Adaptive Resource Scheduling Algorithm for Multi-Target ISAR Imaging in Radar Systems
"> Figure 1
<p>Derivation diagram of the target’s equivalent rotation angle. (<b>a</b>) Target flying in a straight line. (<b>b</b>) Target flying along a curved path.</p> "> Figure 2
<p>Feedback structure.</p> "> Figure 3
<p>Scattering point models. (<b>a</b>) Target 4. (<b>b</b>) Target 8.</p> "> Figure 4
<p>Angular velocity of 20 target over time.</p> "> Figure 5
<p>Indicators varying with iteration number. (<b>a</b>) Three performance indicators varying with iteration number. (<b>b</b>) Degree of Excellence (DoE) varying with iteration number. (<b>c</b>) Imaging task duration varying with iteration number.</p> "> Figure 6
<p>Pulse allocation sequences for 20 targets when the imaging task duration is set to 11 s. (The blue line indicates that the pulse at the current position is assigned to observe the corresponding target). (<b>a</b>) The first 10 targets. (<b>b</b>) The last 10 targets.</p> "> Figure 7
<p>Imaging results. (<b>a</b>) Target 4. (<b>b</b>) Target 8. (<b>c</b>) Target 9. (<b>d</b>) Target 17.</p> "> Figure 8
<p>The scheduling and imaging results of the three algorithms. (The red lines represent the pulses assigned to Target 8 for observation, and they are sparsely distributed.) (<b>a</b>) The scheduling result of the proposed algorithm for Target 8. (<b>b</b>) The imaging result of the proposed algorithm for Target 8. (<b>c</b>) The scheduling result of Algorithm 2 for Target 8. (<b>d</b>) The imaging result of Algorithm 2 for Target 8. (<b>e</b>) The scheduling result of Algorithm 3 for Target 8. (<b>f</b>) The imaging result of Algorithm 3 for Target 8.</p> "> Figure 9
<p>Imaging task duration varying with the number of targets for the proposed algorithm.</p> "> Figure 10
<p>Comparison of performance indicators between different algorithms. (<b>a</b>) PIR varying with the number of targets. (<b>b</b>) SRTS varying with the number of targets. (<b>c</b>) PUR varying with the number of targets.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sparse-Aperture ISAR Imaging Principle
2.2. Optimal Observation Period Formulation
2.3. Resource Scheduling Model Construction
- (1)
- Success Rate of Task Scheduling (SRTS)
- (2)
- Priority Implementation Rate (PIR)
- (3)
- Pulse Utilization Rate (PUR)
2.4. Algorithm for Model Solving
2.4.1. Prior Information Acquisition
- (1)
- Calculate the target’s azimuth resolution and coherent accumulation angle.
- (2)
- Calculate the priority of the target.
- (3)
- Calculate the optimal observation period for the target.
2.4.2. Inner Loop Allocation Method
2.4.3. Outer Loop Search Method
Algorithm 1 Adaptive Radar Resource Scheduling Algorithm for Multi-Target Imaging Based on Optimal Observation Periods |
|
3. Simulations
3.1. Algorithm Effectiveness Verification
3.2. Comparative Performance Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ISAR | Inverse Synthetic-Aperture Radar |
MIMO | Multiple-Input Multiple-Output |
RD | Range Doppler |
OMP | Orthogonal Matching Pursuit |
PRF | Pulse Repetition Frequency |
PIR | Priority Implementation Rate |
SRTS | Success Rate of Task Scheduling |
PUR | Pulse Utilization Rate |
DoE | Degree of Excellence |
References
- Bai, X.; Zhang, Y.; Liu, S. High-Resolution Radar Imaging of Off-Grid Maneuvering Targets Based on Parametric Sparse Bayesian Learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5112611. [Google Scholar] [CrossRef]
- Tian, X.; Bai, X.; Xue, R.; Qin, R.; Zhou, F. Fusion Recognition of Space Targets with Micro-Motion. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3116–3125. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Bai, X. High-Resolution ISAR Imaging With SSFCS Based on Nonparametric Bayesian Learning and Genetic Algorith. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5106612. [Google Scholar] [CrossRef]
- Hovanessian, S.A. Introduction to Synthetic Array and Imaging Radars; Artech House Publishers: Dedham, MA, USA, 1980. [Google Scholar]
- Ausherman, D.A.; Kozma, A.; Walker, J.L.; Jones, H.M.; Poggio, E.C. Developments in Radar Imaging. IEEE Trans. Aerosp. Electron. Syst. 1984, AES-20, 363–400. [Google Scholar] [CrossRef]
- Shi, C.; Tang, Z.; Ding, L.; Yan, J. Multi-Domain Resource Allocation for Asynchronous Target Tracking in Heterogeneous Multiple Radar Networks with Non-Ideal Detection. IEEE Trans. Aerosp. Electron. Syst. 2023, 60, 2016–2033. [Google Scholar] [CrossRef]
- Shi, C.; Wang, Y.; Salous, S.; Zhou, J.; Yan, J. Joint Transmit Resource Management and Waveform Selection Strategy for Target Tracking in Distributed Phased Array Radar Network. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 2762–2778. [Google Scholar] [CrossRef]
- Yan, J.; Jiao, H.; Pu, W.; Shi, C.; Dai, J.; Liu, H. Radar sensor network resource allocation for fused target tracking: A brief review. Inf. Fusion 2022, 86–87, 104–115. [Google Scholar] [CrossRef]
- Yan, J.; Pu, W.; Zhou, S.; Liu, H.; Greco, M.S. Optimal Resource Allocation for Asynchronous Multiple Targets Tracking in Heterogeneous Radar Networks. IEEE Trans. Signal Process. 2022, 68, 4055–4068. [Google Scholar] [CrossRef]
- Yan, J.; Pu, W.; Zhou, S.; Liu, H.; Bao, Z. Collaborative detection and power allocation framework for target tracking in multiple radar system. Inf. Fusion 2020, 55, 173–183. [Google Scholar] [CrossRef]
- Li, A.; Liao, K.; Ouyang, S. ISAR imaging resource-scheduling algorithm in network radar based on information fusion. J. Eng. 2019, 20, 7078–7082. [Google Scholar] [CrossRef]
- Xu, F.; Wang, R.; Mao, D.; Zhang, Y.; Zhang, Y.; Huang, Y.; Yang, J. Resource Allocation Optimization of Distributed Radar Imaging System Based on Spatial Spectrum Analysis. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 9101–9104. [Google Scholar] [CrossRef]
- Shao, S.; Zhang, L.; Liu, H. An optimal imaging time interval selection technique for marine targets ISAR imaging based on sea dynamic prior information. IEEE Sens. J. 2019, 19, 4940–4953. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Q.; Yuan, N.; Luo, Y.; Lou, H. An adaptive ISAR-imaging-considered task scheduling algorithm for multi-function phased array radars. IEEE Trans. Signal Process. 2019, 63, 5096–5110. [Google Scholar] [CrossRef]
- Meng, D.; Xu, H.; Zhang, Q.; Chen, Y.J. Adaptive scheduling algorithm for ISAR imaging radar based on pulse interleaving. In Machine Learning and Intelligent Communications; Springer: Berlin/Heidelberg, Germany, 2017; pp. 169–178. [Google Scholar] [CrossRef]
- Wang, H.; Liao, K.; Ouyang, S.; Wang, H.; Yang, L. Resource scheduling algorithm optimization for multitarget inverse synthetic aperture radar imaging in radar network. J. Appl. Remote 2021, 15, 016521. [Google Scholar] [CrossRef]
- Du, Y.; Liao, K.F.; Ouyang, S.; Li, J.J.; Huang, G.J. Time and Aperture Resource Allocation Strategy for Multitarget ISAR Imaging in a Radar Network. IEEE Sens. J. 2020, 20, 3196–3206. [Google Scholar] [CrossRef]
- Chen, Y.J.; Zhang, Q.; Luo, Y.; Li, K.M. Multi-Target Radar Imaging Based on Phased-MIMO Technique—Part II: Adaptive Resource Allocation. IEEE Sens. J. 2017, 17, 6198–6209. [Google Scholar] [CrossRef]
- Hu, T.; Liao, K.; Ouyang, S.; Wang, H. Resource Scheduling for Multitarget Imaging in a Distributed Netted Radar System Based on Maximum Scheduling Benefits. Sensors 2022, 22, 6400. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, K.M.; Zhang, Q.; Lu, X.F.; Luo, Y. A cooperative task allocation game for multi-target imaging in radar networks. IEEE Sens. J. 2021, 21, 7541–7550. [Google Scholar] [CrossRef]
- Chen, V.; Qian, S. Joint time-frequency transform for radar range-Doppler imaging. IEEE Trans. Aerosp. Electron. Syst. 1998, 34, 486–499. [Google Scholar] [CrossRef]
- Stankovic, L.; Thayaparan, T.; Dakovic, M.; Popovic-Bugarin, V. Micro-Doppler removal in the radar imaging analysis. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 1234–1250. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X. 3-D Interferometric Inverse Synthetic Aperture Radar Imaging of Ship Target With Complex Motion. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3693–3708. [Google Scholar] [CrossRef]
- Xu, G.; Xing, M.; Xia, X.G.; Zhang, L.; Chen, Q.; Bao, Z. 3D Geometry and Motion Estimations of Maneuvering Targets for Interferometric ISAR With Sparse Aperture. IEEE Trans. Image Process. 2016, 25, 2005–2020. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, Y.; Deng, X.; Zhang, L.; Wang, J.; Zhou, L. Highly Maneuvering Target Detection Based on Neural Network and Generalized Radon-Fourier Transform. IEEE Geosci. Remote Sens. Lett. 2023, 20, 3507805. [Google Scholar] [CrossRef]
- Zhang, L.; Xing, M.; Qiu, C.W.; Li, J.; Bao, Z. Achieving Higher Resolution ISAR Imaging With Limited Pulses via Compressed Sampling. IEEE Geosci. Remote Sens. Lett. 2009, 6, 567–571. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, B.; Chen, J.; Hong, W. Structured Low-Rank and Sparse Method for ISAR Imaging With 2-D Compressive Sampling. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5239014. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, B.; Chen, J.; Wu, F.; Sheng, J.; Hong, W. Sparse Inverse Synthetic Aperture Radar Imaging Using Structured Low-Rank Method. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5213712. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Q.; Hong, W.; Wu, Y. Waveform design and high-resolution imaging of cognitive radar based on compressive sensing. Sci. China Inf. Sci. 2012, 55, 2590–2603. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, X.; Zhao, J.; Cheng, J. A Fast and Accurate Compressed Sensing Reconstruction Algorithm for ISAR Imaging. IEEE Access 2019, 7, 157019–157026. [Google Scholar] [CrossRef]
Size (m) | Sparsity | Size (m) | Sparsity | ||
---|---|---|---|---|---|
Target 1 | 21.45 | 40 | Target 11 | 25.5 | 45 |
Target 2 | 41.87 | 87 | Target 12 | 21 | 46 |
Target 3 | 22.5 | 47 | Target 13 | 26 | 40 |
Target 4 | 65.5 | 134 | Target 14 | 28.5 | 52 |
Target 5 | 23 | 50 | Target 15 | 30 | 62 |
Target 6 | 23.5 | 48 | Target 16 | 21.5 | 43 |
Target 7 | 24 | 42 | Target 17 | 24 | 42 |
Target 8 | 23 | 45 | Target 18 | 18.5 | 41 |
Target 9 | 66 | 146 | Target 19 | 19 | 39 |
Target 10 | 17 | 36 | Target 20 | 28 | 54 |
Image Contrast | |||||||
---|---|---|---|---|---|---|---|
Target 1 | 18.7298 | Target 6 | 16.7991 | Target 11 | 15.43178 | Target 16 | 17.7603 |
Target 2 | 17.2339 | Target 7 | 16.7066 | Target 12 | 18.8842 | Target 17 | 16.4868 |
Target 3 | 17.4812 | Target 8 | 17.5831 | Target 13 | 18.5087 | Target 18 | 19.2912 |
Target 4 | 7.7819 | Target 9 | 7.2393 | Target 14 | 15.2905 | Target 19 | 16.7248 |
Target 5 | 17.7054 | Target 10 | 18.779 | Target 15 | 15.4148 | Target 20 | 12.2694 |
SRTS | PIR | PUR | |
---|---|---|---|
Algorithm 1 | 0.955 | 0.986431 | 0.921626 |
Algorithm 2 | 0.869 | 0.896871 | 0.834812 |
Algorithm 3 | 0.99 | 0.993156 | 0.921178 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, H.; Lou, H.; Wang, D.; Chen, Y.; Luo, Y. Adaptive Resource Scheduling Algorithm for Multi-Target ISAR Imaging in Radar Systems. Remote Sens. 2024, 16, 1496. https://doi.org/10.3390/rs16091496
Yao H, Lou H, Wang D, Chen Y, Luo Y. Adaptive Resource Scheduling Algorithm for Multi-Target ISAR Imaging in Radar Systems. Remote Sensing. 2024; 16(9):1496. https://doi.org/10.3390/rs16091496
Chicago/Turabian StyleYao, Huan, Hao Lou, Dan Wang, Yijun Chen, and Ying Luo. 2024. "Adaptive Resource Scheduling Algorithm for Multi-Target ISAR Imaging in Radar Systems" Remote Sensing 16, no. 9: 1496. https://doi.org/10.3390/rs16091496