A Deep Learning Gravity Inversion Method Based on a Self-Constrained Network and Its Application
<p>Network structure.</p> "> Figure 2
<p>The process of self-constraining the network.</p> "> Figure 3
<p>Random models. (<b>a</b>,<b>b</b>) are random models generated from one starting point, and (<b>c</b>,<b>d</b>) are random models generated from two starting points.</p> "> Figure 4
<p>(<b>a</b>) Real model; (<b>b</b>) fine-tuned inversion results; (<b>c</b>) inversion results for data-driven deep learning method; (<b>d</b>) real anomaly data; (<b>e</b>,<b>f</b>) forward data of (<b>b</b>,<b>c</b>).</p> "> Figure 5
<p>(<b>a</b>) Real model; (<b>b</b>) fine-tuned inversion results; (<b>c</b>) inversion results for data-driven deep learning method; (<b>d</b>) real anomaly data; (<b>e</b>,<b>f</b>) forward data of (<b>b</b>,<b>c</b>).</p> "> Figure 6
<p>(<b>a</b>) Real model; (<b>b</b>) fine-tuned inversion results; (<b>c</b>) inversion results of data-driven deep learning method; (<b>d</b>) real anomaly data; (<b>e</b>,<b>f</b>) forward data of (<b>b</b>,<b>c</b>).</p> "> Figure 7
<p>(<b>a</b>) Real model; (<b>b</b>) fine-tuned inversion results; (<b>c</b>) inversion results of data-driven deep learning method; (<b>d</b>) real anomaly data; (<b>e</b>,<b>f</b>) forward data of (<b>b</b>,<b>c</b>).</p> "> Figure 8
<p>(<b>a</b>) Geological structure map of the Republican Basin and the surrounding area, with the study and inversion areas in red boxes (modified from Wang et al., 2021 [<a href="#B38-remotesensing-16-00995" class="html-bibr">38</a>]); (<b>b</b>) location of the study area.</p> "> Figure 9
<p>Gravity anomaly in the Gonghe area.</p> "> Figure 10
<p>Cross sections of 3D density model (<b>b</b>–<b>e</b>) along the profiles shown in (<b>a</b>).</p> ">
Abstract
:1. Introduction
2. Method
2.1. Deep Learning Inversion Theory
2.2. Self-Constrained Network
3. Model Testing
3.1. Data Set
3.2. Model Testing
3.2.1. Model I
3.2.2. Model II
3.2.3. Model III
3.2.4. Model IV
3.2.5. Analytical Metrics
4. Application of Field Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geng, M.; Huang, D.; Yang, Q.; Liu, Y. 3D inversion of airborne gravity-gradiometry data using cokriging. Geophysics 2014, 79, G37–G47. [Google Scholar] [CrossRef]
- Li, Y.; Oldenburg, D.W. 3-D inversion of gravity data. Geophysics 1998, 63, 109–119. [Google Scholar] [CrossRef]
- Montesinos, F.G.; Arnoso, J.; Vieira, R. Using a genetic algorithm for 3-D inversion of gravity data in Fuerteventura (Canary Islands). Int. J. Earth Sci. 2005, 94, 301–316. [Google Scholar] [CrossRef]
- Liu, S.; Hu, X.; Liu, T. A Stochastic Inversion Method for Potential Field Data: Ant Colony Optimization. Pure Appl. Geophys. 2013, 171, 1531–1555. [Google Scholar] [CrossRef]
- Liu, S.; Liang, M.; Hu, X. Particle swarm optimization inversion of magnetic data: Field examples from iron ore deposits in China. Geophysics 2018, 83, J43–J59. [Google Scholar] [CrossRef]
- Al-Garni, M.A. Inversion of residual gravity anomalies using neural network. Arab. J. Geosci. 2011, 6, 1509–1516. [Google Scholar] [CrossRef]
- Guspí, F. Noniterative nonlinear gravity inversion. Geophysics 1993, 58, 935–940. [Google Scholar] [CrossRef]
- Qin, P.; Huang, D.; Yuan, Y.; Geng, M.; Liu, J. Integrated gravity and gravity gradient 3D inversion using the non-linear conjugate gradient. J. Appl. Geophys. 2016, 126, 52–73. [Google Scholar] [CrossRef]
- Uieda, L.; Barbosa, V.C. Fast nonlinear gravity inversion in spherical coordinates with application to the South American Moho. Geophys. J. Int. 2016, 208, 162–176. [Google Scholar] [CrossRef]
- Wang, J.; Meng, X.; Li, F. Fast Nonlinear Generalized Inversion of Gravity Data with Application to the Three-Dimensional Crustal Density Structure of Sichuan Basin, Southwest China. Pure Appl. Geophys. 2017, 174, 4101–4117. [Google Scholar] [CrossRef]
- Bhangale, K.B.; Kothandaraman, M. Survey of Deep Learning Paradigms for Speech Processing. Wirel. Pers. Commun. 2022, 125, 1913–1949. [Google Scholar] [CrossRef]
- Lin, Y.; Wu, Y. InversionNet: A real-time and accurate full waveform inversion with convolutional neural network. J. Acoust. Soc. Am. 2018, 144, 1683. [Google Scholar] [CrossRef]
- Ren, Y.; Nie, L.; Yang, S.; Jiang, P.; Chen, Y. Building Complex Seismic Velocity Models for Deep Learning Inversion. IEEE Access 2021, 9, 63767–63778. [Google Scholar] [CrossRef]
- Liu, B.; Yu, A.; Yu, X.; Wang, R.; Gao, K.; Guo, W. Deep Multiview Learning for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7758–7772. [Google Scholar] [CrossRef]
- Ren, Y.; Xu, X.; Yang, S.; Nie, L.; Chen, Y. A Physics-Based Neural-Network Way to Perform Seismic Full Waveform Inversion. IEEE Access 2020, 8, 112266–112277. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, G.; Liu, Y.; Fan, Z. Deep Learning for 3-D Inversion of Gravity Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5905918. [Google Scholar] [CrossRef]
- Huang, R.; Liu, S.; Qi, R.; Zhang, Y. Deep Learning 3D Sparse Inversion of Gravity Data. J. Geophys. Res. Solid Earth 2021, 126, e2021JB022476. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Zhang, Y.-J.; Fu, L.-H.; Li, H.-W. Three-dimensional gravity inversion based on 3D U-Net++. Appl. Geophys. 2021, 18, 451–460. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, S.; Hu, X.; Fu, L.; Qu, J.; Wang, H.; Chen, Q. Inversion of magnetic data using deep neural networks. Phys. Earth Planet. Inter. 2021, 311, 106653. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, S.; Yin, C.; Yin, C.; Cao, X.; Cao, X.; Sun, S.; Sun, S.; Liu, Y.; Liu, Y.; et al. DecNet: Decomposition network for 3D gravity inversion. Geophysics 2022, 87, G103–G114. [Google Scholar] [CrossRef]
- Yang, Q.; Hu, X.; Liu, S.; Jie, Q.; Wang, H.; Chen, Q. 3-D Gravity Inversion Based on Deep Convolution Neural Networks. IEEE Geosci. Remote Sens. Lett. 2022, 19, 3001305. [Google Scholar] [CrossRef]
- Singh, S.; Zhang, Y.; Thanoon, D.; Devarakota, P.R.; Jin, L.; Tsvankin, I. Physics-directed unsupervised machine learning: Quantifying uncertainty in seismic inversion. In Second International Meeting for Applied Geoscience & Energy; SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Houston, TX, USA, 2022; pp. 1735–1739. [Google Scholar] [CrossRef]
- Su, Y.; Cao, D.; Liu, S.; Hou, Z.; Feng, J. Seismic impedance inversion based on deep learning with geophysical constraints. Geoenergy Sci. Eng. 2023, 225, 211671. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Chen, X.; Li, Y.; Huang, G.; Chen, Y. Robust deep learning seismic inversion with a priori initial model constraint. Geophys. J. Int. 2021, 225, 2001–2019. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Lu, W.; Li, H. Physics-Constrained Seismic Impedance Inversion Based on Deep Learning. IEEE Geosci. Remote Sens. Lett. 2022, 19, 7503305. [Google Scholar] [CrossRef]
- Hansen, T.M.; Cordua, K.S. Efficient Monte Carlo sampling of inverse problems using a neural network-based forward—Applied to GPR crosshole traveltime inversion. Geophys. J. Int. 2017, 211, 1524–1533. [Google Scholar] [CrossRef]
- Conway, D.; Alexander, B.; King, M.; Heinson, G.; Kee, Y. Inverting magnetotelluric responses in a three-dimensional earth using fast forward approximations based on artificial neural networks. Comput. Geosci. 2019, 127, 44–52. [Google Scholar] [CrossRef]
- Moghadas, D.; Behroozmand, A.A.; Vest Christiansen, A. Soil electrical conductivity imaging using a neural network-based forward solver: Applied to large-scale Bayesian electromagnetic inversion. J. Appl. Geophys. 2020, 176, 104012. [Google Scholar] [CrossRef]
- Lv, M.; Zhang, Y.; Liu, S. Fast forward approximation and multitask inversion of gravity anomaly based on UNet3+. Geophys. J. Int. 2023, 234, 972–984. [Google Scholar] [CrossRef]
- Boulanger, O.; Chouteau, M. Constraints in 3D gravity inversion. Geophys. Prospect. 2001, 49, 265–280. [Google Scholar] [CrossRef]
- Zarrouk, S.J.; Moon, H. Efficiency of geothermal power plants: A worldwide review. Geothermics 2014, 51, 142–153. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, J.; Pang, Z.; Hu, S.; Tian, J.; Bao, S. The eastern Tibetan plateau geothermal belt, western China: Geology, geophysics, genesis, and hydrothermal system. Tectonophysics 2017, 717, 433–448. [Google Scholar] [CrossRef]
- Liu, W.L. Drilling technical difficulties and solutions in development of Hot dry Rock geothermal energy. Adv. Pet. Explor. Dev. 2017, 13, 63–69. [Google Scholar]
- Feng, Y.M.; Cao, X.D.; Zhang, E.P.; Hu, Y.X.; Pan, X.P.; Yang, J.L. Tectonic evolution framework and nature of the west Qinling orogenic belt. Northwestern Geol. 2003, 1, 1–10. [Google Scholar]
- Zhang, H.; Chen, Y.; Xu, W.C.; Liu, R.; Yuan, H.-L.; Liu, X. Granitoids around Gonghe basin in Qinghai province: Petrogenesis and tectonic implications. Acta Petrol. Sin. 2006, 22, 2910–2922. [Google Scholar]
- Fang, X.; Yan, M.; Van der Voo, R.; Rea, D.K.; Song, C.; Parés, J.M.; Gao, J.; Nie, J.; Dai, S. Late Cenozoic deformation and uplift of the NE Tibetan Plateau: Evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China. GSA Bull. 2005, 117, 1208–1225. [Google Scholar] [CrossRef]
- Zhao, X.; Zeng, Z.; Wu, Y.; He, R.; Wu, Q.; Zhang, S. Interpretation of gravity and magnetic data on the hot dry rocks (HDR) delineation for the enhanced geothermal system (EGS) in Gonghe town, China. Environ. Earth Sci. 2020, 79, 390. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, Z.; Liu, Z.; Zhao, X.; Li, J.; Bai, L.; Zhang, L. Heat Flow Distribution and Thermal Mechanism Analysis of the Gonghe Basin based on Gravity and Magnetic Methods. Acta Geol. Sin. 2021, 95, 1892–1901. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, H.; Zhang, S.; Chen, X.; Cheng, Z.; Jia, X.; Li, S.; Fu, L.; Gao, L.; Xin, H. Three-dimensional magnetotelluric imaging of the geothermal system beneath the Gonghe Basin, Northeast Tibetan Plateau. Geothermics 2018, 76, 15–25. [Google Scholar] [CrossRef]
- Hirt, C.; Claessens, S.; Fecher, T.; Kuhn, M.; Pail, R.; Rexer, M. New ultrahigh-resolution picture of Earth’s gravity field. Geophys. Res. Lett. 2013, 40, 4279–4283. [Google Scholar] [CrossRef]
Model | X/km | Y/km | Z/km |
---|---|---|---|
Model I | 17–25 | 15–21 | 2–10 |
Model II | 8–12; 18–22 | 16–24 | 3–9; 5–11 |
Model III | 15–21 | 2–22 | 5–13 |
Model IV | 6–22; 10–26 | 10–14; 22–26 | 2–8 |
Model | Data-Driven Deep Learning | Self-Constrained Network | ||
---|---|---|---|---|
Em | Ed | Em | Ed | |
Model I | 10.2667 | 98.8648 | 7.2498 | 34.1445 |
Model II | 10.3254 | 90.0130 | 8.2652 | 33.6362 |
Model III | 15.3313 | 71.3274 | 11.5404 | 31.2421 |
Model IV | 11.3257 | 54.6194 | 8.3752 | 42.3873 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Wei, Y.; Lu, P.; Yu, G.; Wang, S.; Jiao, J.; Yu, P.; Zhao, J. A Deep Learning Gravity Inversion Method Based on a Self-Constrained Network and Its Application. Remote Sens. 2024, 16, 995. https://doi.org/10.3390/rs16060995
Zhou S, Wei Y, Lu P, Yu G, Wang S, Jiao J, Yu P, Zhao J. A Deep Learning Gravity Inversion Method Based on a Self-Constrained Network and Its Application. Remote Sensing. 2024; 16(6):995. https://doi.org/10.3390/rs16060995
Chicago/Turabian StyleZhou, Shuai, Yue Wei, Pengyu Lu, Guangrui Yu, Shuqi Wang, Jian Jiao, Ping Yu, and Jianwei Zhao. 2024. "A Deep Learning Gravity Inversion Method Based on a Self-Constrained Network and Its Application" Remote Sensing 16, no. 6: 995. https://doi.org/10.3390/rs16060995