Evaluation of ICESat-2 Significant Wave Height Data with Buoy Observations in the Great Lakes and Application in Examination of Wave Model Predictions
<p>The locations of the regular buoys in the Great Lakes, and the trajectory of the drifting Spotter buoy in Lake Michigan during 10–18 February 2022 (zoomed in image on the left).</p> "> Figure 2
<p>The ICESat-2 ATL13 significant wave height (SWH) measurements compared with regular buoy observations on 8 example days.</p> "> Figure 3
<p>The significant wave height comparisons between ICESat-2 measurements and buoy observations. (<b>a</b>) All matched data pairs. The statistical parameters are listed in <a href="#remotesensing-16-00679-t002" class="html-table">Table 2</a>. (<b>b</b>) Matched data pairs in high wave events (SWH > 0.8 m). The statistical parameters are listed in <a href="#remotesensing-16-00679-t003" class="html-table">Table 3</a>.</p> "> Figure 4
<p>The GLWUv2 significant wave height retrospective forecast in comparison with ICESat-2 significant wave height measurements for two low wave scenarios (<b>a</b>) Lake Huron and Lake Erie on 22 January 2022, (<b>b</b>) Lake Ontario on 1 February 2022, and two high wave scenarios (<b>c</b>) Lake Huron on 23 January 2022, (<b>d</b>) Lake Huron on 27 February 2022. Dark red (invalid values) at the edge of the gray area (ice coverage) has no meaning and was removed from the comparison.</p> "> Figure 5
<p>The significant wave height comparisons between GLWUv2’s retrospective predictions and ICESat-2 measurements in winter (January and February 2022). The color gradient indicates that most of the data points gather at low wave height.</p> "> Figure 6
<p>Trajectory of the drifting Spotter buoy (red) from 10 to 18 February 2022 in Lake Michigan, as well as the locations where ICESat-2 (dark blue) took measurements on 20 February 2022. The latter is the next available ICESat-2 track following the period of Spotter buoy deployment in Lake Michigan. The locations of the meteorological observation stations are denoted as yellow stars.</p> "> Figure 7
<p>(<b>a</b>) Significant wave height prediction of GLWUv2 compared to the Spotter buoy observations during 10–18 February 2022 in Lake Michigan. (<b>b</b>) Significant wave height prediction of GLWUv2 compared to ICESat-2 measurements on 20 February 2022 in Lake Michigan.</p> "> Figure 8
<p>Wind speed forcing data for GLWUv2 (NDFD) compared to wind speed records from (<b>a</b>) the Spotter buoy, (<b>b</b>) the meteorological observation station LDTM4, (<b>c</b>) station HLNM4, (<b>d</b>) station MKGM4, (<b>e</b>) station SVNM4, and (<b>f</b>) station MLWW3 during 10–18 February 2022 in Lake Michigan. The locations of the stations are shown in <a href="#remotesensing-16-00679-f006" class="html-fig">Figure 6</a>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. ICESat-2 ATL13 Data
2.2.2. In Situ Observations
2.2.3. Wave Model Outputs
2.3. Data Comparison Methods
3. Results and Discussion
3.1. Data Quality Evaluation of ICESat-2 ATL13 SWH Data
3.2. Evaluation of the GLWUv2 SWH Outputs Using ICESat-2 Measurements
3.3. Evaluation of the GLWUv2 SWH Prediction Using Drifting Spotter Buoy Observations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SWH | Significant wave height |
GLWUv2 | The NOAA’s Great Lakes Waves-Unstructured Forecast System version 2.0 |
WW3 | WAVEWATCHIII® |
ICESat-2 | The Ice, Cloud, and Land Elevation Satellite-2 |
RMSE | Root-mean-square error |
NDBC | National Data Buoy Center |
NDFD | National Digital Forecast Database |
HWE | High wave events |
Appendix A
Buoy ID | Latitude | Longitude | Time Interval/min | Water Depth/m | Observation # | Lake | Source |
---|---|---|---|---|---|---|---|
45027 | 46.860 | −91.930 | 10 | 52 | 6 | Superior | NDBC |
45028 | 46.814 | −91.829 | 10 | 49 | 2 | Superior | NDBC |
45006 | 47.335 | −89.793 | 60 | 194.5 | 15 | Superior | NDBC |
45023 | 47.270 | −88.607 | 5 | 25 | 7 | Superior | NDBC |
45025 | 46.969 | −88.398 | 5 | 28 | 8 | Superior | NDBC |
45001 | 48.061 | −87.793 | 60 | 247 | 13 | Superior | NDBC |
45180 | 48.034 | −87.730 | 30 | 239 | 10 | Superior | NDBC |
45004 | 47.585 | −86.585 | 60 | 237.5 | 15 | Superior | NDBC |
C45136 | 48.535 | −86.953 | 60 | – | 7 | Superior | NDBC |
C45154 | 46.050 | −82.640 | 60 | – | 7 | Huron | NDBC |
C45137 | 45.545 | −81.015 | 60 | – | 3 | Huron | NDBC |
C45143 | 44.940 | −80.627 | 60 | – | 7 | Huron | NDBC |
45003 | 45.351 | −82.840 | 60 | 135 | 12 | Huron | NDBC |
45162 | 44.988 | −83.270 | 20 | 20 | 6 | Huron | NDBC |
45008 | 44.283 | −82.416 | 60 | 54.3 | 9 | Huron | NDBC |
45163 | 43.985 | −83.596 | 20 | 12.5 | 12 | Huron | NDBC |
C45149 | 43.542 | −82.075 | 60 | – | 7 | Huron | NDBC |
45209 | 43.129 | −82.391 | 10 | 14 | 2 | Huron | NDBC |
45175 | 45.825 | −84.772 | 5 | – | 12 | Michigan | NDBC |
45194 | 45.804 | −84.792 | 30 | 19.8 | 12 | Michigan | NDBC |
45014 | 44.795 | −87.759 | 30 | 13 | 5 | Michigan | NDBC |
45013 | 43.100 | −87.850 | 30 | 20 | 8 | Michigan | NDBC |
45199 | 42.703 | −87.649 | 60 | 0.5 | 5 | Michigan | NDBC |
45187 | 42.491 | −87.779 | 10 | – | 8 | Michigan | NDBC |
45186 | 42.368 | −87.795 | 10 | – | 9 | Michigan | NDBC |
45174 | 42.135 | −87.655 | 10 | – | 9 | Michigan | NDBC |
45198 | 41.892 | −87.563 | 10 | 9 | 8 | Michigan | NDBC |
45170 | 41.755 | −86.968 | 10 | 19 | 10 | Michigan | NDBC |
45026 | 41.982 | −86.619 | 10 | 20.7 | 10 | Michigan | NDBC |
45168 | 42.397 | −86.331 | 10 | 20.4 | 10 | Michigan | NDBC |
45029 | 42.900 | −86.272 | 10 | 27 | 10 | Michigan | NDBC |
45161 | 43.182 | −86.360 | 20 | 22.5 | 6 | Michigan | NDBC |
45024 | 43.981 | −86.556 | 10 | 24 | 6 | Michigan | NDBC |
45183 | 44.982 | −85.831 | 30 | – | 7 | Michigan | NDBC |
45022 | 45.405 | −85.087 | 10 | 36 | 6 | Michigan | NDBC |
45002 | 45.344 | −86.411 | 60 | 181.4 | 11 | Michigan | NDBC |
45007 | 42.674 | −87.026 | 60 | 159.1 | 15 | Michigan | NDBC |
C45132 | 42.463 | −81.215 | 60 | – | 9 | Erie | NDBC |
45165 | 41.702 | −83.261 | 10 | 8 | 10 | Erie | NDBC |
45202 | 41.532 | −82.941 | 10 | 4.9 | 2 | Erie | NDBC |
45201 | 41.601 | −82.781 | 10 | 7.6 | 1 | Erie | NDBC |
45203 | 41.393 | −82.512 | 10 | – | 3 | Erie | NDBC |
45005 | 41.677 | −82.398 | 60 | 9.8 | 12 | Erie | NDBC |
45204 | 41.508 | −82.115 | 10 | – | 2 | Erie | NDBC |
45196 | 41.521 | −81.880 | 10 | – | 9 | Erie | NDBC |
45176 | 41.550 | −81.765 | 60 | 16.6 | 11 | Erie | NDBC |
45205 | 41.501 | −81.748 | 10 | – | 3 | Erie | NDBC |
45206 | 41.585 | −81.583 | 10 | – | 3 | Erie | NDBC |
45197 | 41.619 | −81.617 | 10 | – | 10 | Erie | NDBC |
45164 | 41.748 | −81.698 | 60 | 22.6 | 16 | Erie | NDBC |
45207 | 41.762 | −81.331 | 10 | – | 3 | Erie | NDBC |
45208 | 41.934 | −80.747 | 10 | – | 4 | Erie | NDBC |
45167 | 42.185 | −80.135 | 20 | – | 2 | Erie | NDBC |
C45142 | 42.740 | −79.290 | 60 | – | 6 | Erie | NDBC |
C45139 | 43.250 | −79.530 | 60 | – | 6 | Ontario | NDBC |
C45159-NWLakeOntario | 43.770 | −78.980 | 60 | – | 8 | Ontario | NDBC |
45012 | 43.621 | −77.401 | 60 | 143.3 | 14 | Ontario | NDBC |
C45135-PrinceEdwardPoint | 43.785 | −76.868 | 60 | – | 11 | Ontario | NDBC |
SPOT-1810 | 47.914 | −89.339 | 30 | – | 2 | Superior | Seagull |
SPOT-0592 | 47.207 | −88.162 | 30 | – | 6 | Superior | Seagull |
SPOT-0700 | 47.477 | −87.870 | 30 | – | 7 | Superior | Seagull |
SPOT-1814 | 47.192 | −87.226 | 30 | – | 4 | Superior | Seagull |
SPOT-1816 | 46.642 | −87.453 | 30 | – | 5 | Superior | Seagull |
SPOT-1360 | 46.598 | −87.372 | 30 | – | 5 | Superior | Seagull |
SPOT-1362 | 46.570 | −86.568 | 30 | – | 5 | Superior | Seagull |
SPOT-1179 | 46.560 | −86.466 | 30 | – | 7 | Superior | Seagull |
SPOT-1361 | 46.696 | −86.004 | 30 | – | 5 | Superior | Seagull |
SPOT-1415 | 44.346 | −87.446 | 30 | – | 2 | Michigan | Seagull |
SPOT-1412 | 43.392 | −87.804 | 30 | – | 5 | Michigan | Seagull |
SPOT-1275 | 44.758 | −86.261 | 30 | – | 3 | Michigan | Seagull |
SPOT-1981 | 45.045 | −86.015 | 30 | – | 2 | Michigan | Seagull |
SPOT-1407 | 44.788 | −85.624 | 30 | – | 2 | Michigan | Seagull |
SPOT-1408 | 44.769 | −85.534 | 30 | – | 2 | Michigan | Seagull |
SPOT-1080 | 45.921 | −84.337 | 30 | – | 6 | Huron | Seagull |
UWRAEON1-22 | 44.175 | −81.653 | 20 | – | 5 | Huron | Seagull |
SPOT-1413 | 41.741 | −83.136 | 30 | – | 5 | Erie | Seagull |
RBS-TOL | 41.680 | −83.250 | 60 | – | 3 | Erie | Seagull |
UWSS-RAEON2-21 | 41.913 | −82.736 | 20 | – | 4 | Erie | Seagull |
WALNUT | 42.132 | −80.270 | 20 | – | 4 | Erie | Seagull |
BSC1 | 42.560 | −79.430 | 10 | – | 5 | Erie | Seagull |
References
- Airgood, B. Lake Michigan Waves Building to 14 Feet Tall Near Shore. Available online: https://www.mlive.com/news/grand-rapids/2017/12/waves_over_10_feet_tall_on_lak.html (accessed on 11 October 2023).
- Lewis, C. Huge Waves Hit Lake Michigan’s Eastern Shore, after Lake Superior Waves Set Record in October. Available online: https://www.jsonline.com/story/weather/2017/12/07/huge-waves-hit-lake-michigans-eastern-shore-after-lake-superior-waves-set-record-october/930623001/ (accessed on 11 October 2023).
- The WAVEWATCH III Development Group (WW3DG). User Manual and System Documentation of WAVEWATCH III Version 6.07; Tech. Note 333; NOAA/NWS/NCEP/MMAB: College Park, MD, USA, 2019; 465p + Appendices. Available online: https://github.com/NOAA-EMC/WW3/wiki/Manual (accessed on 11 October 2023).
- Alves, J.H.; Tolman, H.; Roland, A.; Abdolali, A.; Ardhuin, F.; Mann, G.; Chawla, A.; Smith, J. NOAA’s Great Lakes Wave Prediction System: A Successful Framework for Accelerating the Transition of Innovations to Operations. Bull. Am. Meteorol. Soc. 2023, 104, E837–E850. [Google Scholar] [CrossRef]
- Abdolali, A.; Banihashemi, S.; Alves, J.H.; Roland, A.; Hesser, T.J.; Anderson Bryant, M.; McKee Smith, J. Great Lakes wave forecast system on high-resolution unstructured meshes. Geosci. Model Dev. 2024, 17, 1023–1039. [Google Scholar] [CrossRef]
- Jasinski, M.F.; Stoll, J.D.; Hancock, D.; Robbins, J.; Nattala, J.; Morison, J.; Jones, B.M.; Ondrusek, M.E.; Pavelsky, T.M.; Parrish, C.; et al. ATLAS/ICESat-2 L3A Along Track Inland Surface Water Data, Version 5, User Guide; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2021. [CrossRef]
- Tison, C.; Hauser, D. SWIM Products Users Guide: Product Description and Algorithm Theoretical Baseline Description. 2018. Available online: https://www.aviso.altimetry.fr/fileadmin/documents/data/tools/SWIM_ProductUserGuide.pdf (accessed on 11 October 2023).
- Peng, Q.; Jin, S. Significant Wave Height Estimation from Space-Borne Cyclone-GNSS Reflectometry. Remote Sens. 2019, 11, 584. [Google Scholar] [CrossRef]
- Jasinski, M.; Stoll, J.; Hancock, D.; Robbins, J.; Nattala, J.; Pavelsky, T.; Morrison, J.; Jones, B.; Ondrusek, M.; Parrish, C.; et al. Algorithm Theoretical Basis Document (ATBD) for Along Track Inland Surface Water Data, ATL13, Release 5; Technical Report; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2021; p. 124. [CrossRef]
- Luo, S.; Song, C.; Zhan, P.; Liu, K.; Chen, T.; Li, W.; Ke, L. Refined estimation of lake water level and storage changes on the Tibetan Plateau from ICESat/ICESat-2. Catena 2021, 200, 105177. [Google Scholar] [CrossRef]
- Liu, C.; Hu, R.; Wang, Y.; Lin, H.; Zeng, H.; Wu, D.; Liu, Z.; Dai, Y.; Song, X.; Shao, C. Monitoring water level and volume changes of lakes and reservoirs in the Yellow River Basin using ICESat-2 laser altimetry and Google Earth Engine. J. Hydro-Environ. Res. 2022, 44, 53–64. [Google Scholar] [CrossRef]
- An, Z.; Chen, P.; Tang, F.; Yang, X.; Wang, R.; Wang, Z. Evaluating the Performance of Seven Ongoing Satellite Altimetry Missions for Measuring Inland Water Levels of the Great Lakes. Sensors 2022, 22, 9718. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, J. Validation of Sentinel-3A/3B Satellite Altimetry Wave Heights with Buoy and Jason-3 Data. Sensors 2019, 19, 2914. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Li, J.; Tang, S.; Shi, P.; Chen, W.; Liu, J. Evaluation of CFOSAT Wave Height Data with In Situ Observations in the South China Sea. Remote Sens. 2023, 15, 898. [Google Scholar] [CrossRef]
- Durrant, T.H.; Greenslade, D.J.M.; Simmonds, I. Validation of Jason-1 and Envisat Remotely Sensed Wave Heights. J. Atmos. Ocean. Technol. 2009, 26, 123–134. [Google Scholar] [CrossRef]
- Hagler, Y. Defining U.S. Megaregions; Technical Report; Regional Plan Association: New York, NY, USA, 2009; Available online: https://rpa.org/work/reports/defining-u-s-megaregions (accessed on 11 October 2023).
- Raghukumar, K.; Chang, G.; Spada, F.; Jones, C.; Janssen, T.; Gans, A. Performance Characteristics of “Spotter,” a Newly Developed Real-Time Wave Measurement Buoy. J. Atmos. Ocean. Technol. 2019, 36, 1127–1141. [Google Scholar] [CrossRef]
- Kodaira, T.; Waseda, T.; Nose, T.; Sato, K.; Inoue, J.; Voermans, J.; Babanin, A. Observation of on-ice wind waves under grease ice in the western Arctic Ocean. Arct. Chall. Sustain. Proj. (ArCS) 2021, 27, 100567. [Google Scholar] [CrossRef]
- Lancaster, O.; Cossu, R.; Boulay, S.; Hunter, S.; Baldock, T.E. Comparative Wave Measurements at a Wave Energy Site with a Recently Developed Low-Cost Wave Buoy (Spotter), ADCP, and Pressure Loggers. J. Atmos. Ocean. Technol. 2021, 38, 1019–1033. [Google Scholar] [CrossRef]
- Ashtine, M.; Bello, R.; Higuchi, K. Assessment of wind energy potential over Ontario and Great Lakes using the NARR data: 1980–2012. Renew. Sustain. Energy Rev. 2016, 56, 272–282. [Google Scholar] [CrossRef]
- Hicks, B.B. Wind profile relationships from the ‘wangara’ experiment. Q. J. R. Meteorol. Soc. 1976, 102, 535–551. [Google Scholar] [CrossRef]
Period | Orientation | Beam Used |
---|---|---|
1 April 2021–1 October 2021 | Forward | GT1R |
2 October 2021–7 June 2022 | Backward | GT3L |
9 June 2022–11 October 2022 | Forward | GT1R |
Group | Bias | RMSE | SI | r | n |
---|---|---|---|---|---|
All data | 0.074 m | 0.191 m | 0.46 | 0.890 | 554 |
0–9.2 km | 0.077 m | 0.188 m | 0.47 | 0.888 | 186 |
9.2–16.7 km | 0.063 m | 0.198 m | 0.48 | 0.898 | 184 |
16.7–25.0 km | 0.082 m | 0.186 m | 0.44 | 0.888 | 184 |
Group | Bias | RMSE | SI | r | n |
---|---|---|---|---|---|
All data (HWE) | −0.077 m | 0.340 m | 0.26 | 0.716 | 61 |
0–8.5 km (HWE) | −0.104 m | 0.299 m | 0.23 | 0.677 | 20 |
8.5–18 km (HWE) | −0.150 m | 0.395 m | 0.28 | 0.781 | 21 |
18–25 km (HWE) | 0.028 m | 0.315 m | 0.26 | 0.654 | 20 |
Group | Bias | RMSE | SI | r | n |
---|---|---|---|---|---|
All data | 0.058 m | 0.312 m | 0.80 | 0.865 | 53,472 |
0–0.8 m | 0.033 m | 0.257 m | 1.06 | 0.536 | 46,446 |
0.8–1.5 m | 0.107 m | 0.329 m | 0.30 | 0.604 | 5045 |
>1.5 m | 0.511 m | 0.899 m | 0.45 | 0.451 | 1981 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Fujisaki-Manome, A.; Miller, R.; Titze, D.; Henderson, H. Evaluation of ICESat-2 Significant Wave Height Data with Buoy Observations in the Great Lakes and Application in Examination of Wave Model Predictions. Remote Sens. 2024, 16, 679. https://doi.org/10.3390/rs16040679
Li L, Fujisaki-Manome A, Miller R, Titze D, Henderson H. Evaluation of ICESat-2 Significant Wave Height Data with Buoy Observations in the Great Lakes and Application in Examination of Wave Model Predictions. Remote Sensing. 2024; 16(4):679. https://doi.org/10.3390/rs16040679
Chicago/Turabian StyleLi, Linfeng, Ayumi Fujisaki-Manome, Russ Miller, Dan Titze, and Hayden Henderson. 2024. "Evaluation of ICESat-2 Significant Wave Height Data with Buoy Observations in the Great Lakes and Application in Examination of Wave Model Predictions" Remote Sensing 16, no. 4: 679. https://doi.org/10.3390/rs16040679
APA StyleLi, L., Fujisaki-Manome, A., Miller, R., Titze, D., & Henderson, H. (2024). Evaluation of ICESat-2 Significant Wave Height Data with Buoy Observations in the Great Lakes and Application in Examination of Wave Model Predictions. Remote Sensing, 16(4), 679. https://doi.org/10.3390/rs16040679