A Region-Adaptive Local Perturbation-Based Method for Generating Adversarial Examples in Synthetic Aperture Radar Object Detection
<p>Diagram of the region-adaptive local adversarial perturbation (RaLP) framework.</p> "> Figure 2
<p>Example image for SAR dataset comparison. Different types of ships show distinct differences in the imagery; transport ships and oil tankers have much larger pixel sizes in the images than fishing boats and other types of ships. The arrangement of ship objects in coastal areas is denser.</p> "> Figure 3
<p>The visualization of adversarial perturbations across multiple datasets and their corresponding attack effects. Each subplot corresponds to a specific dataset, and each row within the figure shows the adversarial perturbations generated by a single attack method, as well as the actual images resulting from these perturbations during the attack process.</p> "> Figure 3 Cont.
<p>The visualization of adversarial perturbations across multiple datasets and their corresponding attack effects. Each subplot corresponds to a specific dataset, and each row within the figure shows the adversarial perturbations generated by a single attack method, as well as the actual images resulting from these perturbations during the attack process.</p> "> Figure 4
<p>Illustrative examples of adversarial examples created by combining targets of different sizes with perturbations of various sizes. Each row represents adversarial example images formed by combining a target of a specific size with three types of perturbations of different sizes. The combination of adversarial perturbations generated using an adaptive strategy for the targets results in a superior visual effect.</p> "> Figure 5
<p>Illustrative diagram of adversarial perturbations of different sizes. From left to right, the sizes of the adversarial perturbations are 10 × 10, 50 × 50, 80 × 80, 100 × 100, and 120 × 120.</p> "> Figure 6
<p>Grad-CAM visualization schematic. Each column in the figure represents the detection results and class activation visualization for the original and adversarial examples.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Global Perturbation Attack
2.2. Local Perturbation Attacks
3. Methods
3.1. Problem Formulation
3.2. Region-Adaptive Local Perturbation (RaLP) Framework
3.2.1. Local Perturbation Generator
3.2.2. Adaptive Perturbation Optimizer
4. Experimental Results and Analysis
4.1. Datasets
4.2. Metrics
4.3. Experimental Setting
4.3.1. Detectors
4.3.2. Experimental Setup and Baseline Model Evaluation
4.3.3. Parameter Settings
4.4. Attack Results
4.5. Attack Transferability
4.6. Attack Effectiveness of Region-Adaptive Local Adversarial Perturbations
4.7. Visual Analysis
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Migliaccio, M.; Ferrara, G.; Gambardella, A.; Nunziata, F.; Sorrentino, A. A physically consistent speckle model for marine SLC SAR images. IEEE J. Ocean. Eng. 2007, 32, 839–847. [Google Scholar] [CrossRef]
- Adil, M.; Nunziata, F.; Buono, A.; Velotto, D.; Migliaccio, M. Polarimetric scattering by a vessel at different incidence angles. IEEE Geosci. Remote Sens. Lett. 2023, 20, 561–566. [Google Scholar] [CrossRef]
- Gambardella, A.; Nunziata, F.; Migliaccio, M. A physical full-resolution SAR ship detection filter. IEEE Geosci. Remote Sens. Lett. 2008, 5, 760–763. [Google Scholar] [CrossRef]
- Marino, A. A notch filter for ship detection with polarimetric SAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1219–1232. [Google Scholar] [CrossRef]
- Chang, Y.L.; Anagaw, A.; Chang, L.; Wang, Y.C.; Hsiao, C.Y.; Lee, W.H. Ship detection based on YOLOv2 for SAR imagery. Remote Sens. 2019, 11, 786. [Google Scholar] [CrossRef]
- Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks. arXiv 2013, arXiv:1312.6199. [Google Scholar]
- Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572. [Google Scholar]
- Song, D.; Eykholt, K.; Evtimov, I.; Fernandes, E.; Li, B.; Rahmati, A.; Tramer, F.; Prakash, A.; Kohno, T. Physical adversarial examples for object detectors. In Proceedings of the 12th USENIX Workshop on Offensive Technologies (WOOT 18), Baltimore, MD, USA, 13–14 August 2018. [Google Scholar]
- Chow, K.H.; Liu, L.; Loper, M.; Bae, J.; Gursoy, M.E.; Truex, S.; Wei, W.; Wu, Y. Adversarial objectness gradient attacks in real-time object detection systems. In Proceedings of the 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA), Atlanta, GA, USA, 28–31 October 2020; pp. 263–272. [Google Scholar]
- Xie, C.; Wang, J.; Zhang, Z.; Zhou, Y.; Xie, L.; Yuille, A. Adversarial examples for semantic segmentation and object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, October 2017; pp. 1369–1378. [Google Scholar]
- Gao, G. Statistical modeling of SAR images: A survey. Sensors 2010, 10, 775–795. [Google Scholar] [CrossRef]
- Tsokas, A.; Rysz, M.; Pardalos, P.M.; Dipple, K. SAR data applications in earth observation: An overview. Expert Syst. Appl. 2022, 205, 117342. [Google Scholar] [CrossRef]
- Singh, P.; Diwakar, M.; Shankar, A.; Shree, R.; Kumar, M. A Review on SAR Image and its Despeckling. Arch. Comput. Methods Eng. 2021, 28, 4633–4653. [Google Scholar] [CrossRef]
- Saha, A.; Subramanya, A.; Patil, K.; Pirsiavash, H. Role of spatial context in adversarial robustness for object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 784–785. [Google Scholar]
- Thys, S.; Van Ranst, W.; Goedemé, T. Fooling automated surveillance cameras: Adversarial patches to attack person detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–20 June 2019; pp. 16–17. [Google Scholar]
- Liu, X.; Yang, H.; Liu, Z.; Song, L.; Li, H.; Chen, Y. Dpatch: An adversarial patch attack on object detectors. arXiv 2018, arXiv:1806.02299. [Google Scholar]
- Xu, K.; Zhang, G.; Liu, S.; Fan, Q.; Sun, M.; Chen, H.; Chen, P.Y.; Wang, Y.; Lin, X. Adversarial t-shirt! evading person detectors in a physical world. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part V 16; Springer: Heidelberg, Germany, 2020; pp. 665–681. [Google Scholar]
- Brown, T.B.; Mané, D.; Roy, A.; Abadi, M.; Gilmer, J. Adversarial patch. arXiv 2017, arXiv:1712.09665. [Google Scholar]
- Zhang, T.; Zhang, X.; Li, J.; Xu, X.; Wang, B.; Zhan, X.; Xu, Y.; Ke, X.; Zeng, T.; Su, H.; et al. SAR ship detection dataset (SSDD): Official release and comprehensive data analysis. Remote Sens. 2021, 13, 3690. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Zhang, H.; Dong, Y.; Wei, S. A SAR dataset of ship detection for deep learning under complex backgrounds. Remote Sens. 2019, 11, 765. [Google Scholar] [CrossRef]
- Xian, S.; Zhirui, W.; Yuanrui, S.; Wenhui, D.; Yue, Z.; Kun, F. AIR-SARShip-1.0: High-resolution SAR ship detection dataset. J. Radars 2019, 8, 852–863. [Google Scholar]
- Samanta, S.; Mehta, S. Towards crafting text adversarial samples. arXiv 2017, arXiv:1707.02812. [Google Scholar]
- Ebrahimi, J.; Rao, A.; Lowd, D.; Dou, D. Hotflip: White-box adversarial examples for text classification. arXiv 2017, arXiv:1712.06751. [Google Scholar]
- Gao, J.; Lanchantin, J.; Soffa, M.L.; Qi, Y. Black-box generation of adversarial text sequences to evade deep learning classifiers. In Proceedings of the 2018 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 24 May 2018; IEEE: Toulouse, France; pp. 50–56.
- Carlini, N.; Wagner, D. Audio adversarial examples: Targeted attacks on speech-to-text. In Proceedings of the 2018 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 24 May 2018; pp. 1–7. [Google Scholar]
- Kuleshov, V.; Thakoor, S.L.T.E.S. Adversarial examples for natural language classification problems. In Proceedings of the 6th International Conference on Learning Representations (ICLR 2018), Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Athalye, A.; Engstrom, L.; Ilyas, A.; Kwok, K. Synthesizing robust adversarial examples. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 284–293. [Google Scholar]
- Yakura, H.; Sakuma, J. Robust audio adversarial example for a physical attack. arXiv 2018, arXiv:1810.11793. [Google Scholar]
- Hendrycks, D.; Zhao, K.; Basart, S.; Steinhardt, J.; Song, D. Natural adversarial examples. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 15262–15271. [Google Scholar]
- Qin, Y.; Carlini, N.; Cottrell, G.; Goodfellow, I.; Raffel, C. Imperceptible, robust, and targeted adversarial examples for automatic speech recognition. In Proceedings of the 36th International Conference on Machine Learning (PMLR), Long Beach, CA, USA, 10–15 June 2019; pp. 5231–5240. [Google Scholar]
- Duan, R.; Ma, X.; Wang, Y.; Bailey, J.; Qin, A.K.; Yang, Y. Adversarial camouflage: Hiding physical-world attacks with natural styles. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1000–1008. [Google Scholar]
- Zhang, Z.; Liu, S.; Gao, X.; Diao, Y. An Empirical Study Towards SAR Adversarial Examples. In Proceedings of the 2022 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML), Xi’an, China, 28–30 October 2022; IEEE: Toulouse, France, 2022; pp. 127–132. [Google Scholar]
- Sun, H.; Xu, Y.; Kuang, G.; Chen, J. Adversarial robustness evaluation of deep convolutional neural network based SAR ATR algorithm. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 5263–5266. [Google Scholar]
- Pang, L.; Wang, L.; Zhang, Y.; Li, H. Adversarial Examples of SAR Images for Deep Learning based Automatic Target Recognition. In Proceedings of the 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP), Nanjing, China, 22–24 October 2021; IEEE: Toulouse, France, 2021; pp. 24–27. [Google Scholar]
- Li, H.; Huang, H.; Chen, L.; Peng, J.; Huang, H.; Cui, Z.; Mei, X.; Wu, G. Adversarial examples for CNN-based SAR image classification: An experience study. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1333–1347. [Google Scholar] [CrossRef]
- Zhou, J.; Peng, B.; Peng, B. Adversarial Attacks on Radar Target Recognition Based on Deep Learning. In Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; IEEE: Toulouse, France, 2022; pp. 2646–2649. [Google Scholar]
- Kurakin, A.; Goodfellow, I.J.; Bengio, S. Adversarial examples in the physical world. In Artificial Intelligence Safety and Security; Chapman and Hall/CRC: Boca Raton, FL, USA, 2018; pp. 99–112. [Google Scholar]
- Huang, T.; Chen, Y.; Yao, B.; Yang, B.; Wang, X.; Li, Y. Adversarial attacks on deep-learning-based radar range profile target recognition. Inf. Sci. 2020, 531, 159–176. [Google Scholar] [CrossRef]
- Dong, Y.; Liao, F.; Pang, T.; Su, H.; Zhu, J.; Hu, X.; Li, J. Boosting adversarial attacks with momentum. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 9185–9193. [Google Scholar]
- Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards deep learning models resistant to adversarial attacks. arXiv 2017, arXiv:1706.06083. [Google Scholar]
- Inkawhich, N.; Davis, E.; Majumder, U.; Capraro, C.; Chen, Y. Advanced techniques for robust sar atr: Mitigating noise and phase errors. In Proceedings of the 2020 IEEE International Radar Conference (RADAR), Washington, DC, USA, 28–30 April 2020; IEEE: Toulouse, France, 2020; pp. 844–849. [Google Scholar]
- Dong, Y.; Pang, T.; Su, H.; Zhu, J. Evading defenses to transferable adversarial examples by translation-invariant attacks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 4312–4321. [Google Scholar]
- Carlini, N.; Wagner, D. Towards evaluating the robustness of neural networks. In Proceedings of the 2017 IEEE Symposium on Security and Privacy (sp), San Jose, CA, USA, 25 May 2017; pp. 39–57. [Google Scholar]
- Chen, P.Y.; Sharma, Y.; Zhang, H.; Yi, J.; Hsieh, C.J. Ead: Elastic-net attacks to deep neural networks via adversarial examples. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, LA, USA, 2–7 February 2018; Volume 32. [Google Scholar]
- Du, C.; Huo, C.; Zhang, L.; Chen, B.; Yuan, Y. Fast C&W: A fast adversarial attack algorithm to fool SAR target recognition with deep convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar]
- Moosavi-Dezfooli, S.M.; Fawzi, A.; Frossard, P. Deepfool: A simple and accurate method to fool deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2574–2582. [Google Scholar]
- Chen, J.; Jordan, M.I.; Wainwright, M.J. Hopskipjumpattack: A query-efficient decision-based attack. In Proceedings of the 2020 IEEE Symposium on Security and Privacy (sp), San Francisco, CA, USA, 18–21 May 2020; pp. 1277–1294. [Google Scholar]
- Moosavi-Dezfooli, S.M.; Fawzi, A.; Fawzi, O.; Frossard, P. Universal adversarial perturbations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1765–1773. [Google Scholar]
- Papernot, N.; McDaniel, P.; Jha, S.; Fredrikson, M.; Celik, Z.B.; Swami, A. The limitations of deep learning in adversarial settings. In Proceedings of the 2016 IEEE European Symposium on Security and Privacy (EuroS&P), Saarbrücken, Germany, 21–24 March 2016; pp. 372–387. [Google Scholar]
- Dong, X.; Han, J.; Chen, D.; Liu, J.; Bian, H.; Ma, Z.; Li, H.; Wang, X.; Zhang, W.; Yu, N. Robust superpixel-guided attentional adversarial attack. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 12895–12904. [Google Scholar]
- Li, Y.; Tian, D.; Chang, M.C.; Bian, X.; Lyu, S. Robust adversarial perturbation on deep proposal-based models. arXiv 2018, arXiv:1809.05962. [Google Scholar]
- Yu, Y.; Zou, H.; Zhang, F. SAR Sticker: An Adversarial Image Patch that can Deceive SAR ATR Deep Model. In Proceedings of the IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; IEEE: Toulouse, France, 2023; pp. 7050–7053. [Google Scholar]
- Peng, B.; Peng, B.; Zhou, J.; Xia, J.; Liu, L. Speckle-variant attack: Toward transferable adversarial attack to SAR target recognition. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Su, J.; Vargas, D.V.; Sakurai, K. One pixel attack for fooling deep neural networks. IEEE Trans. Evolut. Comput. 2019, 23, 828–841. [Google Scholar] [CrossRef]
- Meng, T.; Zhang, F.; Ma, F. A Target-region-based SAR ATR Adversarial Deception Method. In Proceedings of the 2022 7th International Conference on Signal and Image Processing (ICSIP), Suzhou, China, 20–22 July 2022; pp. 142–146. [Google Scholar]
- Karmon, D.; Zoran, D.; Goldberg, Y. Lavan: Localized and visible adversarial noise. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 2507–2515. [Google Scholar]
- Wang, Y.; Tan, Y.a.; Zhang, W.; Zhao, Y.; Kuang, X. An adversarial attack on DNN-based black-box object detectors. J. Netw. Comput. Appl. 2020, 161, 102634. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Tian, Z.; Shen, C.; Chen, H.; He, T. Fcos: Fully convolutional one-stage object detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9627–9636. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28. [Google Scholar] [CrossRef]
- Peng, J.; Ye, D.; Tang, B.; Lei, Y.; Liu, Y.; Li, H. Lifelong learning with cycle memory networks. IEEE Trans. Neural Netw. Learn. Syst. 2023, 1–14. [Google Scholar] [CrossRef]
- Peng, J.; Tang, B.; Jiang, H.; Li, Z.; Lei, Y.; Lin, T.; Li, H. Overcoming long-term catastrophic forgetting through adversarial neural pruning and synaptic consolidation. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 4243–4256. [Google Scholar] [CrossRef]
- Zhang, Z.; Ren, Z.; Tao, C.; Zhang, Y.; Peng, C.; Li, H. GraSS: Contrastive Learning With Gradient-Guided Sampling Strategy for Remote Sensing Image Semantic Segmentation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [Google Scholar] [CrossRef]
- Li, H.; Cao, J.; Zhu, J.; Luo, Q.; He, S.; Wang, X. Augmentation-Free Graph Contrastive Learning of Invariant-Discriminative Representations. IEEE Trans. Neural Netw. Learn. Syst. 2023, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tao, C.; Qi, J.; Guo, M.; Zhu, Q.; Li, H. Self-supervised remote sensing feature learning: Learning paradigms, challenges, and future works. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5610426. [Google Scholar] [CrossRef]
- Zhu, J.; Han, X.; Deng, H.; Tao, C.; Zhao, L.; Wang, P.; Lin, T.; Li, H. KST-GCN: A knowledge-driven spatial-temporal graph convolutional network for traffic forecasting. IEEE Trans. Intell. Transp. Syst. 2022, 23, 15055–15065. [Google Scholar] [CrossRef]
- Li, H.; Cao, J.; Zhu, J.; Liu, Y.; Zhu, Q.; Wu, G. Curvature graph neural network. Inf. Sci. 2022, 592, 50–66. [Google Scholar] [CrossRef]
- Tao, C.; Qi, J.; Zhang, G.; Zhu, Q.; Lu, W.; Li, H. TOV: The original vision model for optical remote sensing image understanding via self-supervised learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 33, 4916–4930. [Google Scholar] [CrossRef]
Symbol | Corresponding Term | Symbol | Corresponding Term |
---|---|---|---|
X | Raw SAR detection dataset | x | Original Image |
Adversarial Example | F | Object Detection Model | |
Mask matrix | p | Adversarial perturbation | |
Mask function | Centre coordinates | ||
Transition function | ⊙ | Hadamard product |
Datasets | Method | mAP | Reduce (↓) | |
---|---|---|---|---|
Clean | Adversarial | |||
SSDD | Dpatch | 89.9% | 78.2% | 11.7% |
Obj-hinder | 63.3% | 26.6% | ||
RaLP | 60.9% | 29.0% | ||
SAR-Ship-Dataset | Dpatch | 87.8% | 75.7% | 12.1% |
Obj-hinder | 60.8% | 27.0% | ||
RaLP | 57.9% | 29.9% | ||
AIR-SARShip-1.0 | Dpatch | 88.9% | 71.8% | 17.1% |
Obj-hinder | 58.2% | 30.7% | ||
RaLP | 56.6% | 32.3% |
Source Dataset | Target Dataset | Clean | Adversarial | Reduce (↓) |
---|---|---|---|---|
SSDD | SSDD | 89.9% | 60.9% | 29.0% |
SAR-Ship-Dataset | 70.4% | 19.5% | ||
AIR-SARShip-1.0 | 68.1% | 21.8% | ||
SSDD | SAR-Ship-Dataset | 87.8% | 68.1% | 19.7% |
SAR-Ship-Dataset | 57.9% | 29.9 % | ||
AIR-SARShip-1.0 | 68.2% | 19.6% | ||
SSDD | AIR-SARShip-1.0 | 88.9% | 68.6% | 20.3% |
SAR-Ship-Dataset | 73.1% | 15.8% | ||
AIR-SARShip-1.0 | 56.6% | 32.3% |
Source Datasets | Model | Clean | Adversarial | Reduce (↓) |
---|---|---|---|---|
SSDD | Faster R-CNN | 82.9% | 60.5% | 22.4% |
SSDD | FCOS | 80.8% | 56.4% | 24.4% |
SAR-Ship-Dataset | Faster R-CNN | 87.4% | 63.1% | 24.3% |
SAR-Ship-Dataset | FCOS | 89.9% | 65.3% | 24.6% |
AIR-SARShip-1.0 | Faster R-CNN | 78.4% | 53.7% | 24.7% |
AIR-SARShip-1.0 | FCOS | 81.2% | 57.2% | 24.0% |
Source Dataset | Target Dataset | Model | Clean | Adversarial | Reduce (↓) |
---|---|---|---|---|---|
SSDD | SAR-Ship-Dataset | Faster R-CNN | 94.0% | 85.1% | 8.9% |
FCOS | 95.5% | 88.5% | 7.0% | ||
AIR-SARShip-1.0 | Faster R-CNN | 95.9% | 73.1% | 22.8% | |
FCOS | 59.8% | 44.6% | 15.2% | ||
SAR-Ship-Dataset | SSDD | Faster R-CNN | 98.0% | 82.0% | 16.0% |
FCOS | 91.1% | 82.3% | 8.8% | ||
AIR-SARShip-1.0 | Faster R-CNN | 95.9% | 82.6% | 13.3% | |
FCOS | 59.8% | 44.3% | 15.5% | ||
AIR-SARShip-1.0 | SAR-Ship-Dataset | Faster R-CNN | 94.0% | 79.9% | 14.1% |
FCOS | 95.5% | 85.0% | 10.5% | ||
SSDD | Faster R-CNN | 98.0% | 83.5% | 14.5% | |
FCOS | 91.1% | 80.1% | 11.0% |
Size | mAP |
---|---|
10 × 10 | 73.9% |
50 × 50 | 71.7% |
80 × 80 | 67.3% |
100 × 100 | 57.9% |
120 × 120 | 60.9% |
Datasets | Sample Status | Detection Success Rate | Detection Miss Rate |
---|---|---|---|
SSDD | Original Samples | 91.3% | 8.7% |
Adversarial Samples | 52.7% | 47.3% | |
SAR-Ship-Dataset | Original Samples | 81.7% | 18.3% |
Adversarial Samples | 50.7% | 49.3% | |
AIR-SARShip-1.0 | Original Samples | 87.6% | 12.4% |
Adversarial Samples | 44.6% | 55.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, J.; Qiu, L.; He, G.; Zhao, L.; Zhang, Z.; Li, H. A Region-Adaptive Local Perturbation-Based Method for Generating Adversarial Examples in Synthetic Aperture Radar Object Detection. Remote Sens. 2024, 16, 997. https://doi.org/10.3390/rs16060997
Duan J, Qiu L, He G, Zhao L, Zhang Z, Li H. A Region-Adaptive Local Perturbation-Based Method for Generating Adversarial Examples in Synthetic Aperture Radar Object Detection. Remote Sensing. 2024; 16(6):997. https://doi.org/10.3390/rs16060997
Chicago/Turabian StyleDuan, Jiale, Linyao Qiu, Guangjun He, Ling Zhao, Zhenshi Zhang, and Haifeng Li. 2024. "A Region-Adaptive Local Perturbation-Based Method for Generating Adversarial Examples in Synthetic Aperture Radar Object Detection" Remote Sensing 16, no. 6: 997. https://doi.org/10.3390/rs16060997
APA StyleDuan, J., Qiu, L., He, G., Zhao, L., Zhang, Z., & Li, H. (2024). A Region-Adaptive Local Perturbation-Based Method for Generating Adversarial Examples in Synthetic Aperture Radar Object Detection. Remote Sensing, 16(6), 997. https://doi.org/10.3390/rs16060997