Remote Sensing Application in Chinese Medicinal Plant Identification and Acreage Estimation—A Review
"> Figure 1
<p>The trend of paper publication of remote sensing applied to CMP monitoring since 2000 (<b>a</b>) and keyword co-occurrence analysis based on VOSviewer (<b>b</b>).</p> "> Figure 2
<p>Classification of planting patterns of CMPs and examples of CMPs in different planting patterns.</p> "> Figure 3
<p>Research flow chart of CMP monitoring based on remote sensing.</p> ">
Abstract
:1. Introduction
2. Planting Characteristics and Applicable Satellite Remote Sensing Data for CMPs
2.1. Planting Patterns and Habitat Characteristics
2.2. Data Sources
3. Research Status of Remote Sensing Identification of CMPs
3.1. Classification Scales
3.1.1. Pixels
3.1.2. Objects
3.2. Categorical Features
3.2.1. Spectral Features
3.2.2. Temporal Features
3.2.3. Spatial Features
3.3. Classification Methods
3.3.1. Supervised Classification
- Based on traditional mathematical statistics
- Based on Shallow Learning
- Based on Deep Learning
3.3.2. Unsupervised Classification
4. Key Problems and Prospects
4.1. Key Problems
- There are many kinds of Chinese medicinal materials, great differences in planting patterns, and complex planting landscape patterns
- The selection of data sources
4.2. Prospects
- Establishment of planting pattern, habitat, and phenological characteristics database of medicinal plants
- Establishment of spectral sample library of medicinal plants
- Fusion of multi-source and multi-temporal data
- The application of deep learning and classification automation
- (1)
- Field planting pattern: Starting with the regional bulk crop calendar, the images of the different periods of TCM growth and crop calendar were determined. The method of spectral characteristic parameter identification and classification is used to extract the target.
- (2)
- Greenhouse planting pattern: Methods such as brightness index or building index and object form index are used to extract greenhouse information, such as the form, size, and spatial combination of the characteristics of regional traditional Chinese medicine planting greenhouses. Then combined with ground sampling survey to further confirm.
- (3)
- Mountain planting pattern: Regional environmental information (topography, geomorphic features) was used to classify potential planting targets for medicinal plants. Based on the luminance index, morphology index, and other parameters, the "skylight" block in the forest is separated. The classification method of the vegetation characteristic index was used to distinguish medicinal plants from grassland, cultivated land, and other bare land.
- (4)
- Underwood planting pattern: With radar and multi-spectral data, multi-source data fusion was carried out to identify and classify the medicinal plants under the forest.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ru, M.; Dai, Z.; Li, Y.; Lu, H.; Feng, J.; Lu, Q.; Guo, M. Investigation and research on medicinal plant resources in Yongning District, Guangxi. J. Chin. Med. Mater. 2023, 6, 8. [Google Scholar] [CrossRef]
- Ding, R.; Luo, J.; Wang, C.; Yu, L.; Yang, J.; Wang, M.; Zhong, S.; Gu, R. Identifying and mapping individual medicinal plant Lamiophlomis rotata at high elevations by using unmanned aerial vehicles and deep learning. Plant Methods 2023, 19, 38. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y. Remote Sensing Monitoring of Resources of Medicinal Plants Atractylodes lancea (Thunb.) DC. and Ginkgo biloba L.; China Academy of Chinese Medical Sciences: Beijing, China, 2008. [Google Scholar]
- Xiao, P.; Qian, P.; Xu, J.; Lu, M. A bibliometric analysis of the application of remote sensing in crop spatial patterns: Current status, progress and future directions. Sustainability 2022, 14, 4104. [Google Scholar] [CrossRef]
- Chen, S.; Sun, J. Key technical links and solution ways of setting up aworking system for yield estimations of the maincrops of china by satellite remote sensing. J. Nat. Resour. 1997, 12, 363–369. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, L.; Guo, L.; Zhu, W.; Pan, Y. Application of remote sensing technology in the investigation of traditional Chinese medicine resources. Mod. Chin. Med. 2006, 8, 7–10. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, L.; Zhu, W.; Huang, L.; Pan, Y. Remote sensing monitoring methods for medicinal plants resource in different types of ecological environment. China J. Chin. Mater. Med. 2007, 32, 1490–1492. [Google Scholar]
- Sun, Y.; Guo, L.; Zhu, W.; Huang, L.; Gu, X.; Han, L.; Pan, Y. Remote sensing resource monitoring on Atractylodes lancea. China J. Chin. Mater. Med. 2008, 33, 353–356. [Google Scholar]
- Chen, S.; Zhang, B.; Zhang, J.; Zhou, Y.; Su, G.; Xiao, S.; Yang, Z.; Xiao, P. Study of method for application of remote-sensing technology to investigation of reserves of Ginseng resources. World Sci. Technol. 2005, 7, 37–43. [Google Scholar] [CrossRef]
- Jia, X.; Sun, X. Significance and development prospect of medicinal plant cultivation in our area. Rural. Sci. Technol. 2001, 4, 18. [Google Scholar] [CrossRef]
- Huang, L.; Wang, Y. Technical Specification for National Survey of Chinese Medicine Resources, 1st ed; Shanghai Scientific & Technical Publishers: Shanghai, China, 2015; pp. 95–96. ISBN 978-7-5478-2138-1. [Google Scholar]
- Shan, Z.; Ye, J.; Hao, D.; Xiao, P.; Chen, Z.; Lu, A. Distribution patterns and industry planning of commonly used traditional Chinese medicinal plants in China. Plant Divers. 2022, 44, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Yuan, Y.; Wang, L.; Chen, S.; Liu, X.; Zhang, J. Identifying prioritized planting areas for medicinal plant Thesium chinense Turcz. under climate change in China. Ecol. Inform. 2021, 66, 101459. [Google Scholar] [CrossRef]
- Lan, J.; Zhang, F.; Lian, C.; Li, C. Application of remote sensing technology in medicinal plant resources. Tech. Innov. Appl. 2021, 29, 167–170. [Google Scholar]
- Shi, T.; Zhang, X.; Qu, X.; Qiu, Z.; Zhang, Q.; Guo, L.; Huang, L.; Fu, Q.; Lv, Z.; Gong, Y. Research on extraction of Ginseng planting distribution information based on object-oriented classification—By case study of Fusong country in Jilin. China J. Chin. Mater. Med. 2017, 42, 4353–4357. [Google Scholar] [CrossRef]
- Li, Q. From the perspective of biodiversity: Sustainable development of forest medicinal plant resources. China For. Ind. 2023, 6, 54–56. [Google Scholar]
- Huang, L.; Guo, L. Secondary metabolites accumulating and geoherbs formation under environmental stress. China J. Chin. Mater. Med. 2007, 32, 277–280. [Google Scholar]
- Dong, Y.; Luo, Y.; Zhu, C.; Peng, W.; Xu, X.; Fang, Q. Application of remote sensing and GIS in study of suitability distribution of Swertia mussotii, a Tibetan medicine in Sichuan province. China J. Chin. Mater. Med. 2017, 22, 4387–4394. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, S.; Zhang, J.; Su, G.; Zhou, Y.; Yang, Z.; Xiao, S. Resources survey of Glycyrrhiza uralensis based on remote sensing technique. Chin. Tradit. Herb. Drug. 2005, 36, 112–115. [Google Scholar] [CrossRef]
- Bahdu, S.T. Xinjiang Specialty Herbal Resources Survey Research Methods to Interpret with Remote Sensing—Case of Type Herbal Plantation; Xinjiang University: Xinjiang, China, 2014. [Google Scholar]
- Na, R.; Zheng, J.; Guo, B.; Shi, M.; Sen, B.; Sun, Z.; Sun, C.; Li, X.; Jia, X. Evaluation of high-resolution images application for wild medicinal plants macro monitoring: A case of Apocynum. China J. Chin. Mater. Med. 2014, 39, 1777–1781. [Google Scholar] [CrossRef]
- Na, R.; Zheng, J.; Guo, B.; Shi, M.; Sen, B.; Sun, Z.; Sun, C.; Li, X.; Jia, X. The application and evaluation of China ZY3 satellite on wild Apocynum monitoring. Xinjiang Agric. Sci. 2014, 51, 497–503. [Google Scholar]
- Liu, M.; Liu, J.; Atzberger, C.; Jiang, Y.; Ma, M.; Wang, X. Zanthoxylum bungeanum Maxim mapping with multi-temporalSentinel-2 images: The importance of different features and consistency of results. ISPRS J. Photogram. Remote Sens. 2021, 174, 68–86. [Google Scholar] [CrossRef]
- Li, Y. Research on information extraction of Chinese medicinal materials based on GF-6 remote sensing data. South China Agric. 2019, 13, 111–113. [Google Scholar] [CrossRef]
- Li, H.; Xia, C.; Zhang, X.; Wang, Y.; Zhang, Y. Extraction of maize lodging information at mature stage based on UAV multispectral images. Agric. Res. Arid. Areas 2023, 5, 198–206. [Google Scholar]
- Xie, C.; Chen, S.; Lin, Z.; Zhou, Y.; Li, Y. The application of UAV remote sensing technology in the investigation of medicinal plant resources. Mod. Chin. Med. 2007, 6, 4–6. [Google Scholar] [CrossRef]
- Xie, C.; Shi, M.; Guo, B.; Shi, L.; Zeng, F.; Fu, D.; Li, X.; Jia, X. Resource investigation for endangered wild Ferulasinkiangensis based on low altitude remote sensing. World Sci. Technol. 2014, 11, 2480–2486. [Google Scholar] [CrossRef]
- Guo, Q.; Kelly, M.; Gong, P.; Liu, D. An object-based classification approach in mapping tree mortality using high spatial resolution imagery. GISci. Remote Sens. 2007, 44, 24–47. [Google Scholar] [CrossRef]
- Fortes, C.; Demattê, J.A.M. Discrimination of sugarcane varieties using Landsat 7 ETM+ spectral data. Int. J. Remote Sens. 2006, 27, 1395–1412. [Google Scholar] [CrossRef]
- Liu, J.; Guo, H.; Li, G.; Yue, J.; Lu, H.; Zhou, X.; Men, F.; Zhang, Y. Hyperspectral characteristics of Carthamus tinctorius in Xinjiang region. China J. Chin. Mater. Med. 2013, 38, 1335–1339. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A review of developments and applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Zeng, Y.; Hao, D.; Huete, A.; Dechant, B.; Berry, J.; Chen, J.M.; Joiner, J.; Frankenberg, C.; Bond-Lamberty, B.; Ryu, Y.; et al. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nat. Rev. Earth Environ. 2022, 3, 477–493. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, L.; Ge, X.; Zhu, S.; Huang, L. The monitoring method for distribution change of Paeonia lactiflora pall. on normalized difference vegetation index. Mod. Chin. Med. 2014, 16, 96–99. [Google Scholar] [CrossRef]
- Fan, D.; Su, X.; Weng, B.; Wang, T.; Yang, F. Research progress on remote sensing classification methods for farmland vegetation. AgriEngineering 2021, 3, 61. [Google Scholar] [CrossRef]
- Cui, L.; Shi, J.; Du, H. Advances in remote sensing extraction of vegetation phenology and its driving factors. Adv. Earth Sci. 2021, 1, 9–16. [Google Scholar] [CrossRef]
- Yang, C.; Wu, G.; Li, Q.; Wang, J.; Qu, L.; Ding, K. Research progress on remote sensing classification of vegetation. Geogr. Geo-Inf. Sci. 2018, 4, 24–32. [Google Scholar]
- Liu, L.; Wang, J.; Zhao, C.; Song, X.; Li, C.; Zhang, C. Study on floating prior probability MLC based on spatial features and local spatial autocorrelation. J. Remote Sens. 2006, 2, 227–235. [Google Scholar] [CrossRef]
- Wu, F.; Zheng, M.; Hu, W.; Hu, G.; Wang, L.; Dong, X.; Lu, Y. Remote sensing extraction and change analysis of Panax notoginseng planting area in Wenshan Prefecture of Yunnan Province in Past Decade Based on TM and OLI Data. Acta Agric. Jiangxi 2021, 33, 90–97. [Google Scholar] [CrossRef]
- Xu, J.; Feng, G.; Zhao, T.; Sun, X.; Zhu, M. Remote sensing image classification based on semi-supervised adaptive interval type-2 fuzzy c-means algorithm. Comput. Geosci. 2019, 131, 132–143. [Google Scholar] [CrossRef]
- Yi, M.; Xie, H.; Cheng, M.; Zhao, Y.; Shi, T.; Zhang, X.; Peng, H. Planting area estimation of Paeonia ostii based on RS—By case study in Dangshan of Anhui province. China J. Chin. Mater. Med. 2019, 44, 4107–4110. [Google Scholar] [CrossRef]
- Yang, M.; Chen, L.; Zhang, X.; Zhao, Y.; Shi, T.; Cheng, M.; Peng, H. Extracting Paeonia lactiflora planted area in Dangshan of Anhui province based on ZY-3 remote sensing image. China J. Chin. Mater. Med. 2019, 44, 4101–4106. [Google Scholar] [CrossRef]
- Dai, C.; Xie, X.; Xu, Z.; Du, P. Monitoring and analyzing herbal medicine plantation via remote sensing:A case study of pseudo-ginseng in Wenshan and Honghe Prefecture of Yunnan Province. Remote Sens. Nat. Resour. 2018, 1, 210–216. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P.M. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens. Environ. 2003, 86, 554–565. [Google Scholar] [CrossRef]
- Zhu, Z.; Yuan, X.; Gan, S.; Zhang, L.; Zhao, Q. GF-1 remote sensing data for Panax notoginseng planting information extraction in Wenshan, Yunnan Province. J. Zhejiang A F Univ. 2020, 37, 129–135. [Google Scholar] [CrossRef]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Zhang, X.; Guo, L.; Jing, Z.; Huang, L. Research on remote sensing recognition of wild planted Lonicera japonica based on deep convolutional neural network. China J. Chin. Mater. Med. 2020, 45, 5658–5662. [Google Scholar] [CrossRef]
- Sun, Y.; Gu, X.; Yang, X.; Zhu, W.; Guo, L.; Huang, L.; Pan, Y. Study on dynamical changes of Ginkgo bilobas resources in Pizhou city of Jiangsu Province base on RS and GIS. China J. Chin. Mater. Med. 2007, 32, 1861–1864. [Google Scholar]
- Chen, D. Application of remote sensing monitoring method in the monitoring of medicinal plant resources. Sci. Technol. Inf. 2013, 8, 41–43. [Google Scholar] [CrossRef]
- Zhao, J.; Sun, Z.; Zhang, Z. Research progress of planting model of Chinese materia medica in China. Mod. Chin. Med. 2021, 2, 372–380. [Google Scholar] [CrossRef]
- Jin, G.; Liu, S.; Li, Y.; Chen, H.; Liu, J. Some thoughts on the standardized planting of Chinese medicinal materials. China J. Chin. Mater. Med. 2006, 2, 175–176. [Google Scholar]
- Liu, J.; Pan, M.; Li, G.; Ma, C.; Hou, J.; Meng, F.; Zhao, C. Application of 3S technology in resources survey of medicinal plants. Chin. Tradit. Herb. Drug 2016, 4, 695–700. [Google Scholar] [CrossRef]
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ. 2019, 113, 711–715. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; Benzel, W.M.; Lowers, H.A.; Driscoll, R.L.; et al. USGS Spectral Library Version 7: U.S. Geological Survey Data Series 1035; U.S. Geological Survey: Reston, VA, USA, 2017; p. 61. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, Q.; Wen, J.; You, D.; Dou, B.; Tang, Y.; Peng, S. Review on Spectral Libraries: Progress and Application. J. Remote Sens. 2017, 21, 12–26. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, S.; Chen, X.; Wu, Z.; Yang, R.; Shi, T.; Zhang, Y.; Zhou, K.; Li, J. Hyperspectral identification of ginseng growth years and spectral importance analysis based on random forest. Appl. Sci. 2022, 12, 5852. [Google Scholar] [CrossRef]
- Long, D.; Yan, L.; Bai, L.; Zhang, C.; Li, X.; Lei, H.; Yang, H.; Tian, F.; Zeng, C.; Meng, X.; et al. Generation of MODIS-like land surface temperatures under all-weather conditions based on a data fusion approach. Remote Sens. Environ. 2020, 246, 111863. [Google Scholar] [CrossRef]
- Araus, J.L.; Cairns, J.E. Field high-throughput phenotyping: The new crop breeding frontier. Trends Plant Sci. 2014, 19, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, L.; Tian, T.; Yin, J. A review of unmanned aerial vehicle low-altitude remote sensing (UAV-LARS) use in agricultural monitoring in China. Remote Sens. 2021, 13, 1221. [Google Scholar] [CrossRef]
- Wu, X.; Jin, S. Models and theoretical analysis of SoOp circular polarization bistatic scattering for random rough surface. Remote Sens. 2020, 12, 1506. [Google Scholar] [CrossRef]
- Ball, J.; Anderson, D.; Chan, C. Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for thecommunity. J. Appl. Remote Sens. 2017, 11, 42609. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, J.; You, X.; Zhang, X.; Shi, T.; Zhang, L.; Chen, X.; Zhao, H.; Xu, M. Remote Sensing Application in Chinese Medicinal Plant Identification and Acreage Estimation—A Review. Remote Sens. 2023, 15, 5580. https://doi.org/10.3390/rs15235580
Meng J, You X, Zhang X, Shi T, Zhang L, Chen X, Zhao H, Xu M. Remote Sensing Application in Chinese Medicinal Plant Identification and Acreage Estimation—A Review. Remote Sensing. 2023; 15(23):5580. https://doi.org/10.3390/rs15235580
Chicago/Turabian StyleMeng, Jihua, Xinyan You, Xiaobo Zhang, Tingting Shi, Lei Zhang, Xingfeng Chen, Hailan Zhao, and Meng Xu. 2023. "Remote Sensing Application in Chinese Medicinal Plant Identification and Acreage Estimation—A Review" Remote Sensing 15, no. 23: 5580. https://doi.org/10.3390/rs15235580