An Approach to Large-Scale Cement Plant Detection Using Multisource Remote Sensing Imagery
<p>Geographical location of the study area.</p> "> Figure 2
<p>Illustration of partial dataset.</p> "> Figure 3
<p>Distribution statistics of the training set.</p> "> Figure 4
<p>Technical framework of the proposed method.</p> "> Figure 5
<p>YOLOv5-IEG’s architecture.</p> "> Figure 6
<p>Simplified flowchart.</p> "> Figure 7
<p>Efficient Multi-scale Attention module.</p> "> Figure 8
<p>Diagram cement plant thermal signatures (red indicates high temperature, green indicates low temperature).</p> "> Figure 9
<p>Flowchart of cement plant operational status monitoring.</p> "> Figure 10
<p>Schematic representation of detection results: (<b>a</b>) True Positive, (<b>b</b>): (1) False Positive, (2) False Negative.</p> "> Figure 11
<p>Distribution of detected cement plants in this study.</p> "> Figure 12
<p>Distribution of detected cement plants in Shandong Province.</p> "> Figure 13
<p>Schematic diagram for detecting the operational state of cement plants. (<b>a</b>–<b>c</b>) Operational cement plants, (<b>d</b>) Non-operational cement plants.</p> "> Figure 14
<p>Spatial distribution of comparative datasets: (<b>a</b>) Ma et al.’s dataset, (<b>b</b>) Tkachenko’s dataset.</p> "> Figure 15
<p>Comparison of detection boxes.</p> "> Figure 16
<p>Schematic diagram of operational cement plants.</p> "> Figure 17
<p>Schematic diagram of non-operational cement plants.</p> ">
Abstract
:1. Introduction
- We introduced a large-scale cement plant detection method that uses the YOLOv5-IEG model, achieving a detection and localization approach based on remote sensing imagery.
- We established a monitoring model for the operational status of cement plants, leveraging SDGSAT-1 thermal infrared imagery.
- A dataset of cement plants in China was created with higher accuracy than other available datasets.
2. Materials and Methods
2.1. Study Area
2.2. Experimental Dataset
2.3. Technical Route
- 1.
- Remote Sensing Image Preprocessing
- 2.
- Dataset Construction
- 3.
- Cement Plants Detection Using Google Earth Imagery
- 4.
- Cement Plant Operational Status Monitoring
- 5.
- Following the detection phase, thermal monitoring of the cement plants’ operational status was conducted by using the TSD module. Subsequent to the model’s prediction, a network linking layer was added to establish an “e-channel” between the detection results (bounding boxes) from the Google Earth imagery and the SDGSAT-1 thermal infrared imagery. This fusion allowed the reflection of the thermal status of cement plants through infrared imagery. The feedback loop culminated in the final output, encompassing both position information and operational status.
- 6.
- Comparative Analysis
2.4. YOLOv5-IEG Algorithm
2.4.1. Efficient Multi-Scale Attention (EMA)
2.4.2. Inner-IoU Loss Function
2.5. Cement Plant Operational Status Monitoring Model
- The YOLOv5-IEG model is employed to detect the precise location information of the cement plant.
- The TSD module is utilized to identify thermal signature information within the SDGSAT-1 thermal infrared imagery.
- Integration of the location information and thermal signature information is achieved through the E-channel, enabling a comprehensive assessment to determine the operational status of the cement plant.
- As the TSD module relies on location information obtained from target detection models and requires no training, it can be seamlessly integrated with other target detection models without compromising their accuracy.
3. Experiment and Results
3.1. Experimental Settings
3.2. Accuracy Evaluation Method
3.3. Experimental Results
3.4. Detection of Cement Plants in China Based on The YOLOv5-IEG Model
3.5. Monitoring the Operational Status of Cement Plants—Shandong Province
4. Discussion
4.1. Comparison with Other Target Detection Algorithms
4.2. Ablation Experiments
4.3. Comparative Analysis between Our Results and Those of Others
4.4. Analysis of Thermal Signatures in Cement Plants
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Korczak, K.; Kochański, M.; Skoczkowski, T. Mitigation Options for Decarbonization of the Non-Metallic Minerals Industry and Their Impacts on Costs, Energy Consumption and GHG Emissions in the EU—Systematic Literature Review. J. Clean. Prod. 2022, 358, 132006. [Google Scholar] [CrossRef]
- Gao, T.; Shen, L.; Shen, M.; Chen, F.; Liu, L.; Gao, L. Analysis on Differences of Carbon Dioxide Emission from Cement Production and Their Major Determinants. J. Clean. Prod. 2015, 103, 160–170. [Google Scholar] [CrossRef]
- Mikulčić, H.; Vujanović, M.; Duić, N. Reducing the CO2 Emissions in Croatian Cement Industry. Appl. Energy 2013, 101, 41–48. [Google Scholar] [CrossRef]
- Wang, Y.; Yi, H.; Tang, X.; Wang, Y.; An, H.; Liu, J. Historical Trend and Decarbonization Pathway of China’s Cement Industry: A Literature Review. Sci. Total Environ. 2023, 891, 164580. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, C.A.; Worrell, E.; De Jager, D.; Blok, K.; Riemer, P. Emission Reduction of Greenhouse Gases from the Cement Industry. In Proceedings of the Fourth International Conference on Greenhouse Gas Control Technologies, Interlaken, Switzerland, 30 August–2 September 1998; IEA GHG R&D Programme: Interlaken, Austria, 1998; pp. 939–944. [Google Scholar]
- Meinshausen, M.; Lewis, J.; McGlade, C.; Gütschow, J.; Nicholls, Z.; Burdon, R.; Cozzi, L.; Hackmann, B. Realization of Paris Agreement Pledges May Limit Warming Just below 2 °C. Nature 2022, 604, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy 2021, 23, 18. [Google Scholar] [CrossRef] [PubMed]
- Oggioni, G.; Riccardi, R.; Toninelli, R. Eco-Efficiency of the World Cement Industry: A Data Envelopment Analysis. Energy Policy 2011, 39, 2842–2854. [Google Scholar] [CrossRef]
- Ali, M.B.; Saidur, R.; Hossain, M.S. A Review on Emission Analysis in Cement Industries. Renew. Sustain. Energy Rev. 2011, 15, 2252–2261. [Google Scholar] [CrossRef]
- Schneider, M.; Romer, M.; Tschudin, M.; Bolio, H. Sustainable Cement Production—Present and Future. Cem. Concr. Res. 2011, 41, 642–650. [Google Scholar] [CrossRef]
- Shen, W.; Cao, L.; Li, Q.; Zhang, W.; Wang, G.; Li, C. Quantifying CO2 Emissions from China’s Cement Industry. Renew. Sustain. Energy Rev. 2015, 50, 1004–1012. [Google Scholar] [CrossRef]
- Sawaya, K.E.; Olmanson, L.G.; Heinert, N.J.; Brezonik, P.L.; Bauer, M.E. Extending Satellite Remote Sensing to Local Scales: Land and Water Resource Monitoring Using High-Resolution Image. Remote Sens. Environ. 2003, 88, 144–156. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, C.; Zhan, W.; Sun, C.; Murch, B.; Ma, L. Identifying Industrial Heat Sources Using Time-Series of the VIIRS Nightfire Product with an Object-Oriented Approach. Remote Sens. Environ. 2018, 204, 347–365. [Google Scholar] [CrossRef]
- Ma, C.; Yang, J.; Chen, F.; Ma, Y.; Liu, J.; Li, X.; Duan, J.; Guo, R. Assessing Heavy Industrial Heat Source Distribution in China Using Real-Time VIIRS Active Fire/Hotspot Data. Sustainability 2018, 10, 4419. [Google Scholar] [CrossRef]
- Cheng, G.; Han, J. A Survey on Object Detection in Optical Remote Sensing Imagery. ISPRS J. Photogramm. Remote Sens. 2016, 117, 11–28. [Google Scholar] [CrossRef]
- Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object Detection in Optical Remote Sensing Imagery: A Survey and a New Benchmark. ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [Google Scholar] [CrossRef]
- Wen, D.; Huang, X.; Bovolo, F.; Li, J.; Ke, X.; Zhang, A.; Benediktsson, J.A. Change Detection from Very-High-Spatial-Resolution Optical Remote Sensing Imagery: Methods, Applications, and Future Directions. IEEE Geosci. Remote Sens. Mag. 2021, 9, 68–101. [Google Scholar] [CrossRef]
- Purwins, H.; Li, B.; Virtanen, T.; Schlüter, J.; Chang, S.-Y.; Sainath, T. Deep Learning for Audio Signal Processing. IEEE J. Sel. Top. Signal Process. 2019, 13, 206–219. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-Cnn: Towards Real-Time Object Detection with Region Proposal Networks. Adv. Neural Inf. Process. Syst. 2015, 28, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788. [Google Scholar]
- Bi, F.; Yang, J. Target Detection System Design and FPGA Implementation Based on YOLO v2 Algorithm. In Proceedings of the 2019 3rd International Conference on Imaging Signal Processing and Communication (ICISPC), Singapore, 27–29 July 2019; pp. 10–14. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar] [CrossRef]
- Jocher, G.; Stoken, A.; Chaurasia, A.; Borovec, J.; Kwon, Y.; Michael, K.; Changyu, L.; Fang, J.; Skalski, P.; Hogan, A.; et al. Ultralytics/Yolov5: V6. 0-YOLOv5n’Nano’models, Roboflow Integration, TensorFlow Export, OpenCV DNN Support; Zenodo: Geneva, Switzerland, 2021. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar] [CrossRef]
- Kharchenko, V.; Chyrka, I. Detection of Airplanes on the Ground Using YOLO Neural Network. In Proceedings of the 2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET), Kyiv, Ukraine, 2–5 July 2018; pp. 294–297. [Google Scholar] [CrossRef]
- Zhang, F.; Du, B.; Zhang, L.; Xu, M. Weakly Supervised Learning Based on Coupled Convolutional Neural Networks for Aircraft Detection. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5553–5563. [Google Scholar] [CrossRef]
- Song, R.; Li, T.; Li, T. Ship Detection in Haze and Low-Light Remote Sensing Imagery via Colour Balance and DCNN. Appl. Ocean. Res. 2023, 139, 103702. [Google Scholar] [CrossRef]
- Chen, X.; Xiang, S.; Liu, C.-L.; Pan, C.-H. Vehicle Detection in Satellite Imagery by Parallel Deep Convolutional Neural Networks. In Proceedings of the 2013 2nd IAPR Asian Conference on Pattern Recognition, Naha, Japan, 5–8 November 2013; pp. 181–185. [Google Scholar] [CrossRef]
- Lu, K.; Li, G.; Chen, Z.; Zan, L.; Li, B.; Gao, J. Steel Plant Extraction Based on Multi-Channel Optimization of SSD Network with Negative Samples. J. Univ. Chin. Acad. Sci. 2020, 37, 352–359. [Google Scholar]
- Xu, G.; Yue, J.; Dong, Y.; Lou, Q.; Xiong, W.; Nie, Y. Target Detection of Cement Plant in Satellite Imagery using Deep Convolutional Networks. J. Image Graph. 2019, 24, 550–561. [Google Scholar]
- Tkachenko, N.; Tang, K.; McCarten, M.; Reece, S.; Kampmann, D.; Hickey, C.; Bayaraa, M.; Foster, P.; Layman, C.; Rossi, C.; et al. Global Database of Cement Production Assets and Upstream Suppliers. Sci. Data 2023, 10, 696. [Google Scholar] [CrossRef]
- Wang, Q.; Feng, W.; Yao, L.; Zhuang, C.; Liu, B.; Chen, L. TPH-YOLOv5-Air: Airport Confusing Object Detection via Adaptively Spatial Feature Fusion. Remote Sens. 2023, 15, 3883. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, H.; Yin, M.; Zhang, X. SMFF-YOLO: A Scale-Adaptive YOLO Algorithm with Multi-Level Feature Fusion for Object Detection in UAV Scenes. Remote Sens. 2023, 15, 4580. [Google Scholar] [CrossRef]
- Wu, T.-H.; Wang, T.-W.; Liu, Y.-Q. Real-Time Vehicle and Distance Detection Based on Improved Yolo v5 Network. In Proceedings of the 2021 3rd World Symposium on Artificial Intelligence (WSAI), Guangzhou, China, 18–20 June 2021; pp. 24–28. [Google Scholar] [CrossRef]
- Ting, L.; Baijun, Z.; Yongsheng, Z.; Shun, Y. Ship Detection Algorithm based on Improved YOLO V5. In Proceedings of the 2021 6th International Conference on Automation, Control and Robotics Engineering (CACRE), Dalian, China, 15–17 July 2021; pp. 483–487. [Google Scholar] [CrossRef]
- Ishak, S.A.; Hashim, H. Low Carbon Measures for Cement Plant—A Review. J. Clean. Prod. 2015, 103, 260–274. [Google Scholar] [CrossRef]
- Worrell, E.; Price, L.; Martin, N.; Hendriks, C.; Meida, L. Carbon Dioxide Emissions from the Global Cement Industry. Annu. Rev. Energy Environ. 2001, 26, 303–329. [Google Scholar] [CrossRef]
- Xu, J.-H.; Fleiter, T.; Eichhammer, W.; Fan, Y. Energy consumption and co2 emissions in China’s cement industry: A perspective from LMDI decomposition analysis. Energy Policy 2012, 50, 821–832. [Google Scholar] [CrossRef]
- Zhang, S.; Worrell, E.; Crijns-Graus, W. Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry. Appl. Energy 2015, 147, 192–213. [Google Scholar] [CrossRef]
- Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. GhostNet: More Features from Cheap Operations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Zhang, Y.-F.; Ren, W.; Zhang, Z.; Jia, Z.; Wang, L.; Tan, T. Focal and Efficient IOU Loss for Accurate Bounding Box Regression. Neurocomputing 2022, 506, 146–157. [Google Scholar] [CrossRef]
- Ouyang, D.; He, S.; Zhang, G.; Luo, M.; Guo, H.; Zhan, J.; Huang, Z. Efficient Multi-Scale Attention Module with Cross-Spatial Learning. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–9 June 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Yu, J.; Jiang, Y.; Wang, Z.; Cao, Z.; Huang, T. UnitBox: An Advanced Object Detection Network. In Proceedings of the 24th ACM International Conference on Multimedia, MM ’16, Amsterdam, The Netherlands, 15–19 October 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 516–520. [Google Scholar] [CrossRef]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection over Union: A Metric and a Loss for Bounding Box Regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 658–666. [Google Scholar]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12993–13000. [Google Scholar]
- Gevorgyan, Z. SIoU Loss: More Powerful Learning for Bounding Box Regression. arXiv 2022, arXiv:2205.12740. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, C.; Zhang, S. Inner-IoU: More Effective Intersection over Union Loss with Auxiliary Bounding Box. arXiv 2023, arXiv:2311.02877. [Google Scholar] [CrossRef]
Prediction | Positive | Negative | |
---|---|---|---|
Ground Truth | |||
Positive | True Positive (TP) | False Negative (FN) | |
Negative | False Positive (FP) | True Negative (TN) |
P (%) | R (%) | [email protected] (%) | [email protected]:.95 (%) |
---|---|---|---|
96.8 | 93.7 | 96.9 | 68.8 |
Model | P (%) | R (%) | [email protected] (%) | [email protected]:.95 (%) |
---|---|---|---|---|
Faster-RCNN | 94.0 | 76.3 | 94.1 | 68.2 |
Mask-RCNN | 89.2 | 65.9 | 89.2 | 52.3 |
SSD | 91.4 | 80.2 | 92.2 | 64.8 |
YOLOv6 | 91.5 | 88.2 | 90.1 | 61.8 |
YOLOv7 | 90.6 | 90.1 | 91.2 | 62.0 |
YOLOv8 | 92.2 | 90.2 | 88.2 | 61.2 |
Ours | 96.8 | 93.7 | 96.9 | 68.8 |
Method | P (%) | R (%) | [email protected](%) | [email protected]:95(%) | |||
---|---|---|---|---|---|---|---|
YOLOv5s | Ghost | EMA | Inner-IoU | ||||
√ | 92.0 | 92.1 | 94.3 | 61.1 | |||
√ | √ | 91.6 | 93.1 | 94.8 | 62.4 | ||
√ | √ | √ | 94.6 | 94.8 | 96.1 | 66.2 | |
√ | √ | √ | √ | 96.8 | 93.7 | 96.9 | 68.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Ma, C.; Lv, Y.; Liao, R.; Yang, J.; Liu, J. An Approach to Large-Scale Cement Plant Detection Using Multisource Remote Sensing Imagery. Remote Sens. 2024, 16, 729. https://doi.org/10.3390/rs16040729
Li T, Ma C, Lv Y, Liao R, Yang J, Liu J. An Approach to Large-Scale Cement Plant Detection Using Multisource Remote Sensing Imagery. Remote Sensing. 2024; 16(4):729. https://doi.org/10.3390/rs16040729
Chicago/Turabian StyleLi, Tianzhu, Caihong Ma, Yongze Lv, Ruilin Liao, Jin Yang, and Jianbo Liu. 2024. "An Approach to Large-Scale Cement Plant Detection Using Multisource Remote Sensing Imagery" Remote Sensing 16, no. 4: 729. https://doi.org/10.3390/rs16040729
APA StyleLi, T., Ma, C., Lv, Y., Liao, R., Yang, J., & Liu, J. (2024). An Approach to Large-Scale Cement Plant Detection Using Multisource Remote Sensing Imagery. Remote Sensing, 16(4), 729. https://doi.org/10.3390/rs16040729