Examining the Effects of Soil and Water Conservation Measures on Patterns and Magnitudes of Vegetation Cover Change in a Subtropical Region Using Time Series Landsat Imagery
<p>The location of study area—Changting County, Fujian Province, China ((<b>a</b>)—County boundaries of Fujian Province; (<b>b</b>)—elevation map of Changting County, overlaid by the conservation area).</p> "> Figure 2
<p>The framework of the study (note: NDVI—normalized difference vegetation index; FVC—fractional vegetation cover; RF—random forest).</p> "> Figure 3
<p>Conservation dates and measures implemented in Changting County overlaid on fractional vegetation cover (FVC) in 2021 ((<b>a</b>)—the years of conservation measures implemented between 2010 and 2021; (<b>b</b>)—the practiced conservation measures).</p> "> Figure 4
<p>Typical shapes of vegetation change patterns.</p> "> Figure 5
<p>Land cover distribution and change detection results ((<b>a</b>)—land cover classification based on Landsat TM image in 2010; (<b>b</b>)—land cover classification based on Sentinel-2 image in 2021; (<b>c</b>)—forest changes from 2010 to 2021; here, ‘increase’ means the conversions from other land cover types to this type, and ‘loss’ means the conversion from forest to other land cover types).</p> "> Figure 6
<p>The fractional vegetation cover (FVC) change trends from 1986 to 2021 in conservation zones and non-conservation zones ((<b>a</b>)—average annual FVC; (<b>b</b>)—FVC trends in different conservation measures and different situations without conservation; (<b>c</b>)—a comparison of FVC curves of different forest types between conservation and non-conservation zones).</p> "> Figure 7
<p>The change patterns and change magnitudes in fractional vegetation cover (FVC) from 1986 to 2021 in Changting County, Fujian Province ((<b>a</b>)—change patterns; (<b>b</b>)—change magnitudes).</p> "> Figure 8
<p>Boxplot of fractional vegetation cover change magnitudes under different conservation measures.</p> "> Figure 9
<p>The change magnitudes of fractional vegetation cover (FVC) of major forest types under different conservation measures.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Datasets and Methods
3.1. Data Collection and Preprocessing
3.1.1. Collection of Field Survey Data for Land Cover Mapping
3.1.2. Collection of Data Related to Water and Soil Conservation Measures
3.1.3. Collection and Preprocessing of Remotely Sensed Data
3.1.4. Ancillary Data
3.2. Methods
3.2.1. Land Cover Classification and Change Detection
3.2.2. Extraction of Annual Fractional Vegetation Cover (FVC) from the Time Series Landsat NDVI Images
3.2.3. Patterns and Magnitudes of FVC Change
3.2.4. Effects of Implementing Conservation Measures on Land Cover Changes
3.2.5. Effects of Implementing Conservation Measures on FVC Changes
4. Results
4.1. Analysis of Land Cover Classification and Change Detection Results
4.2. FVC Change Trends over Time
4.3. Effects of the Conservation Measures on Land Cover Changes
4.4. Effects of the Conservation Measures on FVC Changes
4.4.1. Comparison of FVC Change Patterns and Magnitudes at Spatial Scales
4.4.2. Effects of Different Conservation Measures on FVC Change Patterns and Magnitudes
4.5. Effects of Different Conservation Measures on FVC Change Patterns and Magnitudes of Major Forest Types
4.5.1. FVC Change Patterns of Major Forest Types under Different Conservation Measures
4.5.2. FVC Change Magnitudes of Major Forest Types under Different Conservation Measures
5. Discussion
5.1. Importance of Improving Vegetation Structure and Composition in Reducing Soil Erosion Problems
5.2. Effects of Different Conservation Measures on Improving Forest Coverage
5.3. Limitations of the Research and Perspective for Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montgomery, D.R. Soil Erosion and Agricultural Sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef] [PubMed]
- Gilani, H.; Ahmad, A.; Younes, I.; Abbas, S. Impact Assessment of Land Cover and Land Use Changes on Soil Erosion Changes (2005–2015) in Pakistan. Land Degrad. Dev. 2022, 33, 204–217. [Google Scholar] [CrossRef]
- Crosson, P. Soil Erosion Estimates and Costs. Science 1995, 269, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, P.; Panagos, P.; Alewell, C.; Ballabio, C.; de Oliveira Fagundes, H.; Haregeweyn, N.; Lugato, E.; Maerker, M.; Poesen, J.; Vanmaercke, M.; et al. Policy Implications of Multiple Concurrent Soil Erosion Processes in European Farmland. Nat. Sustain. 2023, 6, 103–112. [Google Scholar] [CrossRef]
- Wuepper, D.; Borrelli, P.; Finger, R. Countries and the Global Rate of Soil Erosion. Nat. Sustain. 2020, 3, 51–55. [Google Scholar] [CrossRef]
- Aneseyee, A.B.; Elias, E.; Soromessa, T.; Feyisa, G.L. Land Use/land Cover Change Effect on Soil Erosion and Sediment Delivery in the Winike Watershed, Omo Gibe Basin, Ethiopia. Sci. Total Environ. 2020, 728, 138776. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.S.B.N.; Mustafa, F.B.; Didams, G. A Systematic Review of Soil Erosion Control Practices on the Agricultural Land in Asia. Int. Soil Water Conserv. Res. 2020, 8, 103–115. [Google Scholar] [CrossRef]
- Senanayake, S.; Pradhan, B. Predicting Soil Erosion Susceptibility Associated with Climate Change Scenarios in the Central Highlands of Sri Lanka. J. Environ. Manag. 2022, 308, 114589. [Google Scholar] [CrossRef]
- Belachew, A.; Mekuria, W.; Nachimuthu, K. Factors Influencing Adoption of Soil and Water Conservation Practices in the Northwest Ethiopian Highlands. Int. Soil Water Conserv. Res. 2020, 8, 80–89. [Google Scholar] [CrossRef]
- Du, X.; Jian, J.; Du, C.; Stewart, R. Conservation Management Decreases Surface Runoff and Soil Erosion. Int. Soil Water Conserv. Res. 2021, 10, 188–196. [Google Scholar] [CrossRef]
- Hua, F.; Bruijnzeel, L.A.; Meli, P.; Martin, P.A.; Zhang, J.; Nakagawa, S.; Miao, X.; Wang, W.; McEvoy, C.; Peña-Arancibia, J.L.; et al. The Biodiversity and Ecosystem Service Contributions and Trade-Offs of Forest Restoration Approaches. Science 2022, 376, 839–844. [Google Scholar] [CrossRef]
- Yang, X.; Jia, Z.; Ci, L. Assessing Effects of Afforestation Projects in China. Nature 2010, 466, 315. [Google Scholar] [CrossRef]
- Gong, W.; Liu, T.; Duan, X.; Sun, Y.; Zhang, Y.; Tong, X.; Qiu, Z. Estimating the Soil Erosion Response to Land-Use Land-Cover Change Using GIS-Based RUSLE and Remote Sensing: A Case Study of Miyun Reservoir, North China. Water 2022, 14, 742. [Google Scholar] [CrossRef]
- Guo, X.; Shao, Q.; Luo, Y. Effects of Different Management Measures on Soil Conservation and the Influence of Environmental Conditions: A Case Study Involving UAV Remote Sensing on the Loess Plateau. Remote Sens. Ecol. Conserv. 2022, 8, 683–697. [Google Scholar] [CrossRef]
- Zhang, X.C.; Nearing, M.A.; Risse, L.M.; McGregor, K.C. Evaluation of WEPP Runoff and Soil Loss Predictions Using Natural Runoff Plot Data. Trans. ASAE 1996, 39, 855–863. [Google Scholar] [CrossRef]
- Mathys, N.; Brochot, S.; Meunier, M.; Richard, D. Erosion Quantification in the Small Marly Experimental Catchments of Draix (Alpes de Haute Provence, France). Calibration of the ETC Rainfall–Runoff–Erosion Model. Catena 2003, 50, 527–548. [Google Scholar] [CrossRef]
- Lu, D.; Li, G.; Valladares, G.; Batistella, M. Mapping Soil Erosion Risk in Rondônia, Brazilian Amazonia: Using RUSLE, Remote Sensing and GIS. Land Degrad. Dev. 2004, 15, 499–512. [Google Scholar] [CrossRef]
- Gao, G.; Liang, Y.; Liu, J.; Dunkerley, D.; Fu, B. A Modified RUSLE Model to Simulate Soil Erosion under Different Ecological Restoration Types in the Loess Hilly Area. Int. Soil Water Conserv. Res. 2023. [Google Scholar] [CrossRef]
- Gao, J.; Shi, C.; Yang, J.; Yue, H.; Liu, Y.; Chen, B. Analysis of Spatiotemporal Heterogeneity and Influencing Factors of Soil Erosion in a Typical Erosion Zone of the Southern Red Soil Region, China. Ecol. Indic. 2023, 154, 110590. [Google Scholar] [CrossRef]
- Cheng, Z.; Lu, D.; Li, G.; Huang, J.; Sinha, N.; Zhi, J.; Li, S. A Random Forest–Based Approach to Map Soil Erosion Risk Distribution in Hickory Plantations in Western Zhejiang Province, China. Remote Sens. 2018, 10, 1899. [Google Scholar] [CrossRef]
- Huang, J.; Lu, D.; Li, J.; Wu, J.; Chen, S.; Zhao, W.; Ge, H.; Huang, X.; Yan, X. Integration of Remote Sensing and GIS for Evaluating Soil Erosion Risk in Northwestern Zhejiang, China. Photogramm. Eng. Rem. Sens. 2012, 78, 935–946. [Google Scholar] [CrossRef]
- Zhou, P.; Luukkanen, O.; Tokola, T.; Nieminen, J. Effect of Vegetation Cover on Soil Erosion in a Mountainous Watershed. Catena 2008, 75, 319–325. [Google Scholar] [CrossRef]
- Shi, P.; Li, P.; Li, Z.; Sun, J.; Wang, D.; Min, Z. Effects of Grass Vegetation Coverage and Position on Runoff and Sediment Yields on the Slope of Loess Plateau, China. Agric. Water Manag. 2022, 259, 107231. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, K.; Liu, C.; Cen, Y.; Xia, J. Effects of Different Vegetation Components on Soil Erosion and Response to Rainfall Intensity under Simulated Rainfall. Catena 2024, 235, 107652. [Google Scholar] [CrossRef]
- Lu, D.; Batistella, M.; Moran, E.; Hetrick, S.; Alves, D.; Brondizio, E. Fractional Forest Cover Mapping in the Brazilian Amazon with a Combination of MODIS and TM images. Int. J. Remote Sens. 2011, 32, 7131–7149. [Google Scholar] [CrossRef]
- Li, D.; Lu, D.; Zhao, Y.; Zhou, M.; Chen, G. Spatial Patterns of Vegetation Change in Giant Panda Habitat Based on MODIS Time-Series Observations and Local Indicators of Spatial Association. Ecol. Indic. 2021, 124, 107418. [Google Scholar] [CrossRef]
- Li, D.; Lu, D.; Li, N.; Wu, M.; Shao, X. Quantifying Annual Land-Cover Change and Vegetation Greenness Variation in A Coastal Ecosystem Using Dense Time-Series Landsat Data. GISci. Remote Sens. 2019, 56, 769–793. [Google Scholar] [CrossRef]
- Yu, X.; Lu, D.; Jiang, X.; Li, G.; Chen, Y.; Li, D.; Chen, E. Examining the Roles of Spectral, Spatial, and Topographic Features in Improving Land-Cover and Forest Classifications in a Subtropical Region. Remote Sens. 2020, 12, 2907. [Google Scholar] [CrossRef]
- Zhu, Z. Change Detection Using Landsat Time Series: A Review of Frequencies, Preprocessing, Algorithms, and Applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, J.; Yang, Z.; Aljaddani, A.; Cohen, W.; Qiu, S.; Zhou, C. Continuous Monitoring of Land Disturbance Based on Landsat Time Series. Remote Sens. Environ. 2019, 238, 111116. [Google Scholar] [CrossRef]
- Legleiter, C.J.; King, T.V.; Carpenter, K.D.; Hall, N.C.; Mumford, A.C.; Slonecker, T.; Graham, J.L.; Stengel, V.G.; Simon, N.; Rosen, B.H. Spectral Mixture Analysis for Surveillance of Harmful Algal Blooms (SMASH): A Field-, Laboratory-, and Satellite-Based Approach to Identifying Cyanobacteria Genera from Remotely Sensed Data. Remote Sens. Environ. 2022, 279, 113089. [Google Scholar] [CrossRef]
- Song, D.; Wang, Z.; He, T.; Wang, H.; Liang, S. Estimation and Validation of 30 M Fractional Vegetation Cover over China through Integrated Use of Landsat 8 and Gaofen 2 Data. Sci. Remote Sens. 2022, 6, 100058. [Google Scholar] [CrossRef]
- Nill, L.; Grünberg, I.; Ullmann, T.; Gessner, M.; Boike, J.; Hostert, P. Arctic Shrub Expansion Revealed by Landsat-Derived Multitemporal Vegetation Cover Fractions in the Western Canadian Arctic. Remote Sens. Environ. 2022, 281, 113228. [Google Scholar] [CrossRef]
- Lu, D.; Moran, E.; Batistella, M. Linear Mixture Model Applied to Amazonian Vegetation Classification. Remote Sens. Environ. 2003, 87, 456–469. [Google Scholar] [CrossRef]
- Lu, D.; Batistella, M.; Mausel, P.; Moran, E. Mapping and Monitoring Land Degradation Risks in the Western Brazilian Amazon Using Multitemporal Landsat TM/ETM+ Images. Land Degrad. Dev. 2007, 18, 41–54. [Google Scholar] [CrossRef]
- Tang, C.; Liu, Y.; Li, Z.; Guo, L.; Xu, A.; Zhao, J. Effectiveness of Vegetation Cover Pattern on Regulating Soil Erosion and Runoff Generation in Red Soil Environment, Southern China. Ecol. Indic. 2021, 129, 107956. [Google Scholar] [CrossRef]
- Kijowska-Strugała, M.; Bucała-Hrabia, A.; Demczuk, P. Long-Term Impact of Land Use Changes on Soil Erosion in an Agricultural Catchment (in the Western Polish Carpathians). Land Degrad. Dev. 2018, 29, 1871–1884. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y.; Cui, Z.; Liu, Y.; Shi, Z.; Yin, R.; Kardol, P. Trade-off between Vegetation Type, Soil Erosion Control and Surface Water in Global Semi-Arid Regions: A Meta-Analysis. J. Appl. Ecol. 2020, 57, 875–885. [Google Scholar] [CrossRef]
- Cao, S.; Zhong, B.; Yue, H.; Zeng, H.; Zeng, J. Development and Testing of a Sustainable Environmental Restoration Policy on Eradicating the Poverty Trap in China’s Changting County. Proc. Natl. Acad. Sci. USA 2009, 106, 10712–10716. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yang, Y.; Zhang, Y. Economic Development, Rural Livelihoods, and Ecological Restoration: Evidence from China. Ambio J. Hum. Environ. 2011, 40, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhong, B.; Xie, X. Soil Erosion and Conservation in Red-Soil Hill Area; China Agricultural Press: Beijing, China, 2005. [Google Scholar]
- Zeng, J.; Zhong, B. Historical Changes in Strategies to Control Soil and Water Erosion in Changting County. Fujian Soil Water Conserv. 2002, 14, 37–39. [Google Scholar]
- Chen, Z. Desertification Induced by Water Erosion and Its Combat of Hetian Town in Changding County, Fujian province. Prog. Geogr. 1998, 64, 834–841. [Google Scholar]
- Wang, C.; Yang, Y.; Zhang, Y. Rural Household Livelihood Change, Fuel Wood Substitution, and Hilly Ecosystem Restoration: Evidence from China. Renew. Sustain. Energy Rev. 2012, 16, 2475–2482. [Google Scholar] [CrossRef]
- Wang, C.; Yang, Y.; Zhang, Y. Cost-Effective Targeting Soil and Water Conservation: A Case Study of Changting County in Southeast China. Land Degrad. Dev. 2015, 27, 387–394. [Google Scholar] [CrossRef]
- Zeng, C.; Zheng, D. Research on the Ecological Environment of Typical Areas of Fujian; China Environmental Science Press (Chinese): Bejing, China, 2006. [Google Scholar]
- Beijing Review. The Changting Experience: China’s Soil Erosion Prevention and Control. 8 November 2023. Available online: http://mp42.china.com.cn/video_tide/2023/11/7/20231171699356192321_376.mp4 (accessed on 15 December 2023).
- Maierspergera, T.K.; Scaramuzza, P.; Leigh, L.; Shrestha, S.; Gallo, K.; Jenkerson, C.; Dwyer, J. Characterizing LEDAPS Surface Reflectance Products by Comparisons with AERONET, Field Spectrometer, and MODIS Data. Remote Sens. Environ. 2013, 136, 1–13. [Google Scholar] [CrossRef]
- Skakun, S.; Vermote, E.; Roger, J.-C.; Justice, C.; Masek, J. Validation of the LaSRC Cloud Detection Algorithm for Landsat 8 Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2439–2446. [Google Scholar] [CrossRef]
- Poortinga, A.; Tenneson, K.; Shapiro, A.; Nguyen, Q.; San Aung, K.; Chishtie, F.; Saah, D. Mapping Plantations in Myanmar by Fusing Landsat-8, Sentinel-2 and Sentinel-1 Data along with Systematic Error Quantification. Remote Sens. 2019, 11, 831. [Google Scholar] [CrossRef]
- Jiang, X.; Li, G.; Lu, D.; Erxue, C.; Wei, X. Stratification-Based Forest Aboveground Biomass Estimation in a Subtropical Region Using Airborne Lidar Data. Remote Sens. 2020, 12, 1101. [Google Scholar] [CrossRef]
- Choudhury, B.J.; Ahmed, N.U.; Idso, S.B.; Reginato, R.J.; Daughtry, C.S.T. Relations between Evaporation Coefficients and Vegetation Indices Studied by Model Simulations. Remote Sens. Environ. 1994, 50, 1–17. [Google Scholar] [CrossRef]
- Montandon, L.; Small, E. The Impact of Soil Reflectance on the Quantification of the Green Vegetation Fraction from NDVI. Remote Sens. Environ. 2008, 112, 1835–1845. [Google Scholar] [CrossRef]
- Jiapaer, G.; Chen, X.; Bao, A. A Comparison of Methods for Estimating Fractional Vegetation Cover in Arid Regions. Agric. For. Meteorol. 2011, 151, 1698–1710. [Google Scholar] [CrossRef]
- Moisen, G.; Meyer, M.; Schroeder, T.; Liao, X.; Schleeweis, K.; Freeman, E.; Toney, J. Shape Selection in Landsat Time Series: A Tool for Monitoring Forest Dynamics. Glob. Chang. Biol. 2016, 22, 3518–3528. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.G.; Xiao, W.F.; Zeng, L.X.; Huang, Z.L.; Lei, J.P.; Li, M.H. The Link between Litterfall, Substrate Quality, Decomposition Rate, and Soil Nutrient Supply in 30-Year-Old Pinus Massoniana Forests in the Three Gorges Reservoir Area, China. Soil Sci. 2013, 178, 442–451. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, C.; Yu, J.; Zhai, L.; Zhang, H.; Yang, K.; Hou, X. Ecological Vulnerability in the Red Soil Erosion Area of Changting under Continuous Ecological Restoration: Spatiotemporal Dynamic Evolution and Prediction. Forests 2022, 13, 2136. [Google Scholar] [CrossRef]
- Guo, T. Environmental and Economic Analysis and Future Strategic Strategies in Changting County, Fujian Province—Based on the History of Soil and Water Loss Control. Contemp. Econ. 2011, 24, 102–105. [Google Scholar]
- Chen, Z.; Yue, H. Analysis of Microclimate Effects after Implementing Soil and Water Conservation Measures: Taking the Hetian Area of Changting as an Example. Subtrop. Soil Water Conserv. 2005, 1, 17–23. [Google Scholar]
- Berendse, F.; van Ruijven, J.; Jongejans, E.; Keesstra, S. Loss of Plant Species Diversity Reduces Soil Erosion Resistance. Ecosystems 2015, 18, 881–888. [Google Scholar] [CrossRef]
- Zhao, G.; Mu, X.; Wen, Z.; Wang, F.; Gap, P. Soil Erosion, Conservation, and Eco-Environment Changes in the Loess Plateau of China. Land Degrad. Dev. 2013, 24, 499–510. [Google Scholar] [CrossRef]
- Bai, Y.; Zha, X.; Chen, S. Effects of the Vegetation Restoration Years on Soil Microbial Community Composition and Biomass in Degraded Lands in Changting County, China. J. For. Res. 2020, 31, 1295–1308. [Google Scholar] [CrossRef]
- Xu, H.; He, H.; Huang, S. Analysis of Fractional Vegetation Cover Change and Its Impact on Thermal Environment in the Hetian Basinal Area of County Changting, Fujian Province, China. Acta Ecol. Sin. 2013, 33, 2954–2963. [Google Scholar]
- Altieri, M.; Nicholls, C. Biodiversity and Pest Management in Agroecosystems; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Xie, J.; Guo, J.; Yang, Z.; Huang, Z.; Chen, G.; Yang, Y. Rapid Accumulation of Carbon on Severely Eroded Red Soils through Afforestation in Subtropical China. For. Ecol. Manag. 2013, 300, 53–59. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, L.; Cheng, Y.; Ju, W.; Chen, H.Y.H.; Ruan, H. Afforestation Promotes the Enhancement of Forest LAI and NPP in China. For. Ecol. Manag. 2020, 462, 117990. [Google Scholar] [CrossRef]
- Ghazoul, J.; Chazdon, R. Degradation and Recovery in Changing Forest Landscapes: A Multiscale Conceptual Framework. Annu. Rev. Environ. Resour. 2016, 42, 161–188. [Google Scholar] [CrossRef]
- Gong, C.; Tan, Q.; Liu, G.; Xu, M. Impacts of Mixed Forests on Controlling Soil Erosion in China. Catena 2022, 213, 106147. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, X.; Wang, X. Monitoring Vegetation Restoration in Soil and Water Loss Governance Area in Changting County Based on Interannual Landsat Time-Series Dataset. J. Yangtze River Sci. Res. Inst. 2020, 37, 43–49. [Google Scholar]
- Chen, J.; Xiao, H.; Li, Z.; Liu, C.; Ning, K.; Tang, C. How Effective Are Soil and Water Conservation Measures (SWCMs) in Reducing Soil and Water Losses in the Red Soil Hilly Region of China? A Meta-Analysis of Field Plot Data. Sci. Total Environ. 2020, 735, 139517. [Google Scholar] [CrossRef]
Conservation Measures | Descriptions | Area (ha) |
---|---|---|
Restoring low-function forests | Implementing forest management, including replacement and transformation, replanting, and tending, to improve the forest stand structure, increase the production potential of forestlands, and to enhance forest quality and benefits. | 1347 |
Closing hillsides for afforestation | Taking advantage of the regeneration capacity of forests and closing mountainous areas to promote forest regeneration and growth by prohibiting interference from external factors, such as people and livestock on forestlands. | 24,711 |
Planting trees and grass | Planting suitable trees and grass to increase vegetation coverage, prevent soil erosion, and improve land productivity. | 4625 |
Planting fruit trees | Planting fruit trees of high cash value for both ecological and economic benefits. | 26 |
Constructing terraces on slope land | Transforming slope land that is prone to water, soil, and fertilizer losses into terraces for convenient farming. | 131 |
Multiple measures | Continuously implementing different conservation measures after the failure of the previous efforts. | 1457 |
Barren land | Without vegetation cover, experienced soil erosion problems without implementing any conservation measures. | 278,262 |
Contrast land | With little vegetation cover, experienced soil erosion problems without implementing any conservation measures. | |
Non-erosion | High vegetation cover without soil erosion problems. |
Land Cover Types | Reference Data | UA (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Masson Pine | Chinese Fir | Broad-Leaf | Bamboo | Farmland | Bare Land | ISA | Water | Subtotal | |||
Classification | Masson pine | 27 | 6 | 3 | 0 | 0 | 0 | 0 | 0 | 36 | 75.0 |
Chinese fir | 5 | 24 | 3 | 0 | 0 | 0 | 0 | 0 | 32 | 75.0 | |
Broadleaf | 2 | 2 | 24 | 3 | 0 | 0 | 0 | 0 | 31 | 77.4 | |
Bamboo | 0 | 0 | 0 | 28 | 0 | 1 | 0 | 0 | 29 | 96.6 | |
Farmland | 0 | 0 | 0 | 0 | 28 | 2 | 1 | 2 | 33 | 84.9 | |
Bare land | 0 | 0 | 0 | 1 | 2 | 26 | 0 | 0 | 28 | 92.7 | |
ISA | 0 | 0 | 0 | 0 | 1 | 1 | 30 | 0 | 32 | 93.8 | |
Water | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 28 | 29 | 96.6 | |
Subtotal | 34 | 32 | 30 | 31 | 32 | 30 | 31 | 30 | 250 | ||
PA (%) | 79.4 | 75.0 | 80.0 | 90.3 | 87.5 | 86.7 | 96.8 | 93.3 | |||
Overall accuracy: 86.0%; kappa: 0.84 |
Land Cover Types | Statistics in 2010 | Statistics in 2021 | ||||
---|---|---|---|---|---|---|
Changting County | Conservation Zones | Non-Conservation Zones | Changting County | Conservation Zones | Non-Conservation Zones | |
Area (ha) (%) | Area (ha) (%) | Area (ha) (%) | Area (ha) (%) | Area (ha) (%) | Area (ha) (%) | |
Masson pine | 136,101 (43.8) | 14,835 (45.9) | 121,266 (43.6) | 145,847 (47.0) | 21,430 (66.4) | 124,416 (44.7) |
Chinese fir | 18,636 (6.0) | 327 (1.0) | 18,309 (6.6) | 27,118 (8.7) | 960 (3.0) | 26,158 (9.4) |
Broadleaf forest | 77,519 (25.0) | 4093 (12.7) | 73,426 (26.4) | 80,607 (26.0) | 2796 (8.7) | 77,811 (28.0) |
Bamboo forest | 7271 (2.3) | 413 (1.3) | 6859 (2.5) | 7229 (2.3) | 768 (2.4) | 6461 (2.3) |
Farmland | 2408 (0.8) | 571 (1.8) | 1837 (0.7) | 9887 (3.2) | 788 (2.4) | 9099 (3.3) |
Bare land | 48,969 (15.8) | 9758 (30.2) | 39,211 (14.1) | 16,757 (5.4) | 2484 (7.7) | 14,274 (5.1) |
Water | 3061 (1.0) | 327 (1.0) | 2734 (1.0) | 2558 (0.8) | 206 (0.6) | 2352 (0.9) |
Impervious surface area | 16,595 (5.3) | 1974 (6.1) | 14,621 (5.3) | 20,557 (6.6) | 2866 (8.9) | 17,691 (6.4) |
Total | 310,560 (100) | 32,298 (100) | 278,262 (100) | 310,560 (100) | 32,298 (100) | 278,262 (100) |
Forest Change Category | Statistical Units | ||
---|---|---|---|
Changting County Area (ha) (%) | Conservation Zones Area (ha) (%) | Non-Conservation Zones Area (ha) (%) | |
Increased Masson pine | 58,603 (18.9) | 9444 (29.2) | 49,614 (17.8) |
Increased Chinese fir | 22,919 (7.4) | 924 (2.9) | 21,788 (7.8) |
Increased broadleaf forest | 46,273 (14.9) | 1928 (6.0) | 43,882 (15.8) |
Increased bamboo forest | 6584 (2.1) | 743 (2.3) | 5843 (2.1) |
Forest loss | 9037 (2.9) | 1279 (4.0) | 7875 (2.8) |
Unchanged forests | 126,398 (40.7) | 12,913 (40.0) | 113,698 (40.9) |
Other changes | 40,745 (13.1) | 5068 (15.7) | 35,562 (12.8) |
Total | 310,560 (100.0) | 32,298 (100.0) | 278,261 (100.0) |
Land Cover Types | Different Conservation Measures | |||||
---|---|---|---|---|---|---|
Restoring Low-Function Forest | Closing Hillsides | Planting Trees and Grass | Multiple Measures | Non-Conservation | ||
Classification results for 2021 | Masson pine | 957 (71.1) | 15,730 (63.7) | 3451 (74.6) | 1229 (84.4) | 124,416 (44.7) |
Chinese fir | 29 (2.2) | 845 (3.4) | 73 (1.6) | 12 (0.8) | 26,158 (9.4) | |
Broadleaf forest | 100 (7.4) | 2365 (9.6) | 285 (6.2) | 42 (2.9) | 77,811 (28.0) | |
Bamboo forest | 44 (3.3) | 574 (2.3) | 122 (2.6) | 19 (1.3) | 6461 (2.3) | |
Farmland | 31 (2.3) | 641 (2.6) | 98 (2.1) | 15 (1.0) | 9099 (3.3) | |
Bare land | 81 (6.0) | 1959 (7.9) | 316 (6.8) | 72 (4.9) | 14,274 (5.1) | |
Water | 10 (0.7) | 166 (0.7) | 15 (0.3) | 8 (0.5) | 2352 (0.8) | |
Impervious surface area | 94 (7.0) | 2431 (9.8) | 263 (5.7) | 61 (4.2) | 17,691 (6.4) | |
Total | 1347 (100.0) | 24,711 (100.0) | 4625 (100.0) | 1457 (100.0) | 278,262 (100.0) | |
Forest Change | Restoring Low-Function Forest | Closing Hillsides | Planting Trees and Grass | Multiple Measures | Non-Conservation | |
Change detection results between 2010 and 2021 | Increased Masson pine | 323 (24.0) | 7066 (28.6) | 1476 (31.9) | 542 (37.2) | 49,614 (17.8) |
Increased Chinese fir | 29 (2.2) | 813 (3.3) | 72 (1.6) | 12 (0.8) | 21,788 (7.8) | |
Increased broadleaf forest | 88 (6.5) | 1564 (6.3) | 235 (5.1) | 35 (2.4) | 43,882 (15.8) | |
Increased bamboo forests | 43 (3.2) | 551 (2.2) | 119 (2.6) | 19 (1.3) | 5843 (2.1) | |
Forest loss | 45 (3.3) | 1021 (4.1) | 164 (3.6) | 39 (2.7) | 7875 (2.8) | |
Unchanged forest | 648 (48.1) | 9532 (38.6) | 2033 (44.0) | 696 (47.7) | 113,698 (40.9) | |
Other changes | 170 (12.6) | 4164 (16.9) | 526 (11.4) | 115 (7.9) | 35,562 (12.8) | |
Total | 1347 (100.0) | 24,711 (100.0) | 4625 (100.0) | 1457 (100.0) | 278,262 (100.0) |
FVC Change Patterns | Changting County | Conservation Zones | Non-Conservation Zones | |
---|---|---|---|---|
Change patterns | Flat | 54,969 (17.7) | 1442 (4.5) | 53,527 (19.2) |
Decreasing | 7950 (2.6) | 298 (0.9) | 7652 (2.7) | |
Increasing | 152,205 (49.0) | 12,772 (39.5) | 139,433 (50.1) | |
Vee | 37,702 (12.1) | 10,068 (31.2) | 27,634 (9.9) | |
Inverse vee | 12,764 (4.1) | 5024 (15.6) | 7740 (2.8) | |
Jump | 44,969 (14.5) | 2694 (8.3) | 42,275 (15.2) | |
Change intensities | Non-change | 59,721 (19.2) | 1920 (5.9) | 57,801 (20.8) |
Light | 39,958 (12.9) | 1098 (3.4) | 38,860 (14.0) | |
Moderate | 81,578 (26.3) | 4627 (14.3) | 76,951 (27.7) | |
Severe | 68,139 (21.9) | 8275 (25.6) | 59,864 (21.5) | |
Extreme | 61,164 (19.7) | 16,378 (50.7) | 44,786 (16.1) | |
Total | 310,560 (100.0) | 32,298 (100.0) | 278,262 (100.0) |
Conservation Measures | Patterns of FVC Change | ||||||
---|---|---|---|---|---|---|---|
Flat | Decreasing | Increasing | Vee | Inverse Vee | Jump | Total | |
Restoring low-function forests | 75 (5.6) | 12 (0.9) | 586 (43.5) | 378 (28.1) | 216 (16.0) | 80 (5.9) | 1347 (100.0) |
Closing hillsides | 1196 (4.8) | 262 (1.1) | 10,164 (41.1) | 7006 (28.4) | 3778 (15.3) | 2306 (9.3) | 24,711 (100) |
Planting trees and grass | 153 (3.3) | 19 (0.4) | 1591 (34.4) | 1885 (40.8) | 730 (15.8) | 247 (5.3) | 4625 (100.0) |
Planting fruit trees | 2 (6.9) | 0.4 (1.5) | 7 (25.6) | 11 (42.7) | 4 (14.5) | 2 (8.6) | 26 (100.0) |
Constructing terraces | 4 (2.8) | 0.4 (0.3) | 19 (14.7) | 83 (63.0) | 23 (17.2) | 3 (2.0) | 131 (100.0) |
Multiple measures | 12 (0.8) | 5 (0.3) | 405 (27.8) | 705 (48.4) | 273 (18.8) | 56 (3.9) | 1457 (100.0) |
Total conservation zones | 1442 (4.5) | 298 (0.9) | 12,772 (39.5) | 10,068 (31.2) | 5024 (15.6) | 2694 (8.3) | 32,298 (100.0) |
Non-conservation | 53,527 (19.2) | 7652 (2.7) | 139,433 (50.1) | 27,634 (9.9) | 7740 (2.8) | 42,275 (15.2) | 278,262 (100.0) |
Conservation Measures | Magnitudes of FVC Changes | ||||||
---|---|---|---|---|---|---|---|
No Change | Light | Moderate | Severe | Extreme | Total | ||
Conservation measures | Restoring low-function forests | 111 (8.2) | 27 (2.0) | 216 (16.0) | 473 (35.1) | 520 (38.6) | 1347 (100.0) |
Closing hillsides | 1579 (6.4) | 1013 (4.1) | 3932 (15.9) | 6480 (26.2) | 11,708 (47.4) | 24,712 (100.0) | |
Planting trees and grass | 204 (4.4) | 53 (1.1) | 405 (8.8) | 1034 (22.4) | 2929 (63.3) | 4625 (100.0) | |
Planting fruit trees | 5 (19.2) | 0 (0) | 1 (3.8) | 2 (7.7) | 18 (69.2) | 26 (100.0) | |
Constructing terraces | 5 (3.8) | 0 (0) | 4 (3.1) | 13 (9.9) | 110 (84.0) | 131 (100.0) | |
Multiple measures | 16 (1.1) | 4 (0.3) | 71 (4.9) | 273 (18.7) | 1093 (75.0) | 1457 (100.0) | |
Total conservation zones | 1920 (5.9) | 1098 (3.4) | 4627 (14.3) | 8275 (25.6) | 16,378 (50.7) | 32,298 (100.0) | |
Non-conservation zones | 57,801 (20.8) | 38,860 (14.0) | 76,951 (27.7) | 59,864 (21.5) | 44,786 (16.1) | 278,262 (100.0) |
Conservation Methods | Forest Types | Patterns of FVC Change | Total | |||||
---|---|---|---|---|---|---|---|---|
Flat | Decreasing | Increasing | Vee | Inverse Vee | Jump | |||
Restoring low-function forests | Masson pine | 48 (5.0) | 4 (0.4) | 471 (49.2) | 313 (32.7) | 77 (8.0) | 46 (4.8) | 958 (100.0) |
Chinese fir | 1 (2.0) | 0 (0.0) | 17 (57.5) | 9 (31.9) | 1 (4.7) | 1 (4.0) | 29 (100.0) | |
Broadleaf forest | 7 (7.2) | 0.2 (0.2) | 61 (60.7) | 23 (22.7) | 4 (4.0) | 5 (5.1) | 100 (100.0) | |
Closing hillsides | Masson pine | 661 (4.2) | 71 (0.5) | 7264 (46.1) | 5456 (34.7) | 1225 (7.8) | 1069 (6.8) | 15,746 (100.0) |
Chinese fir | 37 (4.4) | 2 (0.2) | 523 (61.8) | 194 (22.9) | 25 (2.9) | 66 (7.8) | 848 (100.0) | |
Broadleaf forest | 160 (6.8) | 15 (0.6) | 1390 (58.8) | 497 (21.0) | 75 (3.2) | 228 (9.7) | 2365 (100.0) | |
Planting trees and grass | Masson pine | 77 (2.2) | 6 (0.2) | 1316 (38.1) | 1610 (46.6) | 299 (8.7) | 146 (4.2) | 3454 (100.0) |
Chinese fir | 3 (4.2) | 0.1 (0.1) | 39 (52.9) | 23 (31.5) | 3 (4.1) | 5 (7.2) | 74 (100.0) | |
Broadleaf forest | 20 (7.0) | 0.3 (0.1) | 161 (56.5) | 72 (25.3) | 13 (4.6) | 18 (6.5) | 285 (100.0) | |
Multiple measures | Masson pine | 5 (0.4) | 2 (0.1) | 412 (33.5) | 646 (52.5) | 125 (10.2) | 41 (3.3) | 1230 (100.0) |
Chinese fir | 0 (0) | 0 (0) | 5 (44.4) | 5 (41.3) | 1 (8.0) | 1 (6.3) | 12 (100.0) | |
Broadleaf forest | 0.4 (1.0) | 0.1 (0.1) | 22 (52.3) | 15 (36.5) | 3 (7.9) | 1 (2.1) | 42 (100.0) | |
Non-conservation | Masson pine | 20,541 (16.5) | 2177 (1.7) | 65,281 (52.5) | 16,722 (13.4) | 3621 (2.9) | 16,087 (12.9) | 124,428 (100.0) |
Chinese fir | 4243 (16.2) | 228 (0.9) | 15,187 (58.1) | 2998 (11.5) | 233 (0.9) | 3270 (12.5) | 26,158 (100.0) | |
Broadleaf forest | 15,516 (19.9) | 1253 (1.6) | 41,069 (52.8) | 7073 (9.1) | 942 (1.2) | 11,960 (15.4) | 77,811 (100.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Li, G.; Wu, Q.; Li, D.; Lu, D. Examining the Effects of Soil and Water Conservation Measures on Patterns and Magnitudes of Vegetation Cover Change in a Subtropical Region Using Time Series Landsat Imagery. Remote Sens. 2024, 16, 714. https://doi.org/10.3390/rs16040714
Sun X, Li G, Wu Q, Li D, Lu D. Examining the Effects of Soil and Water Conservation Measures on Patterns and Magnitudes of Vegetation Cover Change in a Subtropical Region Using Time Series Landsat Imagery. Remote Sensing. 2024; 16(4):714. https://doi.org/10.3390/rs16040714
Chicago/Turabian StyleSun, Xiaoyu, Guiying Li, Qinquan Wu, Dengqiu Li, and Dengsheng Lu. 2024. "Examining the Effects of Soil and Water Conservation Measures on Patterns and Magnitudes of Vegetation Cover Change in a Subtropical Region Using Time Series Landsat Imagery" Remote Sensing 16, no. 4: 714. https://doi.org/10.3390/rs16040714