Satellite-Based Localization of IoT Devices Using Joint Doppler and Angle-of-Arrival Estimation
<p>Overview of the non-terrestrial network (NTN): spaceborne and airborne.</p> "> Figure 2
<p>Example of satellite constellation orbits using Walker-star pattern with 12 orbital planes and 24 satellites distributed equally on a single plane.</p> "> Figure 3
<p>Comparison between the classical and relativistic Doppler shift frequency measured from a polar orbiting LEO satellite at an altitude of 833 km. The highest relative error is at the inflection point (around 0.62 Hz).</p> "> Figure 4
<p>Doppler shift frequency at different LEO polar orbit altitudes (ranges from 200 to 1000 km).</p> "> Figure 5
<p>Illustration of the ground IoT device’s angle of arrival measured at satellite in north–east–down (NED) frame. Antenna boresight is assumed to be oriented towards the nadir.</p> "> Figure 6
<p>Block diagram of measurement setup for Doppler shift frequency measurements.</p> "> Figure 7
<p>Satellite tracking antenna with digital control interface and elevation–azimuth controller connected to the antenna’s rotator.</p> "> Figure 8
<p>The utilized VHF antenna and the corresponding motors to control the antenna’s tilt angle in the elevation and azimuth planes.</p> "> Figure 9
<p>Spectrogram of the actual measurements from the NOAA-15 satellite. The orange dotted line is the estimated Doppler shift frequency.</p> "> Figure 10
<p>The connection between the Software-Defined Radio (National Instruments (NI) Universal Software Radio Peripheral (USRP) 2950) and the GPS-disciplined oscillator.</p> "> Figure 11
<p>Comparison of the measured Doppler error distribution using free running (FRO) and GPS-disciplined (GPSDO) oscillators, respectively.</p> "> Figure 12
<p>Doppler measurement error distribution for five different satellite pass examples collected over a few days. All measurements passed the Kolmogorov–Smirnov test at the 5% significance level with the corresponding <span class="html-italic">p</span>-values. Note that these results are for the case when the SDR is phased locked with a GPS-disciplined oscillator (GPSDO).</p> "> Figure 13
<p>An example of empirical and theoretical Doppler error cumulative distribution functions (CDFs) for pass index 1.</p> "> Figure 14
<p>Block diagram of Doppler measurements and the sources of error.</p> "> Figure 15
<p>An example snapshot of the contributing satellites that are above the 15<math display="inline"> <semantics> <msup> <mrow/> <mo>∘</mo> </msup> </semantics> </math> elevation threshold with respect to a ground IoT device. The collected measurements from these satellites are used in the localization. Non-contributing satellites that are below the threshold are marked by red triangles.</p> "> Figure 16
<p>Satellite orbits that are above the elevation threshold and the corresponding location at the beginning and end of the utilized segment for signal measurements in the localization algorithm.</p> "> Figure 17
<p>An example of the joint AoA and Doppler log likelihood function, showing the ground truth point.</p> "> Figure 18
<p>The median localization error with increasing satellites for the stochastic optimizer. Different curves represent the Doppler standard deviation <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mi mathvariant="normal">d</mi> </msub> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>25</mn> <mo>,</mo> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mn>50</mn> <mspace width="3.33333pt"/> <mi>Hz</mi> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mo>Φ</mo> </msub> <mo>,</mo> <msub> <mi>σ</mi> <mo>Θ</mo> </msub> <mo>=</mo> <msup> <mn>1</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math>; the results are averaged over 300 runs.</p> "> Figure 19
<p>The median localization error for a varying number of measurements taken at intervals separated by 5 s and different curves represent the number of satellites with Doppler standard deviation, <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mi mathvariant="normal">d</mi> </msub> <mo>=</mo> <mn>10</mn> </mrow> </semantics> </math> Hz and AoA standard deviation <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mo>Φ</mo> </msub> <mo>,</mo> <mspace width="3.33333pt"/> <msub> <mi>σ</mi> <mo>Θ</mo> </msub> <mo>=</mo> <msup> <mn>1</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math>; the results are for 300 runs.</p> "> Figure 20
<p>The median localization error for varying Doppler standard deviation, <math display="inline"> <semantics> <msub> <mi>σ</mi> <mi mathvariant="normal">d</mi> </msub> </semantics> </math> and azimuth, <math display="inline"> <semantics> <msub> <mi>σ</mi> <mo>Φ</mo> </msub> </semantics> </math> and elevation, and <math display="inline"> <semantics> <msub> <mi>σ</mi> <mo>Θ</mo> </msub> </semantics> </math> AoA deviation using six satellites and 75 s of measurements; the results are deduced from 300 runs.</p> "> Figure 21
<p>The localization error using Doppler, AoA and joint Doppler-AoA measurements for Doppler standard deviation, <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mi mathvariant="normal">d</mi> </msub> <mo>=</mo> <mn>5</mn> <mspace width="3.33333pt"/> <mi>Hz</mi> </mrow> </semantics> </math> and azimuth, <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mo>Φ</mo> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <msup> <mn>01</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math> and elevation, and <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mo>Θ</mo> </msub> <mo>=</mo> <mn>0</mn> <mo>.</mo> <msup> <mn>01</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math> deviation using six satellites and 75 s of measurements; the results are based on 1600 runs.</p> ">
Abstract
:1. Introduction
- A satellite-based localization method using joint Doppler and AoA measurements received from the ground IoT device is proposed.
- The likelihood function of Doppler and AoA measurements based is derived on the Gaussian error and estimated Kent error distributions, respectively.
- The Doppler measurement error was investigated using real measurements from LEO satellites.
- The localization performance behavior against varying Doppler and AoA error deviations is illustrated.
2. Related Works
3. System Model
3.1. Constellation Geometric Model
3.2. Doppler Model
3.3. Angle-of-Arrival Model
4. Likelihood Derivation
4.1. Doppler and Angle-of-Arrival Likelihood Derivation
4.2. Joint Likelihood of Doppler and Angle of Arrival
4.3. Minimizing Negative Log Likelihood
5. Localization Framework
6. Experiment and Results
6.1. Doppler Error Measurements
6.2. Localization Simulation and Performance
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Symbol | Definition | Value (Unit) |
N | Number of satellites | 288 |
P | Number of orbital planes | 12 |
F | Phasing parameter | - |
j | Orbital plane index | - |
l | Order within orbital plane | - |
Right ascension of ascending node | 0–2 | |
Initial true anomaly | 0–2 | |
S | Number of satellites on an orbital plane | 24 |
True radial velocity | variable (m/s) | |
Slant distance between a satellite and | variable (m) | |
a ground IoT device | ||
t | Time variable | - |
Simulation time step | 5 (s) | |
Classical & relativistic Doppler shift | - (Hz) | |
frequency | ||
c | Speed of light | 299,792,458 (m/s) |
f | Center operating frequency | 2 (GHz) |
True Doppler shift frequency | - (Hz) | |
Standard deviation of Doppler error | - (Hz) | |
Azimuth angle of arrival | - () | |
Off-nadir angle of arrival | - () | |
Latitude of the source (ground IoT device) | - () | |
Longitude of the source (ground IoT device) | - () | |
Position vector | - | |
Coordinate transformation matrix | refer to (6) | |
Satellite coordinate in ECEF frame | - | |
Ground IoT device coordinate in ECEF frame | - | |
Concentration parameter in Kent | - | |
distribution | ||
Ovalness parameter in Kent distribution | - | |
Identity matrix of size 3 | - | |
Standard deviation of azimuth AoA error | - () | |
Standard deviation of off-nadir AoA error | - () | |
State vector (latitude and | - () | |
longitude of ground IoT device) | ||
Doppler and AoA measurement vector | - | |
k | Discrete-measurement index | - |
Doppler likelihood function | - | |
AoA likelihood function | - | |
True azimuth angle of arrival | - () | |
True off-nadir angle of arrival | - () | |
Joint likelihood of Doppler and AoA | - |
References
- Silva, P.F.E.; Kaseva, V.; Lohan, E.S. Wireless Positioning in IoT: A Look at Current and Future Trends. Sensors 2018, 18, 2470. [Google Scholar] [CrossRef]
- Al Homssi, B.; Al-Hourani, A.; Wang, K.; Conder, P.; Kandeepan, S.; Choi, J.; Allen, B.; Moores, B. Next Generation Mega Satellite Networks for Access Equality: Opportunities, Challenges, and Performance. IEEE Commun. Mag. 2022, 60, 18–24. [Google Scholar] [CrossRef]
- Manzoor, B.; Al-Hourani, A.; Al Homssi, B. Improving IoT-Over-Satellite Connectivity Using Frame Repetition Technique. IEEE Wirel. Commun. Lett. 2022, 11, 736–740. [Google Scholar] [CrossRef]
- Bhatti, G. Machine Learning Based Localization in Large-Scale Wireless Sensor Networks. Sensors 2018, 18, 4179. [Google Scholar] [CrossRef] [PubMed]
- Ellis, P.; Rheeden, D.V.; Dowla, F. Use of Doppler and Doppler Rate for RF Geolocation Using a Single LEO Satellite. IEEE Access 2020, 8, 12907–12920. [Google Scholar] [CrossRef]
- Lopez, R.; Malardé, J.; Royer, F.; Gaspar, P. Improving ARGOS Doppler Location Using Multiple-Model Kalman Filtering. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4744–4755. [Google Scholar] [CrossRef]
- Argentiero, P.; Marint, J. Ambiguity Resolution for Satellite Doppler Positioning Systems. IEEE Trans. Aerosp. Electron. Syst. 1979, AES-15, 439–447. [Google Scholar] [CrossRef]
- Scales, W.C.; Swanson, R. Air and Sea Rescue via Satellite Systems: Even Experimental Systems have Helped Survivors of Air and Sea Accidents. Two Different Approaches are Discussed. IEEE Spectr. 1984, 21, 48–52. [Google Scholar] [CrossRef]
- Hartzell, S.; Burchett, L.; Martin, R.; Taylor, C.; Terzuoli, A. Geolocation of Fast-Moving Objects From Satellite-Based Angle-of-Arrival Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3396–3403. [Google Scholar] [CrossRef]
- Norouzi, Y.; Kashani, E.S.; Ajorloo, A. Angle of Arrival-based Target Localisation with Low Earth Orbit Satellite Observer. IET Radar Sonar Navig. 2016, 10, 1186–1190. [Google Scholar] [CrossRef]
- He, C.; Zhang, M.; Guo, F. Bias Compensation for AoA-Geolocation of Known Altitude Target Using Single Satellite. IEEE Access 2019, 7, 54295–54304. [Google Scholar] [CrossRef]
- Stoica, P.; Nehorai, A. MUSIC, Maximum Likelihood, and Cramer-Rao Bound: Further Results and Comparisons. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 2140–2150. [Google Scholar] [CrossRef]
- Roy, R.; Kailath, T. ESPRIT-Estimation of Signal Parameters via Rotational Invariance Techniques. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 984–995. [Google Scholar] [CrossRef]
- Yao, B.; Zhang, W.; Wu, Q. Weighted Subspace Fitting for Two-Dimension DoA Estimation in Massive MIMO Systems. IEEE Access 2017, 5, 14020–14027. [Google Scholar] [CrossRef]
- Trinh-Hoang, M.; Viberg, M.; Pesavento, M. Partial Relaxation Approach: An Eigenvalue-Based DoA Estimator Framework. IEEE Trans. Signal Process. 2018, 66, 6190–6203. [Google Scholar] [CrossRef]
- Wang, H.; Kay, S. Maximum Likelihood Angle-Doppler Estimator using Importance Sampling. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 610–622. [Google Scholar] [CrossRef]
- Tsakalides, P.; Raspanti, R.; Nikias, C.L. Angle/Doppler Estimation in Heavy-tailed Clutter Backgrounds. IEEE Trans. Aerosp. Electron. Syst. 1999, 35, 419–436. [Google Scholar] [CrossRef]
- Sun, S.; Wang, X.; Moran, B.; Al-Hourani, A.; Rowe, W.S.T. Radio Source Localization Using Received Signal Strength in a Multipath Environment. In Proceedings of the 2019 22th International Conference on Information Fusion (FUSION), Ottawa, ON, Canada, 2–5 July 2019; pp. 1–6. [Google Scholar]
- Hung Nguyen, N.; Dogancay, K. Improved Weighted Instrumental Variable Estimator for Doppler-Bearing Source Localization in Heavy Noise. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018. [Google Scholar]
- NASA. Catalog of Earth Satellite Orbits. 2009. Available online: https://earthobservatory.nasa.gov/features/OrbitsCatalog (accessed on 1 September 2023).
- Ghosh, A.; Maeder, A.; Baker, M.; Chandramouli, D. 5G Evolution: A View on 5G Cellular Technology Beyond 3GPP Release 15. IEEE Access 2019, 7, 127639–127651. [Google Scholar] [CrossRef]
- Mohamad Hashim, I.S.; Al-Hourani, A.; Ristic, B. Satellite Localization of IoT Devices using Signal Strength and Doppler Measurements. IEEE Wirel. Commun. Lett. 2022, 11, 1910–1914. [Google Scholar] [CrossRef]
- ARGOS. ARGOS User’s Manual. 2016. Available online: https://www.argos-system.org/wp-content/uploads/2016/08/r363_9_argos_users_manual-v1.6.6.pdf (accessed on 1 September 2023).
- Mo, L.; Song, X.; Zhou, Y.; Sun Zhong, K.; Bar-Shalom, Y. Unbiased Converted Measurements for Tracking. IEEE Trans. Aerosp. Electron. Syst. 1998, 34, 1023–1027. [Google Scholar]
- Rui, L.; Ho, K.C. Bias Analysis of Maximum Likelihood Target Location Estimator. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 2679–2693. [Google Scholar] [CrossRef]
- Dogancay, K. Bias Compensation for the Bearings-only Pseudolinear Target Track Estimator. IEEE Trans. Signal Process. 2006, 54, 59–68. [Google Scholar] [CrossRef]
- Athley, F. Asymptotically Decoupled Angle-Frequency Estimation with Sensor Arrays. In In Proceedings of the Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 24–27 October 1999. [Google Scholar] [CrossRef]
- Lin, J.D.; Fang, W.H.; Wang, Y.Y.; Chen, J.T. FSF MUSIC for Joint DoA and Frequency Estimation and Its Performance Analysis. IEEE Trans. Signal Process. 2006, 54, 4529–4542. [Google Scholar] [CrossRef]
- Walker, J.G. Satellite Constellations. J. Br. Interplanet. Soc. 1984, 37, 559. [Google Scholar]
- Al-Hourani, A. Session Duration Between Handovers in Dense LEO Satellite Networks. IEEE Wirel. Commun. Lett. 2021, 10, 2810–2814. [Google Scholar] [CrossRef]
- Guan, M.; Xu, T.; Gao, F.; Nie, W.; Yang, H. Optimal Walker Constellation Design of LEO-Based Global Navigation and Augmentation System. Remote Sens. 2020, 12, 1845. [Google Scholar] [CrossRef]
- Ristic, B.; Farina, A. Target Tracking via Multi-Static Doppler Shifts. IET Radar Sonar Navig. 2013, 7, 508–516. [Google Scholar] [CrossRef]
- Subedi, S.; Zhang, Y.D.; Amin, M.G.; Himed, B. Group Sparsity Based Multi-Target Tracking in Passive Multi-Static Radar Systems Using Doppler-Only Measurements. IEEE Trans. Signal Process. 2016, 64, 3619–3634. [Google Scholar] [CrossRef]
- Morales, J.; Khalife, J.; Kassas, Z.M. Simultaneous Tracking of Orbcomm LEO Satellites and Inertial Navigation System Aiding Using Doppler Measurements. In Proceedings of the 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia, 28 April–1 May 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Psiaki, M.L. Navigation using Carrier Doppler Shift from a LEO Constellation: TRANSIT on Steroids. J. Inst. Navig. 2021, 68, 621–641. [Google Scholar] [CrossRef]
- Subirana, J.S.; Zornoza, J.M.J.; Hernandez-Pajares, M. Transformations between ECEF and ENU Coordinates. 2011. Available online: https://gssc.esa.int/navipedia/index.php/Transformations_between_ECEF_and_ENU_coordinates (accessed on 1 September 2023).
- Garcia-Fernandez, A.; Maskell, S.; Horridge, P.; Ralph, J. Gaussian Tracking With Kent-Distributed Direction-of-Arrival Measurements. IEEE Trans. Veh. Technol. 2021, 70, 7249–7254. [Google Scholar] [CrossRef]
- Sun, Y.; Wan, Q. Position Determination for Moving Transmitter Using Single Station. IEEE Access 2018, 6, 61103–61116. [Google Scholar] [CrossRef]
- Al-Hourani, A.; Guvenc, I. On Modeling Satellite-to-Ground Path-Loss in Urban Environments. IEEE Commun. Lett. 2021, 25, 696–700. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Sci. Am. Assoc. Adv. Sci. 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Clerc, M. Particle Swarm Optimization; John Wiley & Sons, Ltd.: London, UK, 2006. [Google Scholar] [CrossRef]
- Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1996. [Google Scholar]
- Koziel, S. Surrogate-Based Modeling and Optimization: Applications in Engineering, 1st ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Nocedal, J. Numerical Optimization; Springer: New York, NY, USA, 2006. [Google Scholar]
- Ziskind, I.; Wax, M. Maximum Likelihood Localization of Diversely Polarized Sources by Simulated Annealing. IEEE Trans. Antennas Propag. 1990, 38, 1111–1114. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamad Hashim, I.S.; Al-Hourani, A. Satellite-Based Localization of IoT Devices Using Joint Doppler and Angle-of-Arrival Estimation. Remote Sens. 2023, 15, 5603. https://doi.org/10.3390/rs15235603
Mohamad Hashim IS, Al-Hourani A. Satellite-Based Localization of IoT Devices Using Joint Doppler and Angle-of-Arrival Estimation. Remote Sensing. 2023; 15(23):5603. https://doi.org/10.3390/rs15235603
Chicago/Turabian StyleMohamad Hashim, Iza S., and Akram Al-Hourani. 2023. "Satellite-Based Localization of IoT Devices Using Joint Doppler and Angle-of-Arrival Estimation" Remote Sensing 15, no. 23: 5603. https://doi.org/10.3390/rs15235603