Phase Characteristics and Angle Deception of Frequency-Diversity-Array-Transmitted Signals Based on Time Index within Pulse
<p>Phase-change process of pulse signal.</p> "> Figure 2
<p>Uniform linear phased array.</p> "> Figure 3
<p>Uniform linear frequency diversity array.</p> "> Figure 4
<p>Principle of single-baseline phase interferometer.</p> "> Figure 5
<p>Particle swarm optimization flow.</p> "> Figure 6
<p>Time–angle–phase relationship of PA-transmitted signal: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>6</mn> <mtext> </mtext> <mi>km</mi> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>120</mn> <mtext> </mtext> <mi>km</mi> </mrow> </semantics></math>.</p> "> Figure 6 Cont.
<p>Time–angle–phase relationship of PA-transmitted signal: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>6</mn> <mtext> </mtext> <mi>km</mi> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>120</mn> <mtext> </mtext> <mi>km</mi> </mrow> </semantics></math>.</p> "> Figure 7
<p>Time index within pulse–angle–phase relationship of the PA-transmitted signal.</p> "> Figure 8
<p>Time index within pulse–angle–phase relationship of the PA-transmitted signal with the phase center as the reference point.</p> "> Figure 9
<p>Time–angle–phase relationship of the LIFDA-transmitted signal: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>6</mn> <mtext> </mtext> <mi>km</mi> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>120</mn> <mtext> </mtext> <mi>km</mi> </mrow> </semantics></math>.</p> "> Figure 9 Cont.
<p>Time–angle–phase relationship of the LIFDA-transmitted signal: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>6</mn> <mtext> </mtext> <mi>km</mi> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>120</mn> <mtext> </mtext> <mi>km</mi> </mrow> </semantics></math>.</p> "> Figure 10
<p>Time index within the pulse–angle–phase relationship of the LIFDA-transmitted signal.</p> "> Figure 11
<p>Time index within pulse–angle–phase relationship of the LIFDA-transmitted signal with the phase center as the reference point.</p> "> Figure 12
<p>Relation between the LIFDA optimization results and iteration times: (<b>a</b>) fitness function value; (<b>b</b>) phase center.</p> "> Figure 12 Cont.
<p>Relation between the LIFDA optimization results and iteration times: (<b>a</b>) fitness function value; (<b>b</b>) phase center.</p> "> Figure 13
<p>FDA frequency increment optimization results: (<b>a</b>) fitness function value; (<b>b</b>) frequency increment of each element.</p> "> Figure 13 Cont.
<p>FDA frequency increment optimization results: (<b>a</b>) fitness function value; (<b>b</b>) frequency increment of each element.</p> ">
Abstract
:1. Introduction
- The phase characteristics of the FDA-transmitted signal based on the time index within pulse are analyzed.
- The phase center of the FDA-transmitted signal is calculated, and the theoretical basis of FDA angle deception is analyzed by adjusting the phase center.
- An active anti-jamming algorithm based on the FDA phase center is proposed by optimizing each element’s frequency increment.
2. Phase Characteristics of PA
2.1. Phase Propagation Analysis
2.2. PA Signal Analysis
3. FDA Phase Characteristics
4. Phase Center and Angle Deception
4.1. Phase Center
4.2. Angle Deception
5. Simulation Results
5.1. PA Phase Characteristics
5.2. FDA Phase Characteristics
5.3. FDA Angle Deceptive
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Antonik, P.; Wicks, M.C.; Griffiths, H.D.; Baker, C.J. Range-dependent beamforming using element level waveform diversity. In Proceedings of the International Waveform Diversity Design Conference, Lihue, HI, USA, 22–27 January 2006; pp. 1–6. [Google Scholar]
- Huang, J.; Tong, K.F.; Baker, C. Frequency diverse array: Simulation and design. In Proceedings of the 2009 IEEE Radar Conference, Pasadena, CA, USA, 4–8 May 2009. [Google Scholar]
- Huang, J.; Tong, K.F.; Baker, C.J. Frequency diverse array with beam scanning feature. In Proceedings of the Antennas & Propagation Society International Symposium, San Diego, CA, USA, 5–11 July 2008. [Google Scholar]
- Lan, L.; Marino, A.; Aubry, A.; De Maio, A.; Liao, G.; Xu, J.; Zhang, Y. GLRT-based Adaptive Target Detection in FDA-MIMO Radar. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 597–613. [Google Scholar] [CrossRef]
- Wang, W.-Q. Overview of frequency diverse array in radar and navigation applications. IET Radar Sonar Navig. 2016, 10, 1001–1012. [Google Scholar] [CrossRef]
- Lan, L.; Rosamilia, M.; Aubry, A.; De Maio, A.; Liao, G.; Xu, J. Adaptive Target Detection with Polarimetric FDA-MIMO Radar. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 2204–2220. [Google Scholar] [CrossRef]
- Secmen, M.; Demir, S.; Hizal, A.; Eker, T. Frequency diverse array antenna with periodic time modulated pattern in range and angle. In Proceedings of the 2007 IEEE Radar Conference, Boston, MA, USA, 17–20 April 2007; pp. 427–430. [Google Scholar]
- Khan, W.; Qureshi, I.M.; Basit, A.; Malik, A.N.; Umar, A. Performance analysis of MIMO-frequency diverse array radar with variable logarithmic offsets. Prog. Electromagn. Res. C 2016, 62, 23–34. [Google Scholar] [CrossRef]
- Gao, K.; Wang, W.Q.; Cai, J.; Xiong, J. Decoupled frequency diverse array range-angle-dependent beampattern synthesis using non-linearly increasing frequency offsets. IET Microw. Antennas Propag. 2016, 10, 880–884. [Google Scholar] [CrossRef]
- Shao, H.; Dai, J.; Xiong, J.; Chen, H.; Wang, W.-Q. Dot-shaped range-angle beampattern synthesis for frequency diverse array. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1703–1706. [Google Scholar] [CrossRef]
- Liu, Y.; Ruan, H.; Wang, L.; Nehorai, A. The random frequency diverse array: A new antenna structure for uncoupled direction-range indication in active sensing. IEEE J. Sel. Top. Signal Process. 2017, 11, 295–308. [Google Scholar] [CrossRef]
- Khan, W.; Qureshi, I.M. Frequency diverse array radar with time-dependent frequency offset. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 758–761. [Google Scholar] [CrossRef]
- Han, S.; Fan, C.; Huang, X. Frequency diverse array with time-dependent transmit weights. In Proceedings of the IEEE 13th International Conference on Signal Processing, Chengdu, China, 6–10 November 2016; pp. 448–451. [Google Scholar]
- Xiong, J.; Wang, W.-Q.; Shao, H.; Chen, H. Frequency diverse array transmit beampattern optimization with genetic algorithm. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 469–472. [Google Scholar] [CrossRef]
- Chen, B.; Chen, X.; Huang, Y.; Guan, J. Transmit beampattern synthesis for FDA radar. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 98–101. [Google Scholar] [CrossRef]
- Wang, Z.; Song, Y.; Mu, T.; Luo, J.; Ahmad, Z. A short-range range-angle dependent beampattern synthesis by frequency diverse array. IEEE Access 2018, 6, 22664–22669. [Google Scholar] [CrossRef]
- Chen, K.; Yang, S.; Chen, Y.; Qu, S.W. Accurate Models of Time-Invariant Beampatterns for Frequency Diverse Arrays. IEEE Trans. Antennas Propag. 2019, 67, 3022–3029. [Google Scholar] [CrossRef]
- Liao, Y.; Zeng, G.; Luo, Z. Time-Variance Analysis for Frequency-Diverse Array Beampatterns. IEEE Trans. Antennas Propag. 2023, 71, 6558–6567. [Google Scholar] [CrossRef]
- Chen, K.; Yang, S.; Chen, Y.; Qu, S.-W. Comments on “correction analysis of ‘frequency diverse array radar about time’”. IEEE Trans. Antennas Propag. 2023, 71, 2897–2898. [Google Scholar] [CrossRef]
- Tan, M.; Wang, C.; Li, Z. Correction Analysis of Frequency Diverse Array Radar About Time. IEEE Trans. Antennas Propag. 2021, 69, 834–847. [Google Scholar] [CrossRef]
- Xu, J.; Kang, J.; Liao, G.; So, H.C. Mainlobe Deceptive Jammer Suppression with FDA-MIMO Radar. In Proceedings of the 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM), Sheffield, UK, 8–11 July 2018; pp. 504–508. [Google Scholar]
- Lan, L.; Liao, G.; Xu, J.; Zhang, Y.; Fioranelli, F. Suppression Approach to Main-Beam Deceptive Jamming in FDA-MIMO Radar Using Nonhomogeneous Sample Detection. IEEE Access 2018, 6, 34582–34597. [Google Scholar] [CrossRef]
- Tan, M.; Wang, C. Reply to Comments on “Correction Analysis of ‘Frequency Diverse Array Radar About Time’”. IEEE Trans. Antennas Propag. 2023, 71, 2899–2902. [Google Scholar] [CrossRef]
- Lan, L.; Xu, J.; Liao, G.; Zhang, Y.; Fioranelli, F.; So, H. Suppression of mainbeam deceptive jammer with FDA-MIMO radar. IEEE Trans. Veh. Technol. 2020, 69, 11584–11598. [Google Scholar] [CrossRef]
- Lan, L.; Liao, G.; Xu, J.; Zhang, Y.; Liao, B. Transceive Beamforming With Accurate Nulling in FDA-MIMO Radar for Imaging. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4145–4159. [Google Scholar] [CrossRef]
- Xu, J.; Liao, G.; Zhu, S.; So, H.C. Deceptive jamming suppression with frequency diverse MIMO radar. Signal Process. 2015, 113, 9–17. [Google Scholar] [CrossRef]
- Abdalla, A.; Wang, W.Q.; Yuan, Z.; Mohamed, S.; Bin, T. Subarray-based FDA radar to counteract deceptive ECM signals. EURASIP J. Adv. Signal Process. 2016, 2016, 104. [Google Scholar] [CrossRef]
- Liu, W.; Liu, J.; Liu, T.; Chen, H.; Wang, Y.-L. Detector Design and Performance Analysis for Target Detection in Subspace Interference. IEEE Signal Process. Lett. 2023, 30, 618–622. [Google Scholar] [CrossRef]
- Zhang, Z.; Wen, F.; Shi, J.; He, J.; Truong, T.K. 2D-DOA estimation for coherent signals via a polarized uniform rectangular array. IEEE Signal Process. Lett. 2023, 30, 893–897. [Google Scholar] [CrossRef]
- Wang, X.; Guo, Y.; Wen, F.; He, J.; Truong, K.T. EMVS-MIMO radar with sparse Rx geometry: Tensor modeling and 2D direction finding. IEEE Trans. Aerosp. Electron. Syst. 2023, 3297570, 1–14. [Google Scholar] [CrossRef]
- Wang, L.; Wang, W.-Q.; Guan, H.; Zhang, S. LPI Property of FDA Transmitted Signal. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 3905–3915. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, W.-Q. Active Frequency Diverse Array Counteracting Interferometry-Based DOA Reconnaissance. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1922–1925. [Google Scholar] [CrossRef]
- Ge, J.; Xie, J.; Chen, C.; Wang, B. The Direction of Arrival Location Deception Model Counter Duel Baseline Phase Interferometer Based on Frequency Diverse Array. Front. Phys. 2021, 9, 598047. [Google Scholar] [CrossRef]
- Ge, J.; Xie, J.; Wang, B. Phase characteristics of frequency diverse array radar: Phase radiation pattern, phase period, and phase centre. IET Radar Sonar Navig. 2022, 16, 759–774. [Google Scholar] [CrossRef]
- Ge, J.; Xie, J.; Chen, C. Deceptive signal generating optimization based on frequency diverse array. IET Radar Sonar Navig. 2022, 16, 1304–1315. [Google Scholar] [CrossRef]
- Ge, J.; Xie, J.; Wang, B.; Chen, C. The DOA location deception effect of frequency diverse array on interferometer. IET Radar Sonar Navig. 2021, 15, 294–309. [Google Scholar] [CrossRef]
- Ge, J.; Xie, J.; Wang, B. A cognitive active anti-jamming method based on frequency diverse array radar phase center. Digit. Signal Process. 2021, 109, 102915. [Google Scholar] [CrossRef]
- An, Z.; Zhang, Y.; Xu, L. Research on the Phase Center of Uniform Linear Array. Adv. Mater. Res. 2014, 1049–1050, 2037–2040. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. A Discrete Binary Version of the Particle Swarm Algorithm. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Orlando, FL, USA, 12–15 October 1997; pp. 4104–4108. [Google Scholar]
- Shi, Y.; Eberhart, R. A modified Particle swarm optimizer. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, Anchorage, AK, USA, 4–9 May 1998; pp. 69–73. [Google Scholar]
Number of Element | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
frequency offsets (MHz) | −1.83 | −0.5818 | 1.722 | 1.801 | −0.6737 | −0.7543 | −1.84 | −0.7185 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Wang, C.; Gong, J.; Tan, M.; Bao, L.; Liu, M. Phase Characteristics and Angle Deception of Frequency-Diversity-Array-Transmitted Signals Based on Time Index within Pulse. Remote Sens. 2023, 15, 5171. https://doi.org/10.3390/rs15215171
Zhou C, Wang C, Gong J, Tan M, Bao L, Liu M. Phase Characteristics and Angle Deception of Frequency-Diversity-Array-Transmitted Signals Based on Time Index within Pulse. Remote Sensing. 2023; 15(21):5171. https://doi.org/10.3390/rs15215171
Chicago/Turabian StyleZhou, Changlin, Chunyang Wang, Jian Gong, Ming Tan, Lei Bao, and Mingjie Liu. 2023. "Phase Characteristics and Angle Deception of Frequency-Diversity-Array-Transmitted Signals Based on Time Index within Pulse" Remote Sensing 15, no. 21: 5171. https://doi.org/10.3390/rs15215171
APA StyleZhou, C., Wang, C., Gong, J., Tan, M., Bao, L., & Liu, M. (2023). Phase Characteristics and Angle Deception of Frequency-Diversity-Array-Transmitted Signals Based on Time Index within Pulse. Remote Sensing, 15(21), 5171. https://doi.org/10.3390/rs15215171