Retrieval of Land Surface Temperature over Mountainous Areas Using Fengyun-3D MERSI-II Data
<p>The location and elevation of the study areas. The overall regions of the FY-3D LST retrieved images of study area-I (<b>a</b>) and study area-II (<b>b</b>), and (<b>c</b>) the locations of the in situ stations.</p> "> Figure 2
<p>Spectral response functions in FY-3D bands 24 and 25.</p> "> Figure 3
<p>Spatial distribution of the study area-I (<b>a</b>) aspect angle, (<b>b</b>) slope angle, (<b>c</b>) SVF, and (<b>d</b>) ASTER GED bare soil emissivity, where the white regions represent missing values.</p> "> Figure 3 Cont.
<p>Spatial distribution of the study area-I (<b>a</b>) aspect angle, (<b>b</b>) slope angle, (<b>c</b>) SVF, and (<b>d</b>) ASTER GED bare soil emissivity, where the white regions represent missing values.</p> "> Figure 4
<p>Spatial distribution of retrieved LST images from FY-3D band 24 with the terrain correction effect on (<b>a</b>) 10 November (05:45 UTC time), (<b>b</b>) 11 November (05:25 UTC time), (<b>c</b>) 11 November (19:25 UTC time), and (<b>d</b>) 14 November (18:30 UTC time) in 2021.</p> "> Figure 4 Cont.
<p>Spatial distribution of retrieved LST images from FY-3D band 24 with the terrain correction effect on (<b>a</b>) 10 November (05:45 UTC time), (<b>b</b>) 11 November (05:25 UTC time), (<b>c</b>) 11 November (19:25 UTC time), and (<b>d</b>) 14 November (18:30 UTC time) in 2021.</p> "> Figure 5
<p>Spatial distribution of the study area-II (<b>a</b>) aspect angle, (<b>b</b>) slope angle, (<b>c</b>) SVF, and (<b>d</b>) ASTER GED bare soil emissivity.</p> "> Figure 5 Cont.
<p>Spatial distribution of the study area-II (<b>a</b>) aspect angle, (<b>b</b>) slope angle, (<b>c</b>) SVF, and (<b>d</b>) ASTER GED bare soil emissivity.</p> "> Figure 6
<p>Spatial distribution of the retrieved LST images from FY-3D band 24 with the terrain correction effect on (<b>a</b>) 11 November (05:25 UTC time), (<b>b</b>) 12 November (19:05 UTC time), (<b>c</b>) 13 November (18:45 UTC time), and (<b>d</b>) 14 November (06:10 UTC time) in 2021.</p> "> Figure 6 Cont.
<p>Spatial distribution of the retrieved LST images from FY-3D band 24 with the terrain correction effect on (<b>a</b>) 11 November (05:25 UTC time), (<b>b</b>) 12 November (19:05 UTC time), (<b>c</b>) 13 November (18:45 UTC time), and (<b>d</b>) 14 November (06:10 UTC time) in 2021.</p> "> Figure 7
<p>The scatterplot of the LST bias and RMSE between the five in situ sites (A1701, A1702, A1703, A1707, and A1708) and the retrieved FY-3D LST.</p> ">
Abstract
:1. Introduction
2. Study Area and Material
2.1. Study Areas
2.2. FY-3D Data
2.3. NCEP Data
2.4. ASTER GED Data
2.5. Digital Elevation Model (DEM) Data
3. Methodology
4. Results
4.1. Application of the LST Retrieval Algorithm to Kunlun Mountain Images
4.2. Application of the LST Retrieval Algorithm to Yanqing Zone Images
4.3. Accuracy Assessment of LST Using In Situ Measurements
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, M.; Norman, J.; Kustas, W.; Houborg, R.; Starks, P.; Agam, N. A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sens. Environ. 2008, 112, 4227–4241. [Google Scholar] [CrossRef]
- Chen, J.; Liu, J. Evolution of evapotranspiration models using thermal and shortwave remote sensing data. Remote Sens. Environ. 2020, 237, 111594. [Google Scholar] [CrossRef]
- Zhang, Y.; Peña-Arancibia, J.; McVicar, T.R.; Chiew, F.H.S.; Vaze, J.; Liu, C.; Lu, X.; Zheng, H.; Wang, Y.; Liu, Y.; et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 2016, 11, 19124. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Renzullo, L.; Van Dijk, A.I.J.M.; He, J.; Tian, S.; Xu, Z.; Zhou, J.; Liu, T.; Liu, Q. Monitoring agricultural drought in Australia using MTSAT-2 land surface temperature retrievals. Remote Sens. Environ. 2020, 236, 111419. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, X.; Dang, C.; Yue, H.; Wang, X.; Niu, H.; Zu, P.; Cao, M. A dryness index TSWDI based on land surface temperature, sun-induced chlorophyll fluorescence, and water balance. ISPRS J. Photogramm. Remote Sens. 2023, 202, 581–598. [Google Scholar] [CrossRef]
- West, H.; Quinn, N.; Horswell, M. Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities. Remote Sens. Environ. 2019, 232, 111291. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y. Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A case study of Wuhan, Central China. ISPRS J. Photogramm. Remote Sens. 2019, 152, 119–131. [Google Scholar] [CrossRef]
- Liu, Z.; Zhan, W.; Lai, J.; Bechtel, B.; Lee, X.; Hong, F.; Li, L.; Huang, F.; Li, J. Taxonomy of seasonal and diurnal clear-sky climatology of surface urban heat island dynamics across global cities. ISPRS J. Photogramm. Remote Sens. 2022, 187, 14–33. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Oltra-Carrió, R.; Sòria, G.; Bianchi, R.; Paganini, M. Impact of spatial resolution and satellite overpass time on evaluation of the surface urban heat island effects. Remote Sens. Environ. 2012, 117, 50–56. [Google Scholar] [CrossRef]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sens. 2019, 11, 48. [Google Scholar] [CrossRef]
- Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global surface temperature change. Rev. Geophys. 2010, 48, RG4004. [Google Scholar] [CrossRef]
- Plummer, S.; Lecomte, P.; Doherty, M. The ESA Climate Change Initiative (CCI): A European contribution to the generation of the Global Climate Observing System. Remote Sens. Environ. 2017, 203, 2–8. [Google Scholar] [CrossRef]
- Zheng, L.; Li, D.; Xu, J.; Xia, Z.; Hao, H.; Chen, Z. A twenty-years remote sensing study reveals changes to alpine pastures under asymmetric climate warming. ISPRS J. Photogramm. Remote Sens. 2022, 190, 69–78. [Google Scholar] [CrossRef]
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Li, Z.-L.; Wu, H.; Duan, S.-B.; Zhao, W.; Ren, H.Z.; Liu, X.; Leng, P.; Tang, R.; Ye, X.; Zhu, J.; et al. Satellite remote sensing of global land surface temperature: Definition, methods, products, and applications. Rev. Geophys. 2022, 61, e2022RG000777. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, N.; Li, Z.; Chen, A.; Guo, Z.; Qie, Y. The effect of thermal radiation from surrounding terrain on glacier surface temperatures retrieved from remote sensing data: A case study from Qiyi Glacier, China. Remote Sens. Environ. 2019, 231, 111267. [Google Scholar] [CrossRef]
- Kapos, V.; Rhind, J.; Edwards, M.; Price, M.; Ravilious, C. Developing a map of the world’s mountain forests. In Forests in Sustainable Mountain Development: A State of Knowledge Report for 2000. Task Force on Forests in Sustainable Mountain Development; Cabi Publishing: Wallingford, UK, 2000; pp. 4–19. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, N.; He, J.; Jiang, X. Estimating mountainous glacier surface temperatures from Landsat-ETM+ thermal infrared data: A case study of Qiyi glacier, China. Remote Sens. Environ. 2015, 163, 286–295. [Google Scholar] [CrossRef]
- Li, A.; Bian, J.; Zhang, Z.; Zhao, W.; Yin, G. Progresses, opportunities, and challenges of mountain remote sensing research. Natl. Remote Sens. Bull. 2016, 20, 1199–1215. [Google Scholar] [CrossRef]
- Sandmeier, S.; Itten, K. A physically-based model to correct atmospheric and illumination effects in optical satellite data of rugged terrain. IEEE Trans. Geosci. Remote Sens. 1997, 35, 708–717. [Google Scholar] [CrossRef]
- Sirguey, P. Simple correction of multiple reflection effects in rugged terrain. Int. J. Remote Sens. 2009, 30, 1075–1081. [Google Scholar] [CrossRef]
- Lenot, X.; Achard, V.; Poutier, L. SIERRA: A new approach to atmospheric and topographic corrections for hyperspectral imagery. Remote Sens. Environ. 2009, 113, 1664–1677. [Google Scholar] [CrossRef]
- Wu, S.; Wen, J.; You, D.; Hao, D.; Lin, X.; Xiao, Q.; Liu, Q.; Gastellu-Etchegorry, J. Characterization of remote sensing albedo over sloped surfaces based on DART simulations and in situ observations. J. Geophys. Res. Atmos. 2018, 123, 8599–8622. [Google Scholar] [CrossRef]
- Bellasio, R.; Maffeis, G.; Scire, J.S.; Longoni, M.G.; Bianconi, R.; Quaranta, N. Algorithms to account for topographic shading effects and surface temperature dependence on terrain elevation in diagnostic meteorological models. Bound.-Layer Meteorol. 2005, 114, 595–614. [Google Scholar] [CrossRef]
- Zhao, W.; Li, A. A review on land surface processes modeling over complex terrain. Adv. Meteorol. 2015, 2015, 607181. [Google Scholar] [CrossRef]
- Wang, T.; Yan, G.; Mu, X.; Jiao, Z.; Chen, L.; Chu, Q. Toward operational shortwave radiation modeling and retrieval over rugged terrain. Remote Sens. Environ. 2018, 205, 419–433. [Google Scholar] [CrossRef]
- Yan, G.; Wang, T.; Jiao, Z.; Mu, X.; Zhao, J.; Chen, L. Topographic radiation modeling and spatial scaling of clear-sky land surface longwave radiation over rugged terrain. Remote Sens. Environ. 2016, 172, 15–27. [Google Scholar] [CrossRef]
- Yan, G.; Tong, Y.; Yan, K.; Mu, X.; Chu, Q.; Zhou, Y.; Liu, Y.; Qi, J.; Li, L.; Zeng, Y.; et al. Temporal extrapolation of daily downward shortwave radiation over cloud-free rugged terrains. Part 1: Analysis of topographic effects. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6375–6393. [Google Scholar] [CrossRef]
- Jiao, Z.; Yan, G.; Wang, T.; Mu, X.; Zhao, J. Modeling of land surface thermal anisotropy based on directional and equivalent brightness temperatures over complex terrain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 410–423. [Google Scholar] [CrossRef]
- Hais, M.; Kučera, T. The influence of topography on the forest surface temperature retrieved from Landsat TM, ETM+ and ASTER. ISPRS J. Photogramm. Remote Sens. 2009, 64, 585–591. [Google Scholar] [CrossRef]
- Lipton, A.E. Effects of slope and aspect variations on satellite surface temperature retrievals and mesoscale analysis in mountainous terrain. J. Appl. Meteorol. Climatol. 1992, 31, 255–264. [Google Scholar] [CrossRef]
- Lipton, A.E.; Ward, J.M. Satellite-view biases in retrieved surface temperatures in mountain areas. Remote Sens. Environ. 1997, 60, 92–100. [Google Scholar] [CrossRef]
- Zhu, X.; Duan, S.-B.; Li, Z.-L.; Zhao, W.; Wu, H.; Leng, P.; Gao, M.; Zhou, X. Retrieval of land surface temperature with topographic effect correction from Landsat 8 thermal infrared data in mountainous areas. IEEE Trans. Geosci. Remote Sens. 2021, 59, 6674–6687. [Google Scholar] [CrossRef]
- Malbéteau, Y.; Merlin, O.; Gascoin, S.; Gastellu, J.; Mattar, C.; Olivera-Guerra, L.; Khabba, S.; Jarlan, L. Normalizing land surface temperature data for elevation and illumination effects in mountainous areas: A case study using ASTER data over a steep-sided valley in Morocco. Remote Sens. Environ. 2017, 189, 25–39. [Google Scholar] [CrossRef]
- Weng, Q.; Firozjaei, M.; Kiavarz, M.; Alavipanah, S.; Hamzeh, S. Normalizing land surface temperature for environmental parameters in mountainous and urban areas of a cold semi-arid climate. Sci. Total Environ. 2019, 650, 515–529. [Google Scholar] [CrossRef]
- Zhao, W.; Duan, S.-B.; Li, A.; Yin, G. A practical method for reducing terrain effect on land surface temperature using random forest regression. Remote Sens. Environ. 2019, 221, 635–649. [Google Scholar] [CrossRef]
- Eom, H.-S.; Myoung-Seok, S. Seasonal and diurnal variations of stability indices and environmental parameters using NCEP FNL data over East Asia. Asia-Pac. J. Atmos. Sci. 2011, 47, 181–192. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J.; Baldridge, A.M. Validation of the North American ASTER land surface emissivity database (NAALSED) version 2.0 using pseudo-invariant sand dune sites. Remote Sens. Environ. 2009, 113, 2224–2233. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J.; Abbott, E.; Malakar, M.; Islam, T.; Abrams, M. The ASTER Global Emissivity Dataset (ASTER GED): Mapping Earth’s emissivity at 100 meter spatial scale. Geophys. Res. Lett. 2015, 42, 7966–7976. [Google Scholar] [CrossRef]
- Horn, B. Hill shading and reflectance map. Proc. IEEE 1981, 69, 14–47. [Google Scholar] [CrossRef]
- Dozier, J.; Frew, J. Rapid calculation of terrain parameters for radiation modeling from digital elevation data. IEEE Trans. Geosci. Remote Sens. 1990, 28, 963–969. [Google Scholar] [CrossRef]
- Proy, C.; Tanré, D.; Deschamps, P.Y. Evaluation of topographic effects in remotely sensed data. Remote Sens. Environ. 1989, 30, 21–32. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Wang, C.; Zhang, S.; Tang, B.-H.; Leng, P.; Gao, M.-F. Land-surface temperature retrieval from Landsat-8 single-channel thermal infrared data in combination with NCEP reanalysis data and ASTER GED product. Int. J. Remote Sens. 2019, 40, 1763–1778. [Google Scholar] [CrossRef]
- Shi, H.; Xiao, Z. Exploring topographic effects on surface parameters over rugged terrains at various spatial scales. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Y.; Zhu, X.; Wu, Z.; Duan, S.-B. Retrieval of Land Surface Temperature over Mountainous Areas Using Fengyun-3D MERSI-II Data. Remote Sens. 2023, 15, 5465. https://doi.org/10.3390/rs15235465
Xue Y, Zhu X, Wu Z, Duan S-B. Retrieval of Land Surface Temperature over Mountainous Areas Using Fengyun-3D MERSI-II Data. Remote Sensing. 2023; 15(23):5465. https://doi.org/10.3390/rs15235465
Chicago/Turabian StyleXue, Yixuan, Xiaolin Zhu, Zihao Wu, and Si-Bo Duan. 2023. "Retrieval of Land Surface Temperature over Mountainous Areas Using Fengyun-3D MERSI-II Data" Remote Sensing 15, no. 23: 5465. https://doi.org/10.3390/rs15235465