Early Identification of Cotton Fields Based on Gf-6 Images in Arid and Semiarid Regions (China)
"> Figure 1
<p>The location of the study area and distribution map of field sampling points.</p> "> Figure 2
<p>Distribution map of visual interpretation samples.</p> "> Figure 3
<p>Network architecture diagram of DeepLab V<sup>3</sup>+ semantic segmentation model based on attention mechanism.</p> "> Figure 4
<p>Schematic diagram of DAM structure.</p> "> Figure 5
<p>Loss changes corresponding to Epoch settings in different models.</p> "> Figure 6
<p>Comparison of the cotton identification effect of different models in some areas. (<b>A</b>) GF-6 remote sensing images, (<b>B</b>) visual interpretation samples, (<b>C</b>) the DeepLabV3+DAM with full features, (<b>D</b>) the DeepLabV3+ Network, (<b>E</b>) the DeepLabV3+ DAM with 4-band, (<b>F</b>) the U-Net model, (<b>G</b>) the RF model. The white color indicates the identified non-cotton in the Figures (<b>B</b>) to (<b>G</b>), and the red solid line depicts area with differences in the Figure (<b>A</b>).</p> "> Figure 7
<p>Comparison of the cotton identification effect of different models in some areas. (<b>A</b>) GF-6 remote-sensing images, (<b>B</b>) visual interpretation samples, (<b>C</b>) the DeepLabV3+DAM with full features, (<b>D</b>) the DeepLabV3+ Network, (<b>E</b>) the DeepLabV3+ DAM with 4-band, (<b>F</b>) the U-Net model, (<b>G</b>) the RF model. The white color indicates the identified non-cotton in the Figures (<b>B</b>) to (<b>G</b>), and the red solid line depicts areas with differences in the Figure (<b>A</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Data Processing
2.4. Model and Parameter
2.5. Feature Set Construction
2.5.1. Vegetation Index Features
2.5.2. Texture Features
2.5.3. Feature Combination
2.6. Model Performance Evaluation Indicators
2.7. Model Parameter Settings
2.8. Model Accuracy Evaluation Indicators
3. Results and Analysis
3.1. Performance Evaluation
3.2. Accuracy Evaluation
3.3. Cotton Identification
4. Conclusions and Discussion
4.1. Conclusions
- (1)
- The recognition accuracy of traditional machine learning algorithms is far inferior to that of deep learning algorithms in accuracy evaluation and the phenomenon of loss of ground object boundary information.
- (2)
- Compared with the DeepLab V3+ network and U-Net, the DeepLabV3+ DAM model with the full feature showed a good effect on early cotton recognition in this study area.
- (3)
- Only the spectral information provided by the 4-band feature set is relatively limited, and the performance and recognition accuracy of the same DeepLabV3+ DAM model is worse than that of the full feature set.
4.2. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, C.; Shanm, L.; Deng, X.; Zhao, L.; Zhang, Y.; Wang, S. Current situation and counter measures of the development of dryland farming in China. Trans. CSAE 2004, 40, 280–285. [Google Scholar]
- Wu, P.; Zhao, X. Impact of climate change on agricultural water use and grain production in China. Trans. CSAE 2010, 26, 1–6. [Google Scholar]
- Shi, J.; Du, Y.; Du, J.; Jiang, L.; Chai, L.; Mao, K. Progress in Microwave Remote Sensing Surface Parameter Inversion. Sci. China Earth Sci. 2012, 42, 814–842. [Google Scholar]
- Xun, L.; Zhang, J.; Yao, F.; Cao, D. Improved identification of cotton cultivated areas by applying instance-based transfer learning on the time series of MODIS NDVI. Catena 2022, 213, 106130. [Google Scholar] [CrossRef]
- Xun, L.; Zhang, J.; Cao, D.; Wang, J.; Zhang, S.; Yao, F. Mapping cotton cultivated area combining remote sensing with a fused representation-based classification algorithm. Comput. Electron. Agric. 2021, 181, 105940. [Google Scholar] [CrossRef]
- Genbatu, G.; Shi, Z.; Zhu, Y.; Yang, X.; Hao, Y. Land use/cover classification in an arid desert-oasis mosaic landscape of china using remote sensed imagery: Performance assessment of four machine learning algorithms. Glob. Ecol. Conserv. 2020, 22, e00971. [Google Scholar]
- Yang, B.; Pei, Z.; Jiao, X.; Zhang, S. Cotton growing area monitoring in Northwest China using CBERS-1 data based on satellite remote sensing. Trans. CSAE 2003, 19, 4. [Google Scholar]
- Cao, W.; Yang, B.; Song, J. Spectral information based model for cotton identification on Landsat TM Image. Trans. CSAE 2004, 20, 112–116. [Google Scholar]
- Wang, C.; Chen, Q.; Fan, H.; Yao, C.; Sun, X.; Chan, J.; Deng, J. Evaluating satellite hyperspectral (Orbita) and multispectral (Landsat 8 and Sentinel-2) imagery for identifying cotton acreage. Int. J. Remote Sens. 2021, 41, 4042–4063. [Google Scholar] [CrossRef]
- Raza, D.; Shu, H.; Khan, S.; Ehsan, M.; Saeed, U.; Aslam, H.; Aslam, R.; Arshad, M. Comparative geospatial approach for agricultural crops identification in inter- fluvial plain- A case study of Sahiwal district, Pakistan. Pak. J. Agric. Sci. 2022, 59, 567–578. [Google Scholar]
- Ma, Y.; Ma, L.; Zhang, Q.; Huang, C.; Yi, X.; Chen, X.; Hou, T.; Lv, X.; Zhang, Z. Cotton Yield Estimation Based on Vegetation Indices and Texture Features Derived from RGB Image. Front. Plant Sci. 2022, 13, 925986. [Google Scholar] [CrossRef] [PubMed]
- Ahsen, R.; Khan, Z.; Farid, H.; Shakoor, A.; Ali, A. Estimation of cropped area and irrigation water requirement using Remote Sensing and GIS. J. Appl. Pharm. Sci. 2020, 30, 876–884. [Google Scholar]
- Conrad, C.; Fritsch, S.; Zeidler, J.; Cker, G.; Dech, S. Per-field irrigated crop classification in arid Central Asia using SPOT and ASTER data. Remote Sens. 2010, 2, 1035–1056. [Google Scholar] [CrossRef]
- Sanchez, A.; Gonzalez-Piqueras, J.; de la Ossa, L.; Calera, A. Convolutional Neural Networks for Agricultural Land Use Classification from Sentinel-2 Image Time Series. Remote Sens. 2022, 14, 5373. [Google Scholar] [CrossRef]
- Arvind; Hooda, R.; Sheoran, H.; Kumar, D.; Satyawan; Abhilash; Bhardwaj, S. RS-based regional crop identification and mapping: A case study of Barwala sub-branch of Western Yamuna Canal in Haryana (India). Indian J. Tradit. Knowl. 2020, 19, 182–186. [Google Scholar]
- Abouel, M.L.; Tanton, T. Improvements in land use mapping for irrigated agriculture from satellite sensor data using a multi-stage maximum likelihood classification. Remote Sens. 2003, 24, 4197–4206. [Google Scholar] [CrossRef]
- Samaniego, L.; Schulz, K. Supervised classification of agricultural land cover using a modified K-NN technique (mnn) and Landsat remote sensing imagery. Remote Sens. 2009, 1, 875–895. [Google Scholar] [CrossRef]
- Alganci, U.; Sertel, E.; Ozdogan, M.; Ormeci, C. Parcel-level identification of crop types using different classification algorithms and multi-resolution imagery in southeastern turkey. Photogramm. Eng. Remote Sens. 2013, 79, 1053–1065. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the us central great plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef]
- Crist, E.P.; Cicone, R.C. Application of the tasseled cap concept to simulated thematic mapper data. Photogramm. Eng. Remote Sens. 1984, 50, 343–352. [Google Scholar]
- Ozdarici-Ok, A.; Ok, A.; Schindler, K. Mapping of Agricultural Crops from Single High-Resolution Multispectral Images—Data-Driven Smoothing vs. Parcel-Based Smoothing. Remote Sens. 2015, 7, 5611–5638. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using spot-5 hrg imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Liu, J.; Shao, G.; Zhu, H.; Liu, S. A neural network approach for enhancing information extraction from multispectral image data. Can. J. Remote Sens. 2005, 31, 432–438. [Google Scholar] [CrossRef]
- Omkar, S.N.; Senthilnath, J.; Mudigere, D.; Kumar, M.M. Crop classification using biologically-inspired techniques with high resolution satellite image. J. Indian Soc. Remote Sens. 2008, 36, 175–182. [Google Scholar] [CrossRef]
- Ji, X.; Li, X.; Wan, Z.; Yao, X.; Zhu, Y.; Cheng, T. Pixel-Based and Object-Oriented Classification of Jujube and Cotton Based on High Resolution Satellite Imagery over Alear, Xinjiang. Sci. Agric. Sin. 2019, 52, 997–1008. [Google Scholar]
- Kerwin, W.S.; Prince, J.L. The kriging update model and recursive space-time function estimation. IEEE Trans. Signal Process. 2002, 47, 2942–2952. [Google Scholar] [CrossRef]
- Petitjean, F.; Inglada, J.; Gancarski, P. Satellite image time series analysis under time warping. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3081–3095. [Google Scholar] [CrossRef]
- Osman, J.; Inglada, J.; Dejoux, J.-F. Assessment of a markov logic model of crop rotations for early crop mapping. Comput. Electron. Agric. 2015, 113, 234–243. [Google Scholar] [CrossRef]
- Mariana, B.; Ovidiu, C. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar]
- Lv, Y.; Gao, Y.; Rigall, E.; Qi, L.; Dong, J. Cotton appearance grade classification based on machine learning. Procedia Comput. Sci. 2020, 174, 729–734. [Google Scholar] [CrossRef]
- Xu, X.; Du, M.; Guo, H.; Chang, J.; Zhao, X. Lightweight FaceNet based on MobileNet. Int. J. Intell. Sci. 2020, 11, 1–16. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Q.; Lei, Y.; Wang, Z.; Han, Y.; Li, X.; Xing, F.; Fan, Z.; Li, Y.; Feng, Z. Classification of cotton density by using machine learning and unmanned aerial vehicle images. China Cotton 2021, 48, 6–10, 29. [Google Scholar]
- Wang, X.; Qiu, P.; Li, Y.; Cha, M. Crops identification in Kaikong River Basin of Xinjiang based on time series Landsat remote sensing images. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2019, 35, 180–188. [Google Scholar]
- Liu, J.; Wang, L.; Yang, F.; Wang, X. Remote sensing estimation of crop planting area based on HJ time-series images. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2015, 31, 199–206. [Google Scholar]
- Wang, C.; Zhang, R.; Chang, L. A Study on the Dynamic Effects and Ecological Stress of Eco-Environment in the Headwaters of the Yangtze River Based on Improved DeepLab V3+ Network. Remote Sens. 2022, 14, 2225. [Google Scholar] [CrossRef]
- Peng, H.; Xue, C.; Shao, Y.; Chen, K.; Xiong, J.; Xie, Z.; Zhang, L. Semantic segmentation of litchi branches using DeepLabV3+model. IEEE Access 2020, 8, 164546–164555. [Google Scholar] [CrossRef]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520. [Google Scholar]
- Seydi, S.T.; Amani, M.; Ghorbanian, A. A Dual Attention Convolutional Neural Network for Crop Classification Using Time-Series Sentinel-2 Imagery. Remote Sens. 2022, 14, 498. [Google Scholar] [CrossRef]
- Lin, Y.; Xu, D.; Wang, N.; Shi, Z.; Chen, Q. Road Extraction from Very-High-Resolution Remote Sensing Images via a Nested SE-Deeplab Model. Remote Sens. 2020, 12, 2985. [Google Scholar] [CrossRef]
- Hidayat, S.; Matsuoka, M.; Baja, S.; Rampisela, D.A. Object-Based Image Analysis for Sago Palm Classification: The Most Important Features from High-Resolution Satellite Imagery. Remote Sens. 2018, 10, 1319. [Google Scholar] [CrossRef]
- Haralick, R.M. Statistical and structural approaches to texture. Proc. IEEE 2005, 67, 786–804. [Google Scholar] [CrossRef]
- Aguilar, M.; Bianconi, F.; Aguilar, F.; Fernández, I. Object-based greenhouse classification from GeoEye-1 and WorldView-2 stereo imagery. Remote Sens. 2014, 6, 3554–3582. [Google Scholar] [CrossRef]
- Yi, L.; Zhang, G. Object-oriented remote sensing imagery classification accuracy assessment based on confusion matrix. In Proceedings of the 2012 20th International Conference on Geoinformatics, Hong Kong, China, 15–17 June 2012; pp. 1–8. [Google Scholar]
- Cao, W.; Liu, J.; Ma, R. Regional planning of Xinjiang cotton growing areas for monitoring and recognition using remote sensing. Trans. CSAE 2008, 24, 172–176. [Google Scholar]
- Yang, C.; Suh, C.P.-C.; Westbrook, J.K. Early identification of cotton fields using mosaicked aerial multispectral imagery. Appl. Remote Sens. 2017, 11, 016008. [Google Scholar] [CrossRef]
- Westbrook, J.K.; Eyster, R.S.; Yang, C.; Suh, C.P.-C. Airborne multispectral identification of individual cotton plants using consumer-grade cameras. Remote Sens. Appl. Soc. Environ. 2016, 4, 37–43. [Google Scholar] [CrossRef]
- Li, H.; Wang, G.; Dong, Z.; Wei, X.; Wu, M.; Song, H.; Amankwah, S.O.Y. Identifying Cotton Fields from Remote Sensing Images Using Multiple Deep Learning Networks. Agronomy 2021, 11, 174. [Google Scholar] [CrossRef]
Formula | Number | Parameter Description |
---|---|---|
NDVI = (NDNIR – NDR)/(NDNIR + NDR) | (3) | NIR represents the near red band; R represents the red band; ND represents the grayscale value |
RIV = NDNIR/NDR | (4) | |
DVI = NDNIR − NDR | (5) |
Model | 4-Band | VI Features | Texture Features |
---|---|---|---|
RF | ✓ | ✓ | ✓ |
U-Net | ✓ | ✓ | ✓ |
DeepLabV3+ | ✓ | ✓ | ✓ |
DeepLabV3+ DAM (4-band) | ✓ | ||
DeepLabV3+ DAM (full features) | ✓ | ✓ | ✓ |
Predictive Value | Positive Example | Counter-Example | |
---|---|---|---|
Actual Value | |||
Positive example | True positive cases (TP) | False negative cases (FN) | |
Counter example | False positive cases (FP) | True negative cases (TN) |
Parameter | Texture Features |
---|---|
Batch Size | 4, 8, 16, 32 |
Epoch | 100 |
Optimizer | Adam |
Initial learning rate | 0.01 |
Learning rate strategy | When the loss function value of the validation set does not decrease after 3 Epochs, the learning rate decreases to 1/10 of the previous value |
Step_size | 10 |
Gamma | 0.1 |
Model | MIoU (%) | Loss |
---|---|---|
U-Net | 90.48 | 0.1250 |
DeepLabV3+ | 90.60 | 0.1215 |
DeepLabV3+ DAM (4-band) | 90.57 | 0.1228 |
DeepLabV3+ DAM (full features) | 90.69 | 0.1209 |
Cotton (%) | Non-Cotton (%) | Overall Accuracy (%) | Kappa | |||
---|---|---|---|---|---|---|
P_A | U_A | P_A | U_A | |||
RF | 91.35 | 83.25 | 65.31 | 80.00 | 82.33 | 0.5921 |
U-Net | 94.59 | 98.31 | 96. 94 | 90.48 | 95.41 | 0.9002 |
DeepLabV3+ | 97.30 | 96.77 | 93.88 | 94.85 | 96.11 | 0.9139 |
DeepLabV3+ DAM (4-band) | 97.30 | 95.74 | 91.84 | 94.74 | 95.41 | 0.8978 |
DeepLabV3+ DAM (full features) | 98.38 | 98.91 | 97.96 | 96.97 | 98.23 | 0.9611 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, C.; Chen, D.; Chang, Z.; Fan, J.; Zheng, J.; Zhao, H.; Wang, Z.; Li, H. Early Identification of Cotton Fields Based on Gf-6 Images in Arid and Semiarid Regions (China). Remote Sens. 2023, 15, 5326. https://doi.org/10.3390/rs15225326
Zou C, Chen D, Chang Z, Fan J, Zheng J, Zhao H, Wang Z, Li H. Early Identification of Cotton Fields Based on Gf-6 Images in Arid and Semiarid Regions (China). Remote Sensing. 2023; 15(22):5326. https://doi.org/10.3390/rs15225326
Chicago/Turabian StyleZou, Chen, Donghua Chen, Zhu Chang, Jingwei Fan, Jian Zheng, Haiping Zhao, Zuo Wang, and Hu Li. 2023. "Early Identification of Cotton Fields Based on Gf-6 Images in Arid and Semiarid Regions (China)" Remote Sensing 15, no. 22: 5326. https://doi.org/10.3390/rs15225326
APA StyleZou, C., Chen, D., Chang, Z., Fan, J., Zheng, J., Zhao, H., Wang, Z., & Li, H. (2023). Early Identification of Cotton Fields Based on Gf-6 Images in Arid and Semiarid Regions (China). Remote Sensing, 15(22), 5326. https://doi.org/10.3390/rs15225326