Construction of Aerosol Model and Atmospheric Correction in the Coastal Area of Shandong Peninsula
"> Figure 1
<p>The geographical location of the Mu Ping station.</p> "> Figure 2
<p>Comparison of aerosol size distributions obtained by the GRASP algorithm and AERONET; (<b>a</b>) Beijing_PKU, (<b>b</b>) Socheongcho.</p> "> Figure 3
<p>Monthly average particle size distribution.</p> "> Figure 4
<p>Real and imaginary parts of the monthly average complex refractive index at 442 nm.</p> "> Figure 5
<p>An example illustrating the least squares fitting relationship between variables <math display="inline"><semantics> <mrow> <mi mathvariant="normal">ln</mi> <mo></mo> <mo>(</mo> <msub> <mrow> <mi>ρ</mi> </mrow> <mrow> <mi>a</mi> </mrow> </msub> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi mathvariant="normal">ln</mi> <mo></mo> <mo>(</mo> <msub> <mrow> <mi>ρ</mi> </mrow> <mrow> <mi>a</mi> <mi>s</mi> </mrow> </msub> <mo>)</mo> </mrow> </semantics></math> for four MODIS bands, using the aerosol model for June under specific geometric conditions (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>θ</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mn>36</mn> </mrow> <mrow> <mo>∘</mo> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>θ</mi> </mrow> <mrow> <mi>v</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mn>66</mn> </mrow> <mrow> <mo>∘</mo> </mrow> </msup> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <msup> <mrow> <mn>70</mn> </mrow> <mrow> <mo>∘</mo> </mrow> </msup> </mrow> </semantics></math>). The color of each point reflects the aerosol optical depth at 550 nm (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>τ</mi> </mrow> <mrow> <mn>550</mn> </mrow> </msub> </mrow> </semantics></math>).</p> "> Figure 5 Cont.
<p>An example illustrating the least squares fitting relationship between variables <math display="inline"><semantics> <mrow> <mi mathvariant="normal">ln</mi> <mo></mo> <mo>(</mo> <msub> <mrow> <mi>ρ</mi> </mrow> <mrow> <mi>a</mi> </mrow> </msub> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi mathvariant="normal">ln</mi> <mo></mo> <mo>(</mo> <msub> <mrow> <mi>ρ</mi> </mrow> <mrow> <mi>a</mi> <mi>s</mi> </mrow> </msub> <mo>)</mo> </mrow> </semantics></math> for four MODIS bands, using the aerosol model for June under specific geometric conditions (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>θ</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mn>36</mn> </mrow> <mrow> <mo>∘</mo> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>θ</mi> </mrow> <mrow> <mi>v</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mn>66</mn> </mrow> <mrow> <mo>∘</mo> </mrow> </msup> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <msup> <mrow> <mn>70</mn> </mrow> <mrow> <mo>∘</mo> </mrow> </msup> </mrow> </semantics></math>). The color of each point reflects the aerosol optical depth at 550 nm (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>τ</mi> </mrow> <mrow> <mn>550</mn> </mrow> </msub> </mrow> </semantics></math>).</p> "> Figure 6
<p>An example illustrating the least squares fitting relationship between variables <math display="inline"><semantics> <mrow> <mi mathvariant="normal">t</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>τ</mi> </mrow> <mrow> <mi>a</mi> </mrow> </msub> </mrow> </semantics></math> for four MODIS bands, using the aerosol model for June under specific geometric conditions (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>θ</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mn>36</mn> </mrow> <mrow> <mo>∘</mo> </mrow> </msup> </mrow> </semantics></math>).</p> "> Figure 6 Cont.
<p>An example illustrating the least squares fitting relationship between variables <math display="inline"><semantics> <mrow> <mi mathvariant="normal">t</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>τ</mi> </mrow> <mrow> <mi>a</mi> </mrow> </msub> </mrow> </semantics></math> for four MODIS bands, using the aerosol model for June under specific geometric conditions (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>θ</mi> </mrow> <mrow> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mn>36</mn> </mrow> <mrow> <mo>∘</mo> </mrow> </msup> </mrow> </semantics></math>).</p> "> Figure 7
<p>Atmospheric corrected <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>r</mi> <mi>s</mi> </mrow> </msub> </mrow> </semantics></math> products (443, 547, 645 nm) of MODIS-Aqua over the nearshore of Shandong Peninsula region on 26 September 2020. (new aerosol model: (<b>a</b>–<b>c</b>), NASA aerosol model: (<b>d</b>–<b>f</b>)).</p> "> Figure 8
<p>Comparison between satellite-retrieved spectra and in situ measurements at the Mu Ping site.</p> "> Figure 9
<p>Scatter plots comparing the satellite-derived remote sensing reflectance (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>r</mi> <mi>s</mi> </mrow> </msub> </mrow> </semantics></math>) using the NIR-SWIR atmospheric correction method with the in situ <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>R</mi> </mrow> <mrow> <mi>r</mi> <mi>s</mi> </mrow> </msub> </mrow> </semantics></math> at three MODIS bands (443 nm (<b>left</b>), 547 nm (<b>middle</b>), and 645 nm (<b>right</b>)). The evaluation metrics for the atmospheric correction results of the nine MODIS bands are specifically presented in <a href="#remotesensing-16-01309-t001" class="html-table">Table 1</a>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Sun/Sky Photometer Data
2.1.2. Remote Sensing Images
2.1.3. Rrs Validation Data
2.2. Methods
2.2.1. Construction of Aerosol Models
2.2.2. Construction of the Lookup Table for the New Aerosol Model
2.2.3. Atmospheric Correction
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, D.; Feng, L.; He, X. Global gridded aerosol models established for atmospheric correction over inland and nearshore coastal waters. J. Geophys. Res. Atmos 2023, 128, e2023JD038815. [Google Scholar] [CrossRef]
- Wei, J.; Lee, Z.; Shang, S. A system to measure the data quality of spectral remote-sensing reflectance of aquatic environments. J. Geophys. Res. Oceans 2016, 121, 8189–8207. [Google Scholar] [CrossRef]
- Mukai, S.; Sano, I.; Toigo, A. Removal of scattered light in the Earth atmosphere. Earth Planets Space 1998, 50, 595–601. [Google Scholar] [CrossRef]
- Gordon, H.R. Atmospheric correction of ocean color imagery in the Earth Observing System era. J. Geophys. Res. Atmos 1997, 102, 17081–17106. [Google Scholar] [CrossRef]
- Mobley, C.D.; Werdell, J.; Franz, B.; Ahmad, Z.; Bailey, S. Atmospheric Correction for Satellite Ocean Color Radiometry; Goddard Space Flight Center: Washington, DC, USA, 2016. [Google Scholar]
- Shi, C.; Nakajima, T. Simultaneous determination of aerosol optical thickness and water-leaving radiance from multispectral measurements in coastal waters. Atmos. Chem. Phys. 2018, 18, 3865–3884. [Google Scholar] [CrossRef]
- Kompalli, S.K.; Suresh Babu, S.; Krishna Moorthy, K.; Gogoi, M.M.; Nair, V.S.; Chaubey, J.P. The formation and growth of ultrafine particles in two contrasting environments: A case study. Ann. Geophys. 2014, 32, 817–830. [Google Scholar] [CrossRef]
- Sayer, A.; Hsu, N.; Bettenhausen, C.; Ahmad, Z.; Holben, B.; Smirnov, A.; Thomas, G.; Zhang, J. SeaWiFS Ocean Aerosol Retrieval (SOAR): Algorithm, validation, and comparison with other data sets. J. Geophys. Res. Atmos 2012, 117, D3. [Google Scholar] [CrossRef]
- Bassani, C.; Manzo, C.; Braga, F.; Bresciani, M.; Giardino, C.; Alberotanza, L. The impact of the microphysical properties of aerosol on the atmospheric correction of hyperspectral data in coastal waters. Atmos. Meas. Tech. 2015, 8, 1593–1604. [Google Scholar] [CrossRef]
- Gordon, H.R.; Du, T.; Zhang, T. Remote sensing of ocean color and aerosol properties: Resolving the issue of aerosol absorption. Appl. Opt. 1997, 36, 8670–8684. [Google Scholar] [CrossRef]
- Omar, A.H.; Won, J.G.; Winker, D.M.; Yoon, S.C.; Dubovik, O.; McCormick, M.P. Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements. J. Geophys. Res. Atmos 2005, 110, D10S14. [Google Scholar] [CrossRef]
- Shettle, E.P.; Fenn, R.W. Models for the Aerosols of The Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties; Optical Physics Division, Air Force Geophysics Laboratory: Birmingham, AL, USA, 1979. [Google Scholar]
- Tanré, D.; Kaufman, Y.; Herman, M.; Mattoo, S. Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. J. Geophys. Res. Atmos 1997, 102, 16971–16988. [Google Scholar] [CrossRef]
- Logan, T.; Xi, B.; Dong, X.; Li, Z.; Cribb, M. Classification and investigation of Asian aerosol absorptive properties. Atmos. Chem. Phys. 2013, 13, 2253–2265. [Google Scholar] [CrossRef]
- von Bismarck-Osten, C.; Weber, S. A uniform classification of aerosol signature size distributions based on regression-guided and observational cluster analysis. Atmos. Environ. 2014, 89, 346–357. [Google Scholar] [CrossRef]
- Davies, C. Size distribution of atmospheric particles. J. Aerosol Sci. 1974, 5, 293–300. [Google Scholar] [CrossRef]
- Chomko, R.M.; Gordon, H.R. Atmospheric correction of ocean color imagery: Use of the Junge power-law aerosol size distribution with variable refractive index to handle aerosol absorption. Appl. Opt. 1998, 37, 5560–5572. [Google Scholar] [CrossRef] [PubMed]
- Deirmendjian, D. Scattering and polarization properties of water clouds and hazes in the visible and infrared. Appl. Opt. 1964, 3, 187–196. [Google Scholar] [CrossRef]
- Junge, C.E. Our knowledge of the physico-chemistry of aerosols in the undisturbed marine environment. J. Geophys. Res. 1972, 77, 5183–5200. [Google Scholar] [CrossRef]
- Yu, Q.-R.; Zhang, F.; Li, J.; Zhang, J. Analysis of sea-salt aerosol size distributions in radiative transfer. J. Aerosol Sci. 2019, 129, 71–86. [Google Scholar] [CrossRef]
- Gordon, H.R.; Wang, M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm. Appl. Opt. 1994, 33, 443–452. [Google Scholar] [CrossRef]
- Ahmad, Z.; Franz, B.A.; McClain, C.R.; Kwiatkowska, E.J.; Werdell, J.; Shettle, E.P.; Holben, B.N. New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans. Appl. Opt. 2010, 49, 5545–5560. [Google Scholar] [CrossRef]
- Frouin, R.; Deschamps, P.-Y.; Gross-Colzy, L.; Murakami, H.; Nakajima, T.Y. Retrieval of chlorophyll-a concentration via linear combination of ADEOS-II Global Imager data. J. Oceanogr 2006, 62, 331–337. [Google Scholar] [CrossRef]
- Bru, D.; Lubac, B.; Normandin, C.; Robinet, A.; Leconte, M.; Hagolle, O.; Martiny, N.; Jamet, C. Atmospheric correction of multi-spectral littoral images using a PHOTONS/AERONET-based regional aerosol model. Remote Sens. 2017, 9, 814. [Google Scholar] [CrossRef]
- Montes, M.; Pahlevan, N.; Giles, D.M.; Roger, J.-C.; Zhai, P.-w.; Smith, B.; Levy, R.; Werdell, P.J.; Smirnov, A. Augmenting heritage ocean-color aerosol models for enhanced remote sensing of inland and nearshore coastal waters. Front. Remote Sens. 2022, 3, 860816. [Google Scholar] [CrossRef]
- Molero, F.; Pujadas, M.; Artíñano, B.J.R.S. Study of the Effect of Aerosol Vertical Profile on Microphysical Properties Using GRASP Code with Sun/Sky Photometer and Multiwavelength Lidar Measurements. Remote Sens. 2020, 12, 4072. [Google Scholar] [CrossRef]
- Mobley, C.D.; Zhang, H.; Voss, K.J. Effects of optically shallow bottoms on upwelling radiances: Bidirectional reflectance distribution function effects. Limnol. Oceanogr. 2003, 48, 337–345. [Google Scholar] [CrossRef]
- Dutton, E.G.; Reddy, P.; Ryan, S.; DeLuisi, J.J. Features and effects of aerosol optical depth observed at Mauna Loa, Hawaii: 1982–1992. J. Geophys. Res. Atmos 1994, 99, 8295–8306. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.; Slutsker, I.; Smirnov, A.; Sinyuk, A.; Schafer, J.; Giles, D.; Dubovik, O. AERONET’s version 2.0 quality assurance criteria. In Proceedings of the Remote Sensing of the Atmosphere and Clouds, Goa, India, 13–16 November 2006; pp. 134–147. [Google Scholar]
- Holben, B.N.; Eck, T.F.; Slutsker, I.a.; Tanré, D.; Buis, J.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.; Nakajima, T. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Thuillier, G.; Hersé, M.; Labs, D.; Foujols, T.; Peetermans, W.; Gillotay, D.; Simon, P.; Mandel, H. The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions. Sol. Phys. 2003, 214, 1–22. [Google Scholar] [CrossRef]
- Dubovik, O.; Lapyonok, T.; Litvinov, P.; Herman, M.; Fuertes, D.; Ducos, F.; Lopatin, A.; Chaikovsky, A.; Torres, B.; Derimian, Y. GRASP: A versatile algorithm for characterizing the atmosphere. SPIE Newsroom 2014, 25, 2-1201408. [Google Scholar] [CrossRef]
- Torres, B.; Dubovik, O.; Fuertes, D.; Schuster, G.; Cachorro, V.E.; Lapyonok, T.; Goloub, P.; Blarel, L.; Barreto, A.; Mallet, M. Advanced characterisation of aerosol size properties from measurements of spectral optical depth using the GRASP algorithm. Atmos. Meas. Tech. 2017, 10, 3743–3781. [Google Scholar] [CrossRef]
- Dubovik, O.; Fuertes, D.; Litvinov, P.; Lopatin, A.; Lapyonok, T.; Doubovik, I.; Xu, F.; Ducos, F.; Chen, C.; Torres, B. A comprehensive description of multi-term LSM for applying multiple a priori constraints in problems of atmospheric remote sensing: GRASP algorithm, concept, and applications. Front. Remote Sens. 2021, 2, 23. [Google Scholar] [CrossRef]
- Moula, M.; Verdebout, J.; Eva, H. Aerosol optical thickness retrieval over the Atlantic Ocean using GOES imager data. Phys. Chem. Earth. Parts A/B/C 2002, 27, 1525–1531. [Google Scholar] [CrossRef]
- King, M.D.; Dubovik, O. Determination of aerosol optical properties from inverse methods. In Aerosol Remote Sensing; Springer: Berlin/Heidelberg, Germany, 2013; pp. 101–136. [Google Scholar]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. Atmos 2000, 105, 20673–20696. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.; Sinyuk, A.; Pinker, R.; Goloub, P.; Chen, H.; Chatenet, B.; Li, Z.; Singh, R.P.; Tripathi, S.N. Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures. J. Geophys. Res. Atmos 2010, 115, D19. [Google Scholar] [CrossRef]
- Kahn, R.A.; Gaitley, B.J.; Garay, M.J.; Diner, D.J.; Eck, T.F.; Smirnov, A.; Holben, B.N. Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network. J. Geophys. Res. Atmos 2010, 115, D23. [Google Scholar] [CrossRef]
- Giles, D.M.; Holben, B.N.; Eck, T.F.; Sinyuk, A.; Smirnov, A.; Slutsker, I.; Dickerson, R.; Thompson, A.; Schafer, J. An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. J. Geophys. Res. Atmos 2012, 117, D17. [Google Scholar] [CrossRef]
- Carrico, C.M.; Rood, M.J.; Ogren, J.A. Aerosol light scattering properties at Cape Grim, Tasmania, during the first Aerosol Characterization Experiment (ACE 1). J. Geophys. Res. Atmos 1998, 103, 16565–16574. [Google Scholar] [CrossRef]
- Zieger, P.; Fierz-Schmidhauser, R.; Weingartner, E.; Baltensperger, U. Effects of relative humidity on aerosol light scattering: Results from different European sites. Atmos. Chem. Phys. 2013, 13, 10609–10631. [Google Scholar] [CrossRef]
- Kinne, S.; Lohmann, U.; Feichter, J.; Schulz, M.; Timmreck, C.; Ghan, S.; Easter, R.; Chin, M.; Ginoux, P.; Takemura, T. Monthly averages of aerosol properties: A global comparison among models, satellite data, and AERONET ground data. J. Geophys. Res. Atmos 2003, 108, D20. [Google Scholar] [CrossRef]
- Kim, S.-W.; Yoon, S.-C.; Kim, J.; Kim, S.-Y. Seasonal and monthly variations of columnar aerosol optical properties over east Asia determined from multi-year MODIS, LIDAR, and AERONET Sun/sky radiometer measurements. Atmos. Environ. 2007, 41, 1634–1651. [Google Scholar] [CrossRef]
- Lenoble, J.; Remer, L.; Tanré, D. Aerosol Remote Sensing; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Zarzana, K.J.; Cappa, C.D.; Tolbert, M.A. Sensitivity of aerosol refractive index retrievals using optical spectroscopy. Aerosol Sci. Technol. 2014, 48, 1133–1144. [Google Scholar] [CrossRef]
- Zhang, M.; Cui, Z.; Han, S.; Cai, Z.; Yao, Q. Inversion and extinction contribution analysis of atmospheric aerosol complex refractive index in Tianjin urban area. Res. Environ. Sci 2019, 32, 1483–1491. [Google Scholar] [CrossRef]
- Vermote, E.; Tanré, D.; Deuzé, J.; Herman, M.; Morcrette, J.; Kotchenova, S. Second simulation of a satellite signal in the solar spectrum-vector (6SV). 6s User Guide Version 2006, 3, 1–55. [Google Scholar]
- Gordon, H.R. Radiative transfer in the atmosphere for correction of ocean color remote sensors. In Ocean Colour: Theory and Applications in a Decade of CZCS Experience; Springer: Berlin/Heidelberg, Germany, 1993; pp. 33–77. [Google Scholar]
- Wang, M.; Son, S.; Shi, W. Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data. Remote Sens. Environ. 2009, 113, 635–644. [Google Scholar] [CrossRef]
- Hu, C.; Carder, K.L.; Muller-Karger, F.E. Atmospheric correction of SeaWiFS imagery over turbid coastal waters: A practical method. Remote Sens. Environ. 2000, 74, 195–206. [Google Scholar] [CrossRef]
- Fan, Y.; Li, W.; Gatebe, C.K.; Jamet, C.; Zibordi, G.; Schroeder, T.; Stamnes, K. Atmospheric correction over coastal waters using multilayer neural networks. Remote Sens. Environ. 2017, 199, 218–240. [Google Scholar] [CrossRef]
- Mao, Z.; Chen, J.; Hao, Z.; Pan, D.; Tao, B.; Zhu, Q. A new approach to estimate the aerosol scattering ratios for the atmospheric correction of satellite remote sensing data in coastal regions. Remote Sens. Environ. 2013, 132, 186–194. [Google Scholar] [CrossRef]
- Ahn, J.-H.; Park, Y.-J.; Kim, W.; Lee, B. Simple aerosol correction technique based on the spectral relationships of the aerosol multiple-scattering reflectances for atmospheric correction over the oceans. Opt. Express 2016, 24, 29659–29669. [Google Scholar] [CrossRef]
- Singh, R.K.; Shanmugam, P. A novel method for estimation of aerosol radiance and its extrapolation in the atmospheric correction of satellite data over optically complex oceanic waters. Remote Sens. Environ. 2014, 142, 188–206. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, T.; Hu, L. Evaluation of the NIR-SWIR atmospheric correction algorithm for MODIS-Aqua over the Eastern China Seas. Int. J. Remote Sens. 2014, 35, 4239–4251. [Google Scholar] [CrossRef]
- Pahlevan, N.; Roger, J.-C.; Ahmad, Z. Revisiting short-wave-infrared (SWIR) bands for atmospheric correction in coastal waters. Opt. Express 2017, 25, 6015–6035. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Shi, W. Sensor noise effects of the SWIR bands on MODIS-derived ocean color products. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3280–3292. [Google Scholar] [CrossRef]
- Wang, M.; Shi, W. The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing. Opt. Express 2007, 15, 15722–15733. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhou, Q.; Li, Q.; Hu, S.; Shi, T.; Wu, G. Determining switching threshold for NIR-SWIR combined atmospheric correction algorithm of ocean color remote sensing. ISPRS J. Photogramm. 2019, 153, 59–73. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, R.; Li, J.; Zhang, B.; Duan, H. A validation study of an improved SWIR iterative atmospheric correction algorithm for MODIS-Aqua measurements in Lake Taihu, China. IEEE Trans. Geosci. Remote Sens. 2013, 52, 4686–4695. [Google Scholar] [CrossRef]
- Wang, M.; Shi, W. Cloud masking for ocean color data processing in the coastal regions. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3105–3196. [Google Scholar] [CrossRef]
Parameter | Description | Dimension |
---|---|---|
wave | wavelength | 1 |
scatt | scattering angle | 1 |
albedo | single scattering albedo | 1 |
extc | extinction coefficient | 1 |
angstrom | Ångström index | 1 |
phase | Scattering Phase Function | 2 |
solz | Solar zenith angle | 1 |
senz | View zenith angle | 1 |
phi | Relative azimuth | 1 |
accost bcost ccost | Aerosol single-multiple scattering coefficient | 4 |
dtran_wave | Diffuse transmission wavelength | 1 |
dtran_theta | Diffuse transmission zenith angle | 1 |
) | Diffuse transmittance coefficient | 2 |
Band | Slope | RMSD | MAE | UPD (%) | ||
---|---|---|---|---|---|---|
Our/NASA model | 412 | 0.56/0.53 | 0.71/0.6 | 0.003/0.0037 | 0.0022/0.0029 | 41.68/49.13 |
443 | 0.61/0.6 | 0.78/0.77 | 0.0029/0.0036 | 0.0023/0.0028 | 32.12/40.29 | |
469 | 0.65/0.64 | 0.76/0.77 | 0.0032/0.0039 | 0.0026/0.0031 | 28.48/38.04 | |
488 | 0.57/0.66 | 0.6/0.77 | 0.0038/0.0039 | 0.0031/0.0031 | 27.01/32.86 | |
531 | 0.76/0.69 | 0.84/0.79 | 0.0033/0.0042 | 0.0025/0.0033 | 21.93/28.69 | |
547 | 0.82/0.68 | 0.86/0.76 | 0.0029/0.0044 | 0.0023/0.0034 | 19.46/27.69 | |
555 | 0.62/0.65 | 0.7/0.72 | 0.0045/0.0048 | 0.0037/0.0037 | 49.41/31.14 | |
645 | 0.64/0.73 | 0.81/0.83 | 0.0018/0.0023 | 0.0014/0.0018 | 42.00/46.28 | |
678 | 0.62/0.72 | 0.74/0.82 | 0.0014/0.0019 | 0.0012/0.0015 | 40.49/43.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, K.; Ma, C.; Lv, J.; Zhao, D.; Song, Q. Construction of Aerosol Model and Atmospheric Correction in the Coastal Area of Shandong Peninsula. Remote Sens. 2024, 16, 1309. https://doi.org/10.3390/rs16071309
Shan K, Ma C, Lv J, Zhao D, Song Q. Construction of Aerosol Model and Atmospheric Correction in the Coastal Area of Shandong Peninsula. Remote Sensing. 2024; 16(7):1309. https://doi.org/10.3390/rs16071309
Chicago/Turabian StyleShan, Kunyang, Chaofei Ma, Jingning Lv, Dan Zhao, and Qingjun Song. 2024. "Construction of Aerosol Model and Atmospheric Correction in the Coastal Area of Shandong Peninsula" Remote Sensing 16, no. 7: 1309. https://doi.org/10.3390/rs16071309