectively. (<b>d</b>) Statistical differences in EQI and RSEI among the three urban agglomerations in 2001 and 2020. The pink triangle represents the mean value.</p> "> Figure 9
<p>Principal component analysis results of ten variables in three urban agglomerations. The larger the absolute value of box is, the greater the contribution of the variable to the principal component.</p> "> Figure 10
<p>Results of correlation tests for various factors in three urban agglomerations in 2001 and 2020. The symbols ***, **, and * display three significant level markers with <span class="html-italic">p</span> < 0.001, <span class="html-italic">p</span> < 0.01, and <span class="html-italic">p</span> < 0.05, respectively. (<b>a</b>–<b>c</b>) Correlation coefficients between selected factors and EQI in 2001 of BTH, CYRD, and PRD, respectively. (<b>d</b>–<b>f</b>) Correlation coefficients between selected factors and EQI in 2020 of BTH, CYRD, and PRD, respectively.</p> "> Figure 11
<p>The spatial distribution of EQI change <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <mo>∆</mo> <mi mathvariant="normal">E</mi> <mi mathvariant="normal">Q</mi> <mi mathvariant="normal">I</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> in urban agglomerations. (<b>a</b>–<b>c</b>) Spatial distribution of EQI change <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <mo>∆</mo> <mi mathvariant="normal">E</mi> <mi mathvariant="normal">Q</mi> <mi mathvariant="normal">I</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> in BTH, CYRD, and PRD, respectively.</p> "> Figure 12
<p>LISA cluster map of EQI in three urban agglomerations in 2001 and 2020. (<b>a</b>–<b>c</b>) Clustering patterns of EQI in 2001 of BTH, CYRD, and PRD, respectively. (<b>d</b>–<b>f</b>) Clustering patterns of EQI in 2020 of BTH, CYRD, and PRD, respectively.</p> "> Figure A1
<p>Results of correlation and significance tests among RSEI, the first three principal components (PC) and four factors constructing RSEI in different urban agglomerations. The symbols ***, **, and * display three significant level markers with <span class="html-italic">p</span> < 0.001, <span class="html-italic">p</span> < 0.01, and <span class="html-italic">p</span> < 0.05, respectively. (<b>a</b>–<b>c</b>) Diagnosis results in BTH, CYRD, and PRD, respectively, in 2001. (<b>d</b>–<b>f</b>) Diagnosis results in BTH, CYRD, and PRD, respectively, in 2020.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets and Preprocessing
2.2.1. Socio-Economic Statistics
2.2.2. Remote Sensing Products
2.2.3. Data Processing
2.3. Methods
2.3.1. Ecological Quality Assessment Framework
- Is the area rich in ecological resources? Are the ecological functions well developed? (Ecological function) [63]
- Are the ecosystems in the area compatible with natural conditions and able to establish positive interactions? (Ecological interaction) [64]
- Is there pressure from human activities in the area? What is the intensity of the pressure? (Ecological pressure) [65]
- How well does the area maintain its stability when disturbed and disrupted? (Ecological stability) [66].
2.3.2. PCA Modified AHP Weighting Method
2.3.3. Spatiotemporal Heterogeneity of EQI under Urban Expansion Patterns
2.3.4. Urban Aggregation Patterns and Hotspot Analysis
2.3.5. Construction of Urban Synergy Index
3. Results
3.1. Spatiotemporal Changes of EQI in Urban Agglomerations
3.2. Impact of Urbanization on Ecological Quality in Urban Built-Up Area
3.3. Analysis of EQI and USI in City-Level
4. Discussion
4.1. Feasibility and Rationality of Evaluation Methods
4.1.1. Comparison with Remote Sensing Ecological Index (RSEI)
4.1.2. Stability of Principal Component Analysis as Indicator Weighting
4.2. Reasons for Selecting Indicators and Testing for Collinearity and Correlation
4.2.1. Principles and Basis for Selecting Indicators
4.2.2. Correlation and Collinearity Diagnosis between Indicators
4.3. Identification and Suggestions for Key Regulatory Areas
4.3.1. Spatial Distribution of EQI Changes
4.3.2. Identification for Cold/Hot Spots of Ecological Quality Changes and Suggestions
4.4. Limitations and Future Research Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Wang, H.; Bao, C. Scenario modeling of ecological security index using system dynamics in Beijing-Tianjin-Hebei urban agglomeration. Ecol. Indic. 2021, 125, 107613. [Google Scholar] [CrossRef]
- Paudyal, K.; Baral, H.; Bhandari, S.P.; Bhandari, A.; Keenan, R.J. Spatial assessment of the impact of land use and land cover change on supply of ecosystem services in Phewa watershed, Nepal. Ecosyst. Serv. 2019, 36, 100895. [Google Scholar] [CrossRef]
- Fang, C.; Liu, H.; Wang, S. The coupling curve between urbanization and the eco-environment: China’s urban agglomeration as a case study. Ecol. Indic. 2021, 130, 108107. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Cao, Z.; Liu, Z.; Lu, Z.; Liu, Y. Towards the progress of ecological restoration and economic development in China’s Loess Plateau and strategy for more sustainable development. Sci. Total Environ. 2021, 756, 143676. [Google Scholar] [CrossRef]
- Wanyama, D.; Kar, B.; Moore, N.J. Quantitative multi-factor characterization of eco-environmental vulnerability in the Mount Elgon ecosystem. GISci. Remote Sens. 2021, 58, 1571–1592. [Google Scholar] [CrossRef]
- Shi, F.; Li, M. Assessing Land Cover and Ecological Quality Changes under the New-Type Urbanization from Multi-Source Remote Sensing. Sustainability 2021, 13, 11979. [Google Scholar] [CrossRef]
- Peng, J.; Wang, X.; Liu, Y.; Zhao, Y.; Xu, Z.; Zhao, M.; Qiu, S.; Wu, J. Urbanization impact on the supply-demand budget of ecosystem services: Decoupling analysis. Ecosyst. Serv. 2020, 44, 101139. [Google Scholar] [CrossRef]
- Lin, J.; Huang, J.; Prell, C.; Bryan, B.A. Changes in supply and demand mediate the effects of land-use change on freshwater ecosystem services flows. Sci. Total Environ. 2021, 763, 143012. [Google Scholar] [CrossRef]
- Chen, A.; Yang, X.; Guo, J.; Xing, X.; Yang, D.; Xu, B. Synthesized remote sensing-based desertification index reveals ecological restoration and its driving forces in the northern sand-prevention belt of China. Ecol. Indic. 2021, 131, 108230. [Google Scholar] [CrossRef]
- Sinclair, S.J.; Griffioen, P.; Duncan, D.H.; Millett-Riley, J.E.; White, M.D. Quantifying ecosystem quality by modeling multi-attribute expert opinion. Ecol. Appl. 2015, 25, 1463–1477. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment, the People’s Republic of China. “Technical Specifications for Evaluation of Ecological Environment Status” (for trial implementation); Ministry of Ecology and Environment: Beijing, China, 2012.
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tommervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Gong, E.; Shi, F.; Wang, Z.; Hu, Q.; Zhang, J.; Hai, H. Evaluating Environmental Quality and Its Driving Force in Northeastern China Using the Remote Sensing Ecological Index. Sustainability 2022, 14, 16304. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Wu, J. Dynamic monitoring of long time series of ecological quality in urban agglomerations using Google Earth Engine cloud computing: A case study of the Guangdong-Hong Kong-Macao Greater Bay Area, China. Acta Ecol. Sin. 2020, 40, 8461–8473. [Google Scholar]
- Xu, H. A remote sensing urban ecological index and its application. Acta Ecol. Sin. 2013, 33, 7853–7862. [Google Scholar]
- Liu, X.; Cui, Y.; Dong, J.; Shi, Z.; Run, Y. Assessment of ecological space and ecological index changes in the affected area of the middle and lower reaches of the Yellow River. Acta Ecol. Sin. 2021, 41, 8030–8039. [Google Scholar]
- Sun, C.; Li, J.; Liu, Y.; Cao, L.; Zheng, J.; Yang, Z.; Ye, J.; Li, Y. Ecological quality assessment and monitoring using a time-series remote sensing-based ecological index (ts-RSEI). GISci. Remote Sens. 2022, 59, 1793–1816. [Google Scholar] [CrossRef]
- Gilvear, D.J.; Heal, K.V.; Stephen, A. Hydrology and the ecological quality of Scottish river ecosystems. Sci. Total Environ. 2002, 294, 131–159. [Google Scholar] [CrossRef]
- Li, L.; Huang, X.; Yang, H. Scenario-based urban growth simulation by incorporating ecological-agricultural-urban suitability into a Future Land Use Simulation model. Cities 2023, 137, 104334. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Song, C.; Du, H. Spatial and Temporal Variations in the Ecological Vulnerability of Northern China. J. Sens. 2022, 2022, 7232830. [Google Scholar] [CrossRef]
- Xu, H.; Wang, M.; Shi, T.; Guan, H.; Fang, C.; Lin, Z. Prediction of ecological effects of potential population and impervious surface increases using a remote sensing based ecological index (RSEI). Ecol. Indic. 2018, 93, 730–740. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Y.; Guan, H.; Shi, T.; Hu, X. Detecting Ecological Changes with a Remote Sensing Based Ecological Index (RSEI) Produced Time Series and Change Vector Analysis. Remote Sens. 2019, 11, 2345. [Google Scholar] [CrossRef]
- Seddon, A.W.R.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 2016, 531, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Ge, R.; Huang, J.; Zhao, Q.; Lin, J.; Huang, N.; Zhang, G.; Li, X.; Ye, H.; Yin, K. A quantitative method to assess the ecological indicator system’s effectiveness: A case study of the Ecological Province Construction Indicators of China. Ecol. Indic. 2016, 62, 95–100. [Google Scholar] [CrossRef]
- Lepczyk, C.A.; Aronson, M.F.J.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; Macivor, J.S. Biodiversity in the City: Fundamental Questions for Understanding the Ecology of Urban Green Spaces for Biodiversity Conservation. Bioscience 2017, 67, 799–807. [Google Scholar] [CrossRef]
- Sun, X.; Jiang, Z.; Liu, F.; Zhang, D. Monitoring spatio-temporal dynamics of habitat quality in Nansihu Lake basin, eastern China, from 1980 to 2015. Ecol. Indic. 2019, 102, 716–723. [Google Scholar] [CrossRef]
- McPhearson, T.; Pickett, S.T.A.; Grimm, N.B.; Niemela, J.; Alberti, M.; Elmqvist, T.; Weber, C.; Haase, D.; Breuste, J.; Qureshi, S. Advancing Urban Ecology toward a Science of Cities. Bioscience 2016, 66, 198–212. [Google Scholar] [CrossRef]
- Chen, M.; Tan, Y.; Xu, X.; Lin, Y. Identifying ecological degradation and restoration zone based on ecosystem quality: A case study of Yangtze River Delta. Appl. Geogr. 2024, 162, 103149. [Google Scholar] [CrossRef]
- Rome, A. The Closing Circle: Nature, Man, and Technology. Nature 2015, 527, 443–445. [Google Scholar] [CrossRef]
- Guo, B.; Zang, W.; Luo, W. Spatial-temporal shifts of ecological vulnerability of Karst Mountain ecosystem-impacts of global change and anthropogenic interference. Sci. Total Environ. 2020, 741, 140256. [Google Scholar] [CrossRef]
- Hu, X.; Ma, C.; Huang, P.; Guo, X. Ecological vulnerability assessment based on AHP-PSR method and analysis of its single parameter sensitivity and spatial autocorrelation for ecological protection ? A case of Weifang City, China. Ecol. Indic. 2021, 125, 107464. [Google Scholar] [CrossRef]
- Huang, T.; Yu, Y.; Wei, Y.; Wang, H.; Huang, W.; Chen, X. Spatial-seasonal characteristics and critical impact factors of PM2.5 concentration in the Beijing-Tianjin-Hebei urban agglomeration. PLoS ONE 2018, 13, e0201364. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Liang, L.; Wang, Z.; Chen, L.; Zhang, F. Exploration of coupling effects in the Economy-Society-Environment system in urban areas: Case study of the Yangtze River Delta Urban Agglomeration. Ecol. Indic. 2021, 128, 107858. [Google Scholar] [CrossRef]
- Guan, D.; He, X.; He, C.; Cheng, L.; Qu, S. Does the urban sprawl matter in Yangtze River Economic Belt, China? An integrated analysis with urban sprawl index and one scenario analysis model. Cities 2020, 99, 102611. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, Q.; He, C.; Wu, J. Impacts of urban expansion on ecosystem services in the Beijing-Tianjin-Hebei urban agglomeration, China: A scenario analysis based on the Shared Socioeconomic Pathways. Resour. Conserv. Recycl. 2017, 125, 115–130. [Google Scholar] [CrossRef]
- Guo, X.; Fang, C.; Mu, X.; Chen, D. Coupling and coordination analysis of urbanization and ecosystem service value in Beijing-Tianjin-Hebei urban agglomeration. Ecol. Indic. 2022, 137, 108782. [Google Scholar] [CrossRef]
- Wu, A.; Zhao, Y.; Qin, Y.; Liu, X.; Shen, H. Analysis of Ecological Environment Quality and Its Driving Factors in the Beijing-Tianjin-Hebei Region of China. Sustainability 2023, 15, 7898. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, Y.; Li, J.; Duan, K. Measuring the urban land use efficiency of three urban agglomerations in China under carbon emissions. Environ. Sci. Pollut. Res. 2022, 29, 36443–36474. [Google Scholar] [CrossRef]
- Li, T.; Dong, Y. Phased and polarized development of ecological quality in the rapidly-urbanized Pearl River Delta, China. Environ. Sci. Pollut. Res. 2022, 30, 36176–36189. [Google Scholar] [CrossRef]
- Wu, J.; Li, X.; Luo, Y.; Zhang, D. Spatiotemporal effects of urban sprawl on habitat quality in the Pearl River Delta from 1990 to 2018. Sci. Rep. 2021, 11, 13981. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, F.; Duan, P.; Jim, C.Y.; Chan, N.W.; Shi, J.; Liu, C.; Wang, J.; Bahtebay, J.; Ma, X. Vegetation cover changes in China induced by ecological restoration-protection projects and land-use changes from 2000 to 2020. Catena 2022, 217, 106530. [Google Scholar] [CrossRef]
- Posthuma, L.; Zijp, M.C.; De Zwart, D.; Van de Meent, D.; Globevnik, L.; Koprivsek, M.; Focks, A.; Van Gils, J.; Birk, S. Chemical pollution imposes limitations to the ecological status of European surface waters. Sci. Rep. 2020, 10, 14825. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Dong, X.; Wang, X.-c.; Zhang, P.; Liu, M.; Zhang, Y. Study on the relationship among the urbanization process, ecosystem services and human well-being in an arid region in the context of carbon flow: Taking the Manas river basin as an example. Ecol. Indic. 2021, 132, 108248. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, T. Coupling Coordination Degree between Ecological Environment Quality and Urban Development in Chengdu-Chongqing Economic Circle Based on the Google Earth Engine Platform. Sustainability 2023, 15, 4389. [Google Scholar] [CrossRef]
- Stevens, F.R.; Gaughan, A.E.; Linard, C.; Tatem, A.J. Disaggregating Census Data for Population Mapping Using Random Forests with Remotely-Sensed and Ancillary Data. PLoS ONE 2015, 10, e0107042. [Google Scholar] [CrossRef] [PubMed]
- Reed, F.J.; Gaughan, A.E.; Stevens, F.R.; Yetman, G.; Sorichetta, A.; Tatem, A.J. Gridded Population Maps Informed by Different Built Settlement Products. Data 2018, 3, 33. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y. Global 1 km x 1 km gridded revised real gross domestic product and electricity consumption during 1992-2019 based on calibrated nighttime light data. Sci. Data 2022, 9, 202. [Google Scholar] [CrossRef]
- Xu, D.; Yang, F.; Yu, L.; Zhou, Y.; Li, H.; Ma, J.; Huang, J.; Wei, J.; Xu, Y.; Zhang, C.; et al. Quantization of the coupling mechanism between eco-environmental quality and urbanization from multisource remote sensing data. J. Clean. Prod. 2021, 321, 128948. [Google Scholar] [CrossRef]
- Liang, S.; Zhao, X.; Liu, S.; Yuan, W.; Cheng, X.; Xiao, Z.; Zhang, X.; Liu, Q.; Cheng, J.; Tang, H.; et al. A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies. Int. J. Digit. Earth 2013, 6, 5–33. [Google Scholar] [CrossRef]
- Ma, H.; Liang, S. Development of the GLASS 250-m leaf area index product (version 6) from MODIS data using the bidirectional LSTM deep learning model. Remote Sens. Environ. 2022, 273, 112985. [Google Scholar] [CrossRef]
- Zheng, Y.; Shen, R.; Wang, Y.; Li, X.; Liu, S.; Liang, S.; Chen, J.M.; Ju, W.; Zhang, L.; Yuan, W. Improved estimate of global gross primary production for reproducing its long-term variation, 1982-2017. Earth Syst. Sci. Data 2020, 12, 2725–2746. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, Y.; Wu, S.; Yang, C. Analyzing ecological environment change and associated driving factors in China based on NDVI time series data. Ecol. Indic. 2021, 129, 107933. [Google Scholar] [CrossRef]
- Peng, S.; Gang, C.; Cao, Y.; Chen, Y. Assessment of climate change trends over the Loess Plateau in China from 1901 to 2100. Int. J. Climatol. 2018, 38, 2250–2264. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Cribb, M.; Huang, W.; Xue, W.; Sun, L.; Guo, J.; Peng, Y.; Li, J.; Lyapustin, A.; et al. Improved 1 km resolution PM2.5 estimates across China using enhanced space-time extremely randomized trees. Atmos. Chem. Phys. 2020, 20, 3273–3289. [Google Scholar] [CrossRef]
- He, C.; Liu, Z.; Tian, J.; Ma, Q. Urban expansion dynamics and natural habitat loss in China: A multiscale landscape perspective. Glob. Chang. Biol. 2014, 20, 2886–2902. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; He, C.; Liu, Z.; Dou, Y. How Did Urban Land Expand in China between 1992 and 2015? A Multi-Scale Landscape Analysis. PLoS ONE 2016, 11, e0154839. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Xie, G.; Lin, Z.; Lu, C.; Yu, X.; Cao, C. Expert Knowledge Based Valuation Method of Ecosystem Services in China. J. Nat. Resour. 2008, 23, 911–919. [Google Scholar]
- Tomaselli, V.; Dimopoulos, P.; Marangi, C.; Kallimanis, A.S.; Adamo, M.; Tarantino, C.; Panitsa, M.; Terzi, M.; Veronico, G.; Lovergine, F.; et al. Translating land cover/land use classifications to habitat taxonomies for landscape monitoring: A Mediterranean assessment. Landsc. Ecol. 2013, 28, 905–930. [Google Scholar] [CrossRef]
- Huang, I.B.; Keisler, J.; Linkov, I. Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Sci. Total Environ. 2011, 409, 3578–3594. [Google Scholar] [CrossRef]
- Khan, I. Power generation expansion plan and sustainability in a developing country: A multi-criteria decision analysis. J. Clean. Prod. 2019, 220, 707–720. [Google Scholar] [CrossRef]
- Hsu, W.-L.; Shen, X.; Xu, H.; Zhang, C.; Liu, H.-L.; Shiau, Y.-C. Integrated Evaluations of Resource and Environment Carrying Capacity of the Huaihe River Ecological and Economic Belt in China. Land 2021, 10, 1168. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Wade, A.J.; Butterfield, D. Potential impacts of climate change on water quality and ecology in six UK rivers. Hydrol. Res. 2009, 40, 113–122. [Google Scholar] [CrossRef]
- Galli, A.; Iha, K.; Pires, S.M.; Mancini, M.S.; Alves, A.; Zokai, G.; Lin, D.; Murthy, A.; Wackernagel, M. Assessing the Ecological Footprint and biocapacity of Portuguese cities: Critical results for environmental awareness and local management. Cities 2020, 96, 102442. [Google Scholar] [CrossRef]
- Wang, C.; Yu, C.; Chen, T.; Feng, Z.; Hu, Y.; Wu, K. Can the establishment of ecological security patterns improve ecological protection? An example of Nanchang, China. Sci. Total Environ. 2020, 740, 140051. [Google Scholar] [CrossRef]
- Martinez, A.d.l.I.; Labib, S.M. Demystifying normalized difference vegetation index (NDVI) for greenness exposure assessments and policy interventions in urban greening. Environ. Res. 2023, 220, 115155. [Google Scholar] [CrossRef]
- Ukasha, M.; Ramirez, J.A.; Niemann, J.D. Temporal Variations of NDVI and LAI and Interactions with Hydroclimatic Variables in a Large and Agro-Ecologically Diverse Region. J. Geophys. Res. Biogeosci. 2022, 127, e2021JG006395. [Google Scholar] [CrossRef]
- Hu, Z.; Piao, S.; Knapp, A.K.; Wang, X.; Peng, S.; Yuan, W.; Running, S.; Mao, J.; Shi, X.; Ciais, P.; et al. Decoupling of greenness and gross primary productivity as aridity decreases. Remote Sens. Environ. 2022, 279, 113120. [Google Scholar] [CrossRef]
- Bayulken, B.; Huisingh, D.; Fisher, P.M.J. How are nature based solutions helping in the greening of cities in the context of crises such as climate change and pandemics? A comprehensive review. J. Clean. Prod. 2021, 288, 125569. [Google Scholar] [CrossRef]
- Zhang, S.; Ye, L.; Huang, C.; Wang, M.; Yang, Y.; Wang, T.; Tan, W. Evolution of vegetation dynamics and its response to climate in ecologically fragile regions from 1982 to 2020: A case study of the Three Gorges Reservoir area. Catena 2022, 219. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, W.; Han, L. The spatial and seasonal complexity of PM2.5 pollution in cities from a social-ecological perspective. J. Clean. Prod. 2021, 309, 127476. [Google Scholar] [CrossRef]
- Dong, L.; Wan, R.; Li, B.; Tan, Z.; Yang, S.; Zhang, T. Spatiotemporal dynamics of lake wetland in the Wanjiang Plain of the Yangtze River basin, China during the recent century. Ecol. Indic. 2022, 142, 109295. [Google Scholar] [CrossRef]
- Kyere-Boateng, R.; Marek, M.V. Analysis of the Social-Ecological Causes of Deforestation and Forest Degradation in Ghana: Application of the DPSIR Framework. Forests 2021, 12, 409. [Google Scholar] [CrossRef]
- Fan, Y.; Fang, C. Evolution process and obstacle factors of ecological security in western China, a case study of Qinghai province. Ecol. Indic. 2020, 117, 106659. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, K. Clean energy, population density, urbanization and environmental pollution nexus: Evidence from Bangladesh. Renew. Energy 2021, 172, 1063–1072. [Google Scholar] [CrossRef]
- Pennekamp, F.; Pontarp, M.; Tabi, A.; Altermatt, F.; Alther, R.; Choffat, Y.; Fronhofer, E.A.; Ganesanandamoorthy, P.; Garnier, A.; Griffiths, J.I.; et al. Biodiversity increases and decreases ecosystem stability. Nature 2018, 563, 109–112. [Google Scholar] [CrossRef]
- Wang, C.J.; Zhang, Z.X.; Wan, J.Z. Relationship between gross primary productivity and plant species richness at geographical scales: Evidence from protected area data in China. Environ. Earth Sci. 2021, 80, 189. [Google Scholar] [CrossRef]
- Song, C.; Huang, R.; Tang, X. Spatiotemporal Impact on Vegetation by Tunnel Discharging in the Jinping II Hydropower Station: Evidence from the NDVI and GPP Monitoring Dataset of 2001-2019. Front. Earth Sci. 2022, 10, 863278. [Google Scholar] [CrossRef]
- Torabizadeh, M.; Yusof, N.M.; Ma’aram, A.; Shaharoun, A.M. Identifying sustainable warehouse management system indicators and proposing new weighting method. J. Clean. Prod. 2020, 248, 119190. [Google Scholar] [CrossRef]
- Ohlan, R. The impact of population density, energy consumption, economic growth and trade openness on CO2 emissions in India. Nat. Hazards 2015, 79, 1409–1428. [Google Scholar] [CrossRef]
- Schaafsma, M.; Brouwer, R.; Rose, J. Directional heterogeneity in WTP models for environmental valuation. Ecol. Econ. 2012, 79, 21–31. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Zhan, J.; Liu, W.; Teng, Y.; Chu, X.; Wang, H. Spatial heterogeneity of urbanization impacts on ecosystem services in the urban agglomerations along the Yellow River, China. Ecol. Eng. 2022, 182, 106717. [Google Scholar] [CrossRef]
- Cao, W.; Dong, L.; Wu, L.; Liu, Y. Quantifying urban areas with multi-source data based on percolation theory. Remote Sens. Environ. 2020, 241, 111730. [Google Scholar] [CrossRef]
- Hu, X.; Xu, H. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: A case from Fuzhou City, China. Ecol. Indic. 2018, 89, 11–21. [Google Scholar] [CrossRef]
- Boori, M.S.; Choudhary, K.; Paringer, R.; Kupriyanov, A. Spatiotemporal ecological vulnerability analysis with statistical correlation based on satellite remote sensing in Samara, Russia. J. Environ. Manag. 2021, 285, 112138. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y. An analytical process of spatial autocorrelation functions based on Moran’s index. PLoS ONE 2021, 16, e0249589. [Google Scholar] [CrossRef]
- Rybski, D.; Gonzalez, M.C. Cities as complex systems-Collection overview. PLoS ONE 2022, 17, e0262964. [Google Scholar] [CrossRef]
- Ortman, S.G.; Lobo, J.; Smith, M.E. Cities: Complexity, theory and history. PLoS ONE 2020, 15, e0243621. [Google Scholar] [CrossRef]
- Wang, S.; Hu, M.; Wang, Y.; Xia, B. Dynamics of ecosystem services in response to urbanization across temporal and spatial scales in a mega metropolitan area. Sustain. Cities Soc. 2022, 77, 103561. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, X.; Qu, L.; Li, S.; Lin, Y.; Yao, R.; Zhou, X.; Li, J. Land use/cover predictions incorporating ecological security for the Yangtze River Delta region, China. Ecol. Indic. 2020, 119, 103561. [Google Scholar] [CrossRef]
- Sun, R.; Wu, Z.; Chen, B.; Yang, C.; Qi, D.; Lan, G.; Fraedrich, K. Effects of land-use change on eco-environmental quality in Hainan Island, China. Ecol. Indic. 2020, 109, 105777. [Google Scholar] [CrossRef]
- Jiang, F.; Zhang, Y.; Li, J.; Sun, Z. Research on remote sensing ecological environmental assessment method optimized by regional scale. Environ. Sci. Pollut. Res. 2021, 28, 68174–68187. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, T.; Zhu, D.; Jia, K.; Plaza, A. RSEIFE: A new remote sensing ecological index for simulating the land surface eco-environment. J. Environ. Manag. 2023, 326, 116851. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Y.; Wu, T.; Pan, X.Y.; Du, H.T.; Li, J.L.; Zhang, L.; Men, M.X.; Chen, Y. Ecological quality assessment of Xiongan New Area based on remote sensing ecological index. J. Appl. Ecol. 2019, 30, 277–284. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, Z.; Chen, Y.; Guo, C.; Marinello, F. Instability of remote sensing based ecological index (RSEI) and its improvement for time series analysis. Sci. Total Environ. 2022, 814, 152595. [Google Scholar] [CrossRef]
- Ning, L.; Wang, J.; Fen, Q. The improvement of ecological environment index model RSEI. Arab. J. Geosci. 2020, 13, 403. [Google Scholar] [CrossRef]
- Helili, P.; Zan, M. Coupling Coordination Development of Urbanization and Ecological Environment in the Urban Agglomeration on the Northern Slope of the Tianshan Mountains, China. Sustainability 2023, 15, 4099. [Google Scholar] [CrossRef]
- Chen, X.; Li, F.; Li, X.; Hu, Y.; Wang, Y. Mapping ecological space quality changes for ecological management: A case study in the Pearl River Delta urban agglomeration, China. J. Environ. Manag. 2020, 267, 110658. [Google Scholar] [CrossRef]
- Liang, L.; Wang, Z.; Li, J. The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. J. Clean. Prod. 2019, 237, 117649. [Google Scholar] [CrossRef]
- Wu, R.M.X.; Zhang, Z.; Yan, W.; Fan, J.; Gou, J.; Liu, B.; Gide, E.; Soar, J.; Shen, B.; Fazal-E-Hasan, S.; et al. A comparative analysis of the principal component analysis and entropy weight methods to establish the indexing measurement. PLoS ONE 2022, 17, e0262261. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Zhang, L.; Xiao, Z.; Wang, F.; Sun, N.; Li, D.; Chen, B.; Chen, J.; Li, Y.; et al. A National Key R&D Program:Technologies and Guidelines for Monitoring Ecological Quality of Terrestrial Ecosystems in China. J. Resour. Ecol. 2019, 10, 105–111. [Google Scholar]
- Cheng, H.; Zhu, L.; Meng, J. Fuzzy evaluation of the ecological security of land resources in mainland China based on the Pressure-State-Response framework. Sci. Total Environ. 2022, 804, 150053. [Google Scholar] [CrossRef] [PubMed]
- Shafian, S.; Rajan, N.; Schnell, R.; Bagavathiannan, M.; Valasek, J.; Shi, Y.; Olsenholler, J. Unmanned aerial systems-based remote sensing for monitoring sorghum growth and development. PLoS ONE 2018, 13, e0196605. [Google Scholar] [CrossRef]
- Song, Y.; Chen, B.; Kwan, M.-P. How does urban expansion impact people’s exposure to green environments? A comparative study of 290 Chinese cities. J. Clean. Prod. 2020, 246, 119018. [Google Scholar] [CrossRef]
- Manoli, G.; Fatichi, S.; Schlapfer, M.; Yu, K.; Crowther, T.W.; Meili, N.; Burlando, P.; Katul, G.G.; Bou-Zeid, E. Magnitude of urban heat islands largely explained by climate and population. Nature 2019, 573, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Mauzerall, D.L.; Chen, Q.; Zhang, Q.; Song, Y.; Peng, W.; Klimont, Z.; Qiu, X.; Zhang, S.; Hu, M.; et al. Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source. Proc. Natl. Acad. Sci. USA 2016, 113, 7756–7761. [Google Scholar] [CrossRef]
- Khalid, K.; Usman, M.; Mehdi, M.A. The determinants of environmental quality in the SAARC region: A spatial heterogeneous panel data approach. Environ. Sci. Pollut. Res. 2021, 28, 6422–6436. [Google Scholar] [CrossRef]
- Khan, H.; Khan, I.; Truong Tien, B. The heterogeneity of renewable energy consumption, carbon emission and financial development in the globe: A panel quantile regression approach. Energy Rep. 2020, 6, 859–867. [Google Scholar] [CrossRef]
- Pesaran, M.H. General diagnostic tests for cross-sectional dependence in panels. Empir. Econ. 2021, 60, 13–50. [Google Scholar] [CrossRef]
- Ren, X.; Cheng, C.; Wang, Z.; Yan, C. Spillover and dynamic effects of energy transition and economic growth on carbon dioxide emissions for the European Union: A dynamic spatial panel model. Sustain. Dev. 2021, 29, 228–242. [Google Scholar] [CrossRef]
- Yu, D.; Zhang, Y.; Wu, X.; Li, D.; Li, G. The varying effects of accessing high-speed rail system on China’s county development: A geographically weighted panel regression analysis. Land Use Policy 2021, 100, 104935. [Google Scholar] [CrossRef]
- Zhang, C.; Li, L.; Guan, Y.; Cai, D.; Chen, H.; Bian, X.; Guo, S. Impacts of vegetation properties and temperature characteristics on species richness patterns in drylands: Case study from Xinjiang. Ecol. Indic. 2021, 133, 108417. [Google Scholar] [CrossRef]
- Tai, A.P.K.; Mickley, L.J.; Jacob, D.J. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos. Environ. 2010, 44, 3976–3984. [Google Scholar] [CrossRef]
- Yi, L.; Chen, J.; Jin, Z.; Quan, Y.; Han, P.; Guan, S.; Jiang, X. Impacts of human activities on coastal ecological environment during the rapid urbanization process in Shenzhen, China. Ocean Coast. Manag. 2018, 154, 121–132. [Google Scholar] [CrossRef]
- Wang, M.-X.; Zhao, H.-H.; Cui, J.-X.; Fan, D.; Lv, B.; Wang, G.; Li, Z.-H.; Zhou, G.-J. Evaluating green development level of nine cities within the Pearl River Delta, China. J. Clean. Prod. 2018, 174, 315–323. [Google Scholar] [CrossRef]
- Xu, C.; Dong, L.; Yu, C.; Zhang, Y.; Cheng, B. Can forest city construction affect urban air quality? The evidence from the Beijing-Tianjin-Hebei urban agglomeration of China. J. Clean. Prod. 2020, 264, 121607. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Y. Spatiotemporal changes of ecosystem services value by incorporating planning policies: A case of the Pearl River Delta, China. Ecol. Model. 2021, 461, 109777. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.; Zhao, F.; Wang, C.; Zhang, F.; Teng, Y.; Chu, X.; Kumi, M.A. Spatio-temporal variations of ecosystem services and their drivers in the Pearl River Delta, China. J. Clean. Prod. 2022, 337, 130466. [Google Scholar] [CrossRef]
- Sun, T.; Lin, W.; Chen, G.; Guo, P.; Zeng, Y. Wetland ecosystem health assessment through integrating remote sensing and inventory data with an assessment model for the Hangzhou Bay, China. Sci. Total Environ. 2016, 566, 627–640. [Google Scholar] [CrossRef]
- Xiong, Y.; Xu, W.; Lu, N.; Huang, S.; Wu, C.; Wang, L.; Dai, F.; Kou, W. Assessment of spatial-temporal changes of ecological environment quality based on RSEI and GEE: A case study in Erhai Lake Basin, Yunnan province, China. Ecol. Indic. 2021, 125, 107518. [Google Scholar] [CrossRef]
- Johnson, M.D.; Hsieh, W.W.; Cannon, A.J.; Davidson, A.; Bedard, F. Crop yield forecasting on the Canadian Prairies by remotely sensed vegetation indices and machine learning methods. Agric. For. Meteorol. 2016, 218, 74–84. [Google Scholar] [CrossRef]
- Gusmao Caiado, R.G.; Dias, R.d.F.; Mattos, L.V.; Goncalves Quelhas, O.L.; Leal Filho, W. Towards sustainable development through the perspective of eco-efficiency—A systematic literature review. J. Clean. Prod. 2017, 165, 890–904. [Google Scholar] [CrossRef]
Indicators | The Role of Ecological Quality Assessment | Temporal Resolution | Spatial Resolution | Data Source |
---|---|---|---|---|
Gross domestic product (GDP) | Quantify the contradiction between urbanization and ecological protection | Yearly (1992–2019) | 1 km | Real GDP |
Human density (HD) | Reveal the threat of population and population growth to the ecological environment | Yearly (2001–2020) | 1 km | WorldPop |
Normalized difference vegetation index (NDVI) | Quantify the degree of vegetation cover, reflect the growth trend and horizontal structure of vegetation | Yearly (2001–2019) | 1 km | MOD13A1 v061 |
Annual mean temperature (Tmp) | Evaluate the climate suitability and urban heat island effects | 16 Days (2001–2020) | 500 m | National Tibetan Plateau Data Center |
Annual precipitation (Pre) | Evaluate the climate suitability and land desertification | Monthly (2001–2020) | 1 km | National Tibetan Plateau Data Center |
Air quality (PM2.5) | Monitor inhalable particulate matter to reflect atmospheric pollution | Monthly (2001–2020) | 1 km | ChinaHighPM2.5 dataset |
Gross primary productivity (GPP) | Measure the strength of vegetation photosynthesis and the amount of carbon sequestration | 16 Days (2001–2020) | 500 m | GLASS GPP |
Leaf area index (LAI) | Reflect vegetation growth trend and complexity of vertical structure | 16 Days (2001–2020) | 500 m | GLASS LAI |
Land cover (LC) | Changes in LC drive the increase or decrease of ecosystem services | Yearly (2001–2020) | 500 m | CLCD dataset |
Soil nutrient availability (Soil) | Calculate soil nutrient content to reflect recovery capacity | Yearly (2008) | 10 km | Harmonized-world-soil-database-v12 |
Target Layer | Criterion Layer | Indicator Layer | Weights | Contribution |
---|---|---|---|---|
Evaluation of Ecological Quality Index (EQI) in Three Urban Agglomerations in China | Ecological Pressure (EP) (−0.014) | HD | 0.46 | Negative |
GDP | 0.54 | Negative | ||
Ecological Function (EF) (0.619) | NDVI | 0.424 | Positive | |
LC | 0.245 | Corresponding | ||
LAI | 0.236 | Positive | ||
GPP | 0.095 | Positive | ||
Ecological Interaction (EI) (0.237) | Tmp | 0.664 | Proper | |
Pre | 0.336 | Proper | ||
PM2.5 | −0.154 | Negative | ||
Ecological Stability (ES) (0.158) | SNA | 0.303 | Positive | |
GPP | 0.697 | Positive |
EQI Level | The Range of EQI Value | Level | The Range of Value |
---|---|---|---|
Excellent | Deteriorated (DR) | ||
Good | Slightly Deteriorated (SD) | ||
Moderate | Inapparent Change (IC) | ||
Poor | Slightly Improved (SI) | ||
Bad | Obvious Improved (OI) |
BTH_2001 | BTH_2020 | CYRD_2001 | CYRD_2020 | |||||
---|---|---|---|---|---|---|---|---|
EQI Level | Area | Percentage | Area | Percentage | Area | Percentage | Area | Percentage |
Excellent | 20,263 | 9.46 | 12,751 | 5.95 | 66,099 | 30.46 | 60,875 | 28.02 |
Good | 88,212 | 41.16 | 60,943 | 28.44 | 110,810 | 51.07 | 58,693 | 27.01 |
Moderate | 80,480 | 37.55 | 108,476 | 50.61 | 27,222 | 12.55 | 68,483 | 31.52 |
Poor | 24,945 | 11.64 | 29,994 | 13.99 | 11,619 | 5.35 | 28,242 | 13.00 |
Bad | 398 | 0.19 | 2161 | 1.01 | 1244 | 0.57 | 972 | 0.45 |
PRD_2001 | PRD_2020 | |||||||
EQI level | Area | Percentage | Area | Percentage | ||||
Excellent | 25,131 | 48.70 | 27,663 | 52.11 | ||||
Good | 13,922 | 26.98 | 9977 | 18.79 | ||||
Moderate | 9343 | 18.10 | 8301 | 15.64 | ||||
Poor | 3212 | 6.22 | 7110 | 13.39 | ||||
Bad | 1 | 0.00 | 37 | 0.07 |
BTH | CYRD | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
EQI Level | Excellent | Good | Moderate | Poor | Bad | Total | Excellent | Good | Moderate | Poor | Bad | Total |
Excellent | 8800 | 11,033 | 388 | 42 | 0 | 20,263 | 58,071 | 7414 | 510 | 73 | 0 | 66,068 |
Good | 3925 | 42,199 | 38,536 | 3532 | 20 | 88,212 | 2539 | 48,941 | 51,233 | 7991 | 8 | 110,712 |
Moderate | 26 | 7527 | 56,607 | 16,217 | 103 | 80,480 | 178 | 1925 | 14,431 | 10,505 | 53 | 27,092 |
Poor | 0 | 184 | 12,945 | 10,140 | 1676 | 24,945 | 4 | 229 | 1833 | 8661 | 600 | 11,327 |
Bad | 0 | 0 | 0 | 55 | 343 | 398 | 0 | 6 | 109 | 726 | 256 | 1097 |
Total | 12,751 | 60,943 | 10,8476 | 29,986 | 2142 | 214,298 | 60,792 | 58,515 | 68,116 | 27,956 | 917 | 216,296 |
PRD | ||||||||||||
EQI level | Excellent | Good | Moderate | Poor | Bad | Total | ||||||
Excellent | 24,403 | 1025 | 82 | 9 | 0 | 25,519 | ||||||
Good | 3379 | 8001 | 2350 | 355 | 0 | 14,085 | ||||||
Moderate | 65 | 908 | 5337 | 3110 | 2 | 9422 | ||||||
Poor | 0 | 5 | 241 | 3006 | 9 | 3261 | ||||||
Bad | 0 | 0 | 0 | 1 | 0 | 1 | ||||||
Total | 27,847 | 9939 | 8010 | 6481 | 11 | 52,288 |
BTH | CYRD | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LC Type | Cr | Fr | Gr | Wt | Br | CI | EI | Total | Cr | Fr | Gr | Wt | Br | CI | EI | Total |
Cr | 1130 | 4 | 5 | 43 | 0 | 436 | 1501 | 3119 | 4473 | 11 | 91 | 2 | 1071 | 4693 | 10,611 | |
Fr | 7 | 25 | 0 | 1 | 9 | 42 | 79 | 89 | 0 | 4 | 5 | 40 | 217 | |||
Gr | 19 | 0 | 14 | 1 | 1 | 4 | 12 | 51 | 0 | |||||||
Wt | 38 | 0 | 0 | 102 | 1 | 39 | 138 | 318 | 178 | 660 | 1 | 34 | 193 | 1066 | ||
Br | 1 | 0 | 0 | 2 | 1 | 2 | 7 | 13 | 0 | 1 | 1 | |||||
CI | 4 | 7 | 2492 | 2503 | 2 | 12 | 2855 | 2869 | ||||||||
EI | 4 | 15 | 1603 | 1622 | 2 | 7 | 2245 | 2255 | ||||||||
Total | 1203 | 29 | 19 | 170 | 3 | 2974 | 3270 | 7668 | 4735 | 100 | 0 | 774 | 3 | 3966 | 7441 | 17,019 |
PRD | ||||||||||||||||
LC Type | Cr | Fr | Gr | Wt | Br | CI | EI | Total | ||||||||
Cr | 2030 | 75 | 5 | 64 | 4 | 1114 | 617 | 3909 | ||||||||
Fr | 146 | 257 | 44 | 38 | 485 | |||||||||||
Gr | 6 | 1 | 1 | 16 | 9 | 33 | ||||||||||
Wt | 348 | 1 | 1 | 535 | 5 | 168 | 124 | 1182 | ||||||||
Br | 0 | 1 | 1 | |||||||||||||
CI | 2 | 7 | 2102 | 2111 | ||||||||||||
EI | 1 | 460 | 461 | |||||||||||||
Total | 2532 | 333 | 7 | 608 | 9 | 2532 | 1249 | 8182 |
GDP | HD | LAI | Soil | Tmp | Pre | PM2.5 | NDVI | GPP | LC | |
---|---|---|---|---|---|---|---|---|---|---|
VIF | 1.939 | 1.331 | 5.968 | 1.557 | 1.718 | 3.183 | 1.780 | 4.543 | 7.250 | 2.308 |
Tolerance | 0.516 | 0.751 | 0.168 | 0.642 | 0.582 | 0.314 | 0.562 | 0.220 | 0.138 | 0.433 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Zhao, S.; Zhao, X.; Wang, H.; Shi, W. Evaluation of the Spatiotemporal Change of Ecological Quality under the Context of Urban Expansion—A Case Study of Typical Urban Agglomerations in China. Remote Sens. 2024, 16, 45. https://doi.org/10.3390/rs16010045
Guo Y, Zhao S, Zhao X, Wang H, Shi W. Evaluation of the Spatiotemporal Change of Ecological Quality under the Context of Urban Expansion—A Case Study of Typical Urban Agglomerations in China. Remote Sensing. 2024; 16(1):45. https://doi.org/10.3390/rs16010045
Chicago/Turabian StyleGuo, Yinkun, Siqing Zhao, Xiang Zhao, Haoyu Wang, and Wenxi Shi. 2024. "Evaluation of the Spatiotemporal Change of Ecological Quality under the Context of Urban Expansion—A Case Study of Typical Urban Agglomerations in China" Remote Sensing 16, no. 1: 45. https://doi.org/10.3390/rs16010045
APA StyleGuo, Y., Zhao, S., Zhao, X., Wang, H., & Shi, W. (2024). Evaluation of the Spatiotemporal Change of Ecological Quality under the Context of Urban Expansion—A Case Study of Typical Urban Agglomerations in China. Remote Sensing, 16(1), 45. https://doi.org/10.3390/rs16010045