Validating Digital Earth Australia NBART for the Landsat 9 Underfly of Landsat 8
<p>Surface reflectance over land, illustrating (<b>a</b>) a horizontal surface, (<b>b</b>) a sloped surface facing the Sun, and (<b>c</b>) a sloped surface facing away from the Sun [<a href="#B12-remotesensing-16-01233" class="html-bibr">12</a>].</p> "> Figure 2
<p>Contributing pathways of electromagnetic radiation over water, as seen by remote sensing platforms. Source Arnold Dekker CSIRO [<a href="#B26-remotesensing-16-01233" class="html-bibr">26</a>].</p> "> Figure 3
<p>Field measurement of hemispherical conical reflectance. (<b>a</b>) A basic geometric relationship between illumination and viewing position [<a href="#B26-remotesensing-16-01233" class="html-bibr">26</a>], (<b>b</b>) reflectance panel measurements, (<b>c</b>) capturing transect radiance data.</p> "> Figure 4
<p>Phase 1 site sampling model, modified from Ref. [<a href="#B19-remotesensing-16-01233" class="html-bibr">19</a>].</p> "> Figure 5
<p>Panel and surface radiance sampling sequence at Narromine, 17 November 2021.</p> "> Figure 6
<p>Spectral sampling positions at Narromine, 17 November 2021.</p> "> Figure 7
<p>QA and QC metrics in pre-processing before generating SR. ((<b>a</b>) All panel readings, (<b>b</b>) panel readings plotted against cosine of of the solar zenith angle and (red) line of best fit, (<b>c</b>) Direct and diffuse downwelling irradiance measured at start and end of the site characterisation).</p> "> Figure 8
<p>UAV and spectrometer package deployed over the Wilcannia Site 2.</p> "> Figure 9
<p>Wilcannia 2 UAV flight line (blue) ground survey transects (orange).</p> "> Figure 10
<p>The measurement configurations for the TriOS RAMSES sensors used during the underfly campaign included the SBA approach (left) as shown in the photo on the right on the day of the overpass. Note that the operator dropped below the <math display="inline"><semantics> <msub> <mi mathvariant="normal">E</mi> <mi mathvariant="normal">d</mi> </msub> </semantics></math> sensor height prior to data acquisition, where <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>φ</mi> </mrow> </semantics></math> is the azimuth angle relative to the Sun and <math display="inline"><semantics> <msub> <mi>θ</mi> <mi>v</mi> </msub> </semantics></math> is the nadir-viewing angle.</p> "> Figure 11
<p>The SDA measurement configurations for the TriOS RAMSES sensors acquired data above the water surface, at the air–water interface and several depths within the water column, where <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>φ</mi> </mrow> </semantics></math> is the azimuth angle relative to the Sun and <math display="inline"><semantics> <msub> <mi>θ</mi> <mi>v</mi> </msub> </semantics></math> is the nadir-viewing angle.</p> "> Figure 12
<p>Australian underfly field sites.</p> "> Figure 13
<p>Google Earth images of the underfly field sites.</p> "> Figure 14
<p>Perth field site.</p> "> Figure 15
<p>Perth sampling model.</p> "> Figure 16
<p>MICROTOPS readings of aerosol optical thickness over the Perth site during the sampling period.</p> "> Figure 17
<p>Perth field ASD reflectances, transect line averages (coloured) at full resolution (left) and then resampled to Landsat 9 bandwidths (right).</p> "> Figure 18
<p>Matchup Perth field data and L8 L9 DEA ARD and USGS ARD.</p> "> Figure 19
<p>Cunnamulla field site.</p> "> Figure 20
<p>ECMWF cloud forecast for Wilcannia at the time of the 100% L8/L9 overpass. Accessed 14 November 2021. (source: <a href="https://www.windy.com" target="_blank">https://www.windy.com</a>).</p> "> Figure 21
<p>Wilcannia field site 1.</p> "> Figure 22
<p>Wilcannia Site 1; first and second site characterisation panel readings vs. solar zenith angle. The line of best fit is shown in red.</p> "> Figure 23
<p>Wilcannia Site 1: First and second site characterisation sampling transects.</p> "> Figure 24
<p>Wilcannia Site 1—the two site characterisations match against the DEA Landsat 8 and 9 ARD.</p> "> Figure 25
<p>Wilcannia downwelling irradiance readings (diffuse and direct), showing a stable atmosphere for the time of overpass sampling.</p> "> Figure 26
<p>Wilcannia Site 1 DEA and USGS ARD matchups.</p> "> Figure 27
<p>Wilcannia Site 1 NW corner point.</p> "> Figure 28
<p>Wilcannia 2 field site.</p> "> Figure 29
<p>Wilcannia Site 2 SR3500 and UAV Flame matchups.</p> "> Figure 30
<p>Narromine field site, which was specifically chosen in anticipation of there only being a 15% side lap.</p> "> Figure 31
<p>Narromine ASD and SR3500 datasets alongside Landsat 8. Geolocation of spectral data points (left), panel readings on the line of best fit (centre), matchup field data vs. L8 (right) matchup.</p> "> Figure 32
<p>Narromine L8 (left) and L9 (right) RGB images.</p> "> Figure 33
<p>Narromine DEA ARD and USGS matchups against both the ASD-FR and SR3500 spectrometers.</p> "> Figure 34
<p>Lake Hume. Field site sample times and conditions at the time of overpass.</p> "> Figure 35
<p>The impact of Sun-sensor alignment on the sky glint at Lake Hume. Landsat 8 (left) is viewed at the nadir while Landsat 9 (right), descending in the adjacent orbit, is tilted while imaging the lake. The red inset square in the large images defines the inset zoom window.</p> "> Figure 36
<p>Remote sensing reflectance <math display="inline"><semantics> <msub> <mi mathvariant="normal">R</mi> <mrow> <mi>r</mi> <mi>s</mi> </mrow> </msub> </semantics></math> for Lake Hume Site 1, A-ARD, and USGS-ARD. Sampled 1 h before the overpasses.</p> "> Figure 37
<p>Remote sensing reflectance, <math display="inline"><semantics> <msub> <mi mathvariant="normal">R</mi> <mrow> <mi>r</mi> <mi>s</mi> </mrow> </msub> </semantics></math>, at Lake Hume Dam wall: A-ARD and USGS-ARD. Site sampled 1–2 h after Landsat overpasses.</p> "> Figure 38
<p>Remote sensing reflectance, <math display="inline"><semantics> <msub> <mi mathvariant="normal">R</mi> <mrow> <mi>r</mi> <mi>s</mi> </mrow> </msub> </semantics></math>, at Lake Hume Site 6: A-ARD and USGS-ARD.</p> "> Figure 39
<p>Remote sensing reflectance, <math display="inline"><semantics> <msub> <mi mathvariant="normal">R</mi> <mrow> <mi>r</mi> <mi>s</mi> </mrow> </msub> </semantics></math>, at Lake Hume Site 10: A-ARD and USGS-ARD.</p> "> Figure 40
<p>Correlations of the Australia field data and L8 and L9 for all sites for DEA and USGS ARD SR products.</p> "> Figure 41
<p>Correlation between Landsat 8 and Landsat 9 for the Australian terrestrial site for DEA and USGS ARD SR products.</p> ">
Abstract
:1. Introduction
- We present the results of the Australian field’s validation campaign in support of the Landsat 8 and 9 underfly and demonstrate the level of agreement between the two sensors.
- We compare and contrast the results presented by two differing analysis-ready data (ARD) processing models: Geoscience Australia (GA) and the United States Geological Survey (USGS).
- We use underfly validation to prove the efficacy and comparative reliability of a satellite surface reflectance (SR) validation measurement model refined and proven by Digital Earth Australia (DEA).
1.1. A History of Underfly Validations
1.2. Surface Reflectance ARD
1.3. Vicarious Field Validation
2. Materials and Methods
2.1. Digital Earth Australia Terrestrial Analysis Ready Data
- Atmospheric corrections;
- BRDF;
- Topographic effects.
2.2. DEA Aquatic A-ARD
2.3. USGS ARD and USGS Aquatic ARD
2.4. DEA ARD Validation Protocol (ARD_VP)
2.5. Field Spectral Data: Radiance Not Reflectance
2.6. Field Spectrometers
2.7. Field Site Characterisation and Data Processing
2.8. Unmanned Aerial Vehicle (UAV) Flight at Wilcannia
2.9. Aquatic Validation—Lake Hume
3. Results
3.1. Perth
3.2. Cunnamulla
3.3. Wilcannia
3.3.1. Wilcannia Site 1
3.3.2. Wilcannia Site 2
3.4. Narromine
3.5. Lake Hume
3.6. Summary of Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loew, A.; Bell, W.; Brocca, L.; Bulgin, C.E.; Burdanowitz, J.; Calbet, X.; Donner, R.V.; Ghent, D.; Gruber, A.; Kaminski, T.; et al. Validation Practices for Satellite-Based Earth Observation Data across Communities. Rev. Geophys. 2017, 55, 779–817. [Google Scholar] [CrossRef]
- A Quality Assurance Framework for Earth Observation: Implementation Strategy and Work Plan. Available online: https://www.qa4eo.org/docs/QA4EO_Principles_v4.0.pdf (accessed on 18 February 2024).
- A Guide to Comparisons—Organisation, Operation and Analysis to Establish Measurement Equivalence to Underpin the Quality Assurance Requirements of GEO. Available online: https://www.qa4eo.org/docs/QA4EO-QAEO-GEN-DQK-004_v4.0.pdf (accessed on 18 February 2024).
- Wulder, M.A.; Roy, D.P.; Radeloff, V.C.; Loveland, T.R.; Anderson, M.C.; Johnson, D.M.; Healey, S.; Zhu, Z.; Scambos, T.A.; Pahlevan, N.; et al. Fifty Years of Landsat Science and Impacts. Remote Sens. Environ. 2001, 280, 113195. [Google Scholar] [CrossRef]
- Lovel, T.; Dwyer, J. Landsat: Building a Strong Future. Remote Sens. Environ. 2012, 122, 22–29. [Google Scholar] [CrossRef]
- Lewis, A.; Oliver, S.; Lymburner, L.; Evans, B.; Wyborn, L.; Mueller, N.; Raevksi, G.; Hooke, J.; Woodcock, R.; Sixsmith, J.; et al. The Australian Geoscience Data Cube—Foundations and lessons learned. Remote Sens. Environ. 2017, 202, 276–292. [Google Scholar] [CrossRef]
- Kiata, E.; Markham, B.; Haque, M.O.; Dichmann, D.; Gerace, A.; Leigh, L.; Good, S.; Scmidt, M.; Crawford, C.J. Landsat 9 Cross-Calibration Under-Fly of Landsat 8: Planning and Execution. Remote Sens. 2022, 14, 5414. [Google Scholar] [CrossRef]
- Gross, G.; Helder, D.; Begeman, C.; Leigh, L.; Kaewmanee, M.; Shah, R. Initial Cross-Calibration of Landsat 8 and Landsat 9 Using the Simultaneous Underfly Event. Remote Sens. 2022, 14, 2418. [Google Scholar] [CrossRef]
- Holden, C.E.; Woodcock, C.E. An analysis of Landsat 7 and Landsat 8 underflight data and the implications for time series investigations. Remote Sens. Environ. 2016, 185, 16–36. [Google Scholar] [CrossRef]
- Flood, N. Continuity of Reflectance Data between Landsat-7 ETM+ and Landsat-8 OLI, for Both Top-of-Atmosphere and Surface Reflectance: A Study in the Australian Landscape. Remote Sens. 2014, 6, 7952–7970. [Google Scholar] [CrossRef]
- Li, F.; Jupp, D.; Reddy, S.; Lymburner, L.; Muller, N.; Tan, P.; Islam, A. An Evaluation of the Use of Atmospheric and BRDF Corrections to Standardize Landsat Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 257–270. [Google Scholar] [CrossRef]
- Li, F.; Jupp, D.; Thankappan, M.; Lymburner, L.; Lewis, A.; Held, A. A physics-based atmospheric and BRDF correction for Landsat data over mountainous terrain. Remote Sens. Environ. 2012, 124, 756–770. [Google Scholar] [CrossRef]
- Li, F.; Jupp, D.; Thankappan, M. Using high resolution DSM data to correct the terrain illumination effect in Landsat data. In Proceedings of the 19th International Congress on Modelling and Simulation, Perth, WA, Australia, 12–16 December 2011. [Google Scholar]
- Li, F.; Jupp, D.; Schroeder, T.; Sagar, S.; Sixsmith, J.; Dorji, P. Assessing an Atmospheric Correction Algorithm for Time Series of Satellite-Based Water-Leaving Reflectance Using Match-Up Sites in Australian Coastal Waters. Remote Sens. 2021, 13, 1927. [Google Scholar] [CrossRef]
- Campbell, S.; Lovell, J.; Jupp, D.L.B.; Graetz, R.D.; Byrne, G. The Lake Frome field campaign in support of Hyperion instrument calibration and validation. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, NSW, Australia, 9–13 July 2001; pp. 2593–2595. [Google Scholar] [CrossRef]
- Doelling, D.; Helder, D.; Schott, J.; Stone, T.; Pinto, C. Vicarious Calibration and Validation. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2017; pp. 475–518. [Google Scholar] [CrossRef]
- Hueni, A.; Damm, A.; Kneubuler, M.; Schlapfer, D.; Schaepman, M. Field Airborne Spectroscopy Cross Validation: Some Considerations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1117–1135. [Google Scholar] [CrossRef]
- Teillet, P.M.; Barker, J.L.; Markham, B.L.; Irish, R.R.; Fedosejevs, G.; Storey, J.C. Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets. Remote Sens. Environ. 2001, 78, 39–54. [Google Scholar] [CrossRef]
- Malthus, T.; Ong, C.; Lau, I.; Fearns, P.; Byrne, G.; Thankappan, M.; Chisholm, L. A Community Approach to Standardised Validation of Surface Reflectance Data; CSIRO: Canberra, ACT, Australia, 2019. [Google Scholar]
- Milton, E.; Schaepman, M.; Anderson, K.; Kneubuhler, M.; Fox, N. Progress in Field Spectroscopy. Remote Sens. Environ. 2009, 113, 92–109. [Google Scholar] [CrossRef]
- Schaepman-Strub, G.; Schaepman, M.; Painter, T.; Dangel, S.; Martonchik, J. Reflectance quantities in optical remote sensing–definitions and case studies. Remote Sens. Environ. 2006, 103, 27–42. [Google Scholar] [CrossRef]
- Anderson, J.; Dugan, K.; MacArthur, A. On the Reproducibility of Field-Measured Reflectance Factors in the Context of Vegetation Studies. Remote Sens. Environ. 2011, 115, 1893–1905. [Google Scholar] [CrossRef]
- Helder, D.; Thome, K.; Aaron, D.; Leigh, L.; Czapla-Myers, J.; Leisso, N.; Biggar, S.; Anderson, N. Recent Surface Reflectance Measurement Campaigns with Emphasis on Best Practices, SI Traceability and Uncertainty Estimation. Metrologia 2021, 49, S21–S28. [Google Scholar] [CrossRef]
- Earth Observation from Space Roadmap 2021–2030. Available online: https://www.industry.gov.au/publications/earth-observation-space-roadmap-2021-2030 (accessed on 1 April 2023).
- Working Group on Calibration & Validation. Available online: https://www.ceos.org/ourwork/workinggroups/wgcv/ (accessed on 12 February 2023).
- Harrison, B.A.; Jupp, D.L.B.; Lewis, M.M.; Forster, B.C.; Coppa, I.; Mueller, N.; Hudson, D.; Phinn, S.; Smith, C.; Anstee, J.; et al. Earth Observation: Data, Processing and Applications, Volume 1B: Data—Image Interpretation; CRCSI: Melbourne, VIC, Australia, 2017. [Google Scholar]
- Harrison, B.A.; Anstee, J.M.; Dekker, A.G.; King, E.A.; Griffin, D.A.; Mueller, N.; Phinn, S.R.; Kovacs, E.; Byrne, G. Earth Observation: Data, Processing and Applications. Volume 3B: Applications—Surface Waters; CRCSI: Melbourne, VIC, Australia, 2020. [Google Scholar]
- Pahlevan, N.; Schott, J.; Franz, B.; Zibordi, G.; Markham, B.; Bailey, S.; Schaaf, C.; Ondrusek, M.; Greb, S.; Strait, C. Landsat 8 Remote Sensing Reflectance (Rrs) Products: Evaluations, Intercomparisons, and Enhancements. Remote Sens. Environ. 2017, 190, 289–301. [Google Scholar] [CrossRef]
- Dekker, A.G.; Brando, V.E.; Anstee, J.M.; Pinnel, N.; Kutser, T.; Hoogenboom, E.J.; Peters, S.; Pasterkamp, R.; Vos, R.; Olbert, C.; et al. Imaging Spectrometry of Water. In Imaging Spectrometry; van der Meer, F.D., De Jong, S.M., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 307–359. [Google Scholar] [CrossRef]
- Zibordi, G.; Talone, M. On the equivalence of near-surface methods to determine the water-leaving radiance. Opt. Express 2020, 28, 3200–3214. [Google Scholar] [CrossRef]
- Brando, V.; Lovell, J.; King, E.; Boadle, D.; Scott, R.; Schroeder, T. The Potential of Autonomous Ship-Borne Hyperspectral Radiometers for the Validation of Ocean Color Radiometry Data. Remote Sens. 2016, 8, 150. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Franz, B.A.; Bailey, S.W.; Kuring, N.; Werdell, P.J. Ocean color measurements with the Operational Land Imager on Landsat-8: Implementation and evaluation in SeaDAS. J. Appl. Remote Sens. 2015, 9, 096070. [Google Scholar] [CrossRef]
- Barry, P.; Jarecke, P.; Pearlman, J.; Jupp, D.; Lovell, J.; Campbell, S. Radiometric Calibration Validation of the Hyperion Instrument Using Ground Truth at a Site in Lake Frome, Australia. In Proceedings of the International Symposium on Optical Science and Technology, San Diego, CA, USA, 9 July–3 August 2001. [Google Scholar] [CrossRef]
- Byrne, G.; Walsh, G.; Thankappan, A.; Broomhall, M.; Hay, M.E. DEA Analysis Ready Data Phase 1 Validation Project: Data Summary; Geoscience Australia: Canberra, ACT, Australia, 2021. [Google Scholar] [CrossRef]
- Walsh, A.; Byrne, G.; Broomhall, M. A case Study of Measurement Uncertainty in Field Spectroscopy. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 6248–6258. [Google Scholar] [CrossRef]
- ASD FieldSpec 4 Standard-Res Spectroradiometer. Available online: https://www.malvernpanalytical.com/en/products/product-range/asd-range/fieldspec-range/fieldspec-4-standard-res-spectroradiometer (accessed on 5 January 2023).
- SR3500 Full Range Spectroradiometer. Available online: https://www.spectralevolution.com/products/hardware/compact-lab-spectroradiometers/SR3500/ (accessed on 5 January 2023).
- MacArthur, A.; MacLellan, C.; Malthus, T. The Fields of View and Directional Response Functions of Two Field Spectroradiometers. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3892–3907. [Google Scholar] [CrossRef]
- Hueni, A.; Bialek, A. Cause, Effect, and Correction of Field Spectroradiometer Interchannel Radiometric Steps. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1542–1551. [Google Scholar] [CrossRef]
- Flame Series General Purpose Spectrometers. Available online: https://www.oceaninsight.com/blog/flame-series-general-purpose-spectrometers/ (accessed on 7 September 2023).
- Hueni, A.; Chisholm, L.; Ong, C.; Malthus, T.; Wyatt, M.; Trim, S.; Schaepman, M.; Thankappan, M. The SPECCHIO Spectral Information System. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5789–5799. [Google Scholar] [CrossRef]
- Jupp, D.; Li, F.; Byrne, G.; Ong, C.; Lau, I.; Malthus, T.; Thankappan, M.; Fearns, P. Using Irr_Inv, Modtran and Spectral Irradiance Data to Estimate Atmospheric Parameters. In CSIRO Land and Water Technical Report EP2022-3491; CSIRO: Canberra, ACT, Australia, 2022; 124p. [Google Scholar] [CrossRef]
- Roy, D.; Zhang, H.; Ju, J.; Gomez-Dans, J.; Lewis, P.; Schaaf, C.; Sun, Q.; Kovalskyy, V. A general method to normalize Landsat reflectance data to Nadir BRDF-Adjusted Reflectance. Remote Sens. Environ. 2016, 176, 255–271. [Google Scholar] [CrossRef]
- Ruddick, K.; Voss, K.; Boss, E.; Castagna, A.; Frouin, R.; Gilerson, A.; Heironymi, M.; Johnson, B.C.; Kuusk, J.; Lee, Z.; et al. Review of Protocols for Fiducial Reference Measurements of Water-Leaving Radiance for Validation of Satellite Remote-Sensing Data over Water. Remote Sens. 2019, 11, 2198. [Google Scholar] [CrossRef]
- Voss, K.; Flora, S. Spectral dependance of the seawater-air radiance transmission coefficient. J. Atmos. Ocean. Technol. 2017, 34, 1203–1205. [Google Scholar] [CrossRef]
- Quan, X.; Fry, S. Empirical equation for the index of refraction of seawater. Appl. Opt. 1995, 34, 3477–3480. [Google Scholar] [CrossRef]
- Shang, Z.; Lee, Z.; Dong, Q.; Wei, J. Self-shading associated with skylight-blocked approach system for the measurement of water-leaving radiance and its correction. Appl. Opt. 2017, 56, 7033–7044. [Google Scholar] [CrossRef]
- Jupp, D.; (CSIRO, Canberra, ACT, Australia). Personal communication, 2023.
- Aasen, H.; Bolten, A. Multi-Temporal High-Resolution Imaging Spectroscopy with Hyperspectral 2D Imagers—From Theory to Application. Remote Sens. Environ. 2018, 205, 374–389. [Google Scholar] [CrossRef]
- Aasen, H.; Honkavaara, E.; Lucieer, A.; Zarco-Tejada, P. Quantitative Remote Sensing at Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows. Remote Sens. 2018, 10, 1091. [Google Scholar] [CrossRef]
- Turner, D.; Malenovsky, Z.; Lucieer, A.; Turnbull, J.; Robinson, S. Optimizing Spectral and Spatial Resolutions of Unmanned Aerial System Imaging Sensors for Monitoring Antarctic Vegetation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3813–3825. [Google Scholar] [CrossRef]
- Gautam, D.; Lucieer, A.; Bendig, J.; Malenovsky, Z. Footprint Determination of a Spectroradiometer Mounted on an Unmanned Aircraft System. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3085–3096. [Google Scholar] [CrossRef]
- Tmušić, G.; Manfreda, S.; Aasen, H.; James, M.R.; Gonçalves, G.; Ben-Dor, E.; Brook, A.; Polinova, M.; Arranz, J.J.; Mészáros, J.; et al. Current Practices in UAV-Based Environmental Monitoring. Remote Sens. 2020, 12, 1001. [Google Scholar] [CrossRef]
- Hakanson, L.; Peters, R. Predictive Limnology—Methods for Predictive Modeling; SPB Academic Publishing: Amsterdam, The Netherlands, 1995; 464p. [Google Scholar]
- Botha, E.; Vittorio, B.; Dekker, A. Effects of Per-Pixel Variability on Uncertainties in Bathymetric Retrievals from High-Resolution Satellite Images. Remote Sens. 2016, 8, 459. [Google Scholar] [CrossRef]
- Pahlevan, N.; Lee, Z.; Wei, J.; Schaaf, C.B.; Schott, J.R.; Berk, A. On-orbit radiometric characterization of OLI (Landsat-8) for applications in aquatic remote sensing. Remote Sens. Environ. 2014, 154, 272–284. [Google Scholar] [CrossRef]
- Kabir, S.; Pahlevan, N.; O’Shea, R.E.; Barnes, B.B. Leveraging Landsat-8/-9 underfly observations to evaluate consistency in reflectance products over aquatic environments. Remote Sens. Environ. 2023, 296, 113755. [Google Scholar] [CrossRef]
Site | ASD-FR | SR3500 | Flame | Ramses |
---|---|---|---|---|
Perth | Y | - | - | - |
Wilcannia 1 | Y | - | - | - |
Wilcannia 2 | - | Y | Y | - |
Cunnamulla | Y | - | - | - |
Narromine | Y | Y | - | - |
Lake Hume | - | - | - | Y |
Satellite | Path | Row | UTC | AEDT |
---|---|---|---|---|
Landsat 8 | 92 | 85 | 00:03 | 11:03 |
Landsat 9 | 91 | 85 | 23:56 | 10:56 |
SiteID | Method | Latitude | Longitude | Time (UTC) | Time (AEDT) |
---|---|---|---|---|---|
06-21-11-1 | SDA | 147.0798 | 16-11-2021 02:45 | 16-11-2021 13:45 | |
DAMWALL-21-11-1 | SDA | 147.0338 | 16-11-2021 04:33 | 16-11-2021 15:33 | |
01-21-11-1 | SDA | 147.052 | 16-11-2021 21:20 | 17-11-2021 08:20 | |
10-21-11-2 | SBM | 147.0925 | 16-11-2021 23:52 | 17-11-2021 10:52 | |
10-21-11-2 | 147.0925 | 16-11-2021 00:04 | 17-11-2021 11:04 | ||
10-21-11-2 | SDA | 147.0925 | 16-11-2021 23:55 | 17-11-2021 10:55 | |
10-21-11-1 | SDA | 147.0925 | 17-11-2021 00:19 | 17-11-2021 11:19 |
Satellite | Path | Row | Time(UTC) | AWST |
---|---|---|---|---|
Landsat 8 | 112 | 082 | 02:05.49 | 10:05 |
Landsat 9 | 113 | 082 | 02:11.21 | 10:11 |
Satellite | Path | Row | Time (UTC) | AEDT |
---|---|---|---|---|
Landsat 8 | 094 | 082 | 00:14:34 | 11:14:34 |
Landsat 9 | 094 | 082 | 00:13.57 | 11:13:57 |
Site | % Overlap | Field Validation |
---|---|---|
Perth | 15 | 1 |
Wilcannia | 100 | 2 |
Cunnamulla | 100 | 1 |
Narromine | 100 | 2 |
Lake Hume | 100 | 1 (six sites) |
Total | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byrne, G.; Broomhall, M.; Walsh, A.J.; Thankappan, M.; Hay, E.; Li, F.; McAtee, B.; Garcia, R.; Anstee, J.; Kerrisk, G.; et al. Validating Digital Earth Australia NBART for the Landsat 9 Underfly of Landsat 8. Remote Sens. 2024, 16, 1233. https://doi.org/10.3390/rs16071233
Byrne G, Broomhall M, Walsh AJ, Thankappan M, Hay E, Li F, McAtee B, Garcia R, Anstee J, Kerrisk G, et al. Validating Digital Earth Australia NBART for the Landsat 9 Underfly of Landsat 8. Remote Sensing. 2024; 16(7):1233. https://doi.org/10.3390/rs16071233
Chicago/Turabian StyleByrne, Guy, Mark Broomhall, Andrew J. Walsh, Medhavy Thankappan, Eric Hay, Fuqin Li, Brendon McAtee, Rodrigo Garcia, Janet Anstee, Gemma Kerrisk, and et al. 2024. "Validating Digital Earth Australia NBART for the Landsat 9 Underfly of Landsat 8" Remote Sensing 16, no. 7: 1233. https://doi.org/10.3390/rs16071233
APA StyleByrne, G., Broomhall, M., Walsh, A. J., Thankappan, M., Hay, E., Li, F., McAtee, B., Garcia, R., Anstee, J., Kerrisk, G., Drayson, N., Barnetson, J., Samford, I., & Denham, R. (2024). Validating Digital Earth Australia NBART for the Landsat 9 Underfly of Landsat 8. Remote Sensing, 16(7), 1233. https://doi.org/10.3390/rs16071233