Identifying Major Diurnal Patterns and Drivers of Surface Urban Heat Island Intensities across Local Climate Zones
"> Figure 1
<p>Study area. (<b>a</b>) Location and elevations of the study area; (<b>b</b>) annual average MODIS land surface temperatures in 2020; (<b>c</b>) land cover map (LCM); and (<b>d</b>) city street map (CSM).</p> "> Figure 2
<p>Spatial distributions of the driving factors at a yearly scale. (<b>a</b>) Enhanced vegetation index (EVI); (<b>b</b>) Modified normalized difference water index (MNDWI); (<b>c</b>) Building surface fraction (BSF); (<b>d</b>) Mean building height (BH); (<b>e</b>) Gross domestic product (GDP); (<b>f</b>) Population density (PD); (<b>g</b>) Road density (RD); (<b>h</b>) Atmospheric pressure (PRS); (<b>i</b>) Relative humidity (RHU); and (<b>j</b>) Air temperature (TEM).</p> "> Figure 3
<p>Flowchart of this study.</p> "> Figure 4
<p>Hierarchical classification of LCZs according to the five indicators, CSM and LCM.</p> "> Figure 5
<p>Monthly Distribution of <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>a</mi> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>m</mi> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>s</mi> </msub> </mrow> </semantics></math>. (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mn>0</mn> </msub> </mrow> </semantics></math> is the lowest early morning temperature; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>a</mi> </msub> </mrow> </semantics></math> is the diurnal temperature amplitude; (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>m</mi> </msub> </mrow> </semantics></math> is the local time when the temperature reaches its maximum; and (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mi>s</mi> </msub> </mrow> </semantics></math> is the local time when the temperature begins to decay freely.</p> "> Figure 6
<p>Local climate zones (LCZs) of the study area. (<b>a</b>) shows the LCZ map and (<b>b</b>) lists the proportion (%) of each LCZ type.</p> "> Figure 7
<p>Thermal characteristics of different LCZs during the daytime (08:00–16:00) and nighttime (20:00–04:00) in four seasons.</p> "> Figure 8
<p>Diurnal SUHIIs of five main built LCZ types (LCZs 4, 5, 6, 8, and 9) in 12 months and four seasons.</p> "> Figure 9
<p>Hierarchical clustering of diurnal SUHII variations across different LCZs and months. (<b>a</b>) The spectral plot of clustering patterns, where the ‘LCZX-Month’ indicates the diurnal variation in LCZ X in that month. (<b>b</b>) The division of LCZX-Month into the six major diurnal patterns of SUHIIs.</p> "> Figure 10
<p>Six major diurnal SUHII patterns of various LCZs and their associated LST cycles in-built LCZ types (LCZ b) and LCZ D. For each pattern, the boxplot includes the contemporaneous SUHIIs in all LCZs and months classified into that pattern in <a href="#remotesensing-15-05061-f009" class="html-fig">Figure 9</a>, and the mean value is adopted to form the major pattern. Similarly, the associated LSTs are averages among these LCZs and months.</p> "> Figure 11
<p>Characteristic parameters of the major diurnal SUHII patterns in <a href="#remotesensing-15-05061-f010" class="html-fig">Figure 10</a> (p is an abbreviation for “pattern”). (<b>a</b>) shows the maximum SUHII (<math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mrow> <mi>max</mi> </mrow> </msub> </mrow> </semantics></math>), minimum SUHII (<math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mrow> <mi>min</mi> </mrow> </msub> </mrow> </semantics></math>) and nocturnal (20:00–04:00) average SUHII (<math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mrow> <mi>n</mi> <mi>i</mi> <mi>g</mi> <mi>h</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math>), and (<b>b</b>) shows the time of <math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mrow> <mi>max</mi> </mrow> </msub> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mrow> <mi>max</mi> </mrow> </msub> </mrow> </semantics></math>) and time of <math display="inline"><semantics> <mrow> <msub> <mi>I</mi> <mrow> <mi>min</mi> </mrow> </msub> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mrow> <mi>min</mi> </mrow> </msub> </mrow> </semantics></math>).</p> "> Figure 12
<p>Interactive effects (q(X1 ∩ X2)) among 10 driving factors on the seasonal and day–night spatial differentiations of SUHIIs. The upper and lower triangles show the daytime and nighttime results, respectively. The red frames indicate the top three <span class="html-italic">q</span>-values for each scenario. The shadowed squares represent the nonlinear enhancement effect, while the others represent two-factor enhancement.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data for DTC Modeling
2.3. Data for LCZ Mapping
2.4. Driving Factors
3. Methodology
3.1. Reconstruction of Diurnal LSTs
3.2. Classification of LCZs
3.3. Identification of Major Diurnal Patterns of SUHIIs
3.4. Geographical Detection of SUHII Differentiations
4. Results
4.1. A general View of the LCZs and Corresponding LSTs
4.2. Diurnal Patterns of SUHIIs across Different LCZs and Months
4.3. Individual and Interactive Effects of Driving Factors
5. Discussion
- (1)
- In terms of the LST reconstruction and LCZ classification
- (2)
- In terms of the geographical detection
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Rizwan, A.M.; Dennis, L.Y.C.; Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Liu, S.; Zhang, L.; Zhu, C. Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sens. Environ. 2014, 152, 51–61. [Google Scholar] [CrossRef]
- Kong, J.; Zhao, Y.; Carmeliet, J.; Lei, C. Urban heat island and its interaction with heatwaves: A review of studies on mesoscale. Sustainability 2021, 13, 10923. [Google Scholar] [CrossRef]
- Mishra, V.; Ganguly, A.R.; Nijssen, B.; Lettenmaier, D.P. Changes in observed climate extremes in global urban areas. Environ. Res. Lett. 2015, 10, 024005. [Google Scholar] [CrossRef]
- Chu, P.; Jiang, Z.; Li, Q.; Dong, L. Analysis of the effect of uncertainty in urban and rural classification on urbanization impact assessment. Trans. Atmos. Sci. 2016, 39, 661–671. [Google Scholar] [CrossRef]
- Bechtel, B.; Demuzere, M.; Mills, G.; Zhan, W.; Sismanidis, P.; Small, C.; Voogt, J. SUHI analysis using local climate zones—A comparison of 50 cities. Urban Clim. 2019, 28, 100451. [Google Scholar] [CrossRef]
- Verdonck, M.-L.; Okujeni, A.; van der Linden, S.; Demuzere, M.; De Wulf, R.; Van Coillie, F. Influence of neighbourhood information on ‘Local Climate Zone’ mapping in heterogeneous cities. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 102–113. [Google Scholar] [CrossRef]
- Oke, T.R.; Stewart, I.D. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Jiang, S.; Zhan, W.; Yang, J. Urban heat island studies based on local climate zones: A systematic overview. Acta Geogr. Sin. 2020, 75, 1860–1878. [Google Scholar] [CrossRef]
- Kaloustian, N.; Bechtel, B. Local climatic zoning and urban heat island in Beirut. Procedia Eng. 2016, 169, 216–223. [Google Scholar] [CrossRef]
- Beck, C.; Straub, A.; Breitner, S.; Cyrys, J.; Philipp, A.; Rathmann, J.; Schneider, A.; Wolf, K.; Jacobeit, J. Air temperature characteristics of local climate zones in the Augsburg urban area (Bavaria, southern Germany) under varying synoptic conditions. Urban Clim. 2018, 25, 152–166. [Google Scholar] [CrossRef]
- Leconte, F.; Bouyer, J.; Claverie, R.; Pétrissans, M. Using local climate zone scheme for UHI assessment: Evaluation of the method using mobile measurements. Build. Environ. 2015, 83, 39–49. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R.; Krayenhoff, E.S. Evaluation of the ‘Local Climate Zone’ scheme using temperature observations and model simulations. Int. J. Climatol. 2014, 34, 1062–1080. [Google Scholar] [CrossRef]
- Dong, P.; Jiang, S.; Zhan, W.; Wang, C.; Miao, S.; Du, H.; Li, J.; Wang, S.; Jiang, L. Diurnally continuous dynamics of surface urban heat island intensities of local climate zones with spatiotemporally enhanced satellite-derived land surface temperatures. Build. Environ. 2022, 218, 109105. [Google Scholar] [CrossRef]
- Xia, H.; Chen, Y.; Song, C.; Li, J.; Quan, J.; Zhou, G. Analysis of surface urban heat islands based on local climate zones via spatiotemporally enhanced land surface temperature. Remote Sens. Environ. 2022, 273, 112972. [Google Scholar] [CrossRef]
- Yang, X.; Yao, L.; Jin, T.; Peng, L.L.H.; Jiang, Z.; Hu, Z.; Ye, Y. Assessing the thermal behavior of different local climate zones in the Nanjing metropolis, China. Build. Environ. 2018, 137, 171–184. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M.; Savić, S.; Milošević, D. Inter-/intra-zonal seasonal variability of the surface urban heat island based on local climate zones in three central European cities. Build. Environ. 2019, 156, 21–32. [Google Scholar] [CrossRef]
- Quan, J. Multi-temporal effects of urban forms and functions on urban heat islands based on local climate zone classification. Int. J. Env. Res. Public Health 2019, 16, 2140. [Google Scholar] [CrossRef]
- Stewart, I.D.; Krayenhoff, E.S.; Voogt, J.A.; Lachapelle, J.A.; Allen, M.A.; Broadbent, A.M. Time evolution of the surface urban heat island. Earth’s Future 2021, 9, 2178. [Google Scholar] [CrossRef]
- Hu, J.; Yang, Y.; Pan, X.; Zhu, Q.; Zhan, W.; Wang, Y.; Ma, W.; Su, W. Analysis of the spatial and temporal variations of land surface temperature based on local climate zones: A case study in Nanjing, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4213–4223. [Google Scholar] [CrossRef]
- Anniballe, R.; Bonafoni, S.; Pichierri, M. Spatial and temporal trends of the surface and air heat island over Milan using MODIS data. Remote Sens. Environ. 2014, 150, 163–171. [Google Scholar] [CrossRef]
- Roth, M.; Oke, T.R.; Emery, W.J. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. Int. J. Remote Sens. 2007, 10, 1699–1720. [Google Scholar] [CrossRef]
- Chang, Y.; Xiao, J.; Li, X.; Middel, A.; Zhang, Y.; Gu, Z.; Wu, Y.; He, S. Exploring diurnal thermal variations in urban local climate zones with ECOSTRESS land surface temperature data. Remote Sens. Environ. 2021, 263, 112544. [Google Scholar] [CrossRef]
- Jiang, Y.; Fu, P.; Weng, Q. Assessing the impacts of urbanization-associated land use/cover change on land surface temperature and surface moisture: A case study in the midwestern United States. Remote Sens. 2015, 7, 4880–4898. [Google Scholar] [CrossRef]
- Peng, J.; Jia, J.; Liu, Y.; Li, H.; Wu, J. Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas. Remote Sens. Environ. 2018, 215, 255–267. [Google Scholar] [CrossRef]
- Ramamurthy, P.; Bou-Zeid, E. Heatwaves and urban heat islands: A comparative analysis of multiple cities. J. Geophys. Res. Atmos. 2017, 122, 168–178. [Google Scholar] [CrossRef]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Wang, J.-F.; Hu, Y. Environmental health risk detection with GeogDetector. Environ. Model. Softw. 2012, 33, 114–115. [Google Scholar] [CrossRef]
- You, M.; Lai, R.; Lin, J.; Zhu, Z. Quantitative analysis of a spatial distribution and driving factors of the urban heat island effect: A case study of Fuzhou central area, China. Int. J. Env. Res. Public Health 2021, 18, 13088. [Google Scholar] [CrossRef] [PubMed]
- Zhengming, W.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar] [CrossRef]
- Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Hu, D.; Meng, Q.; Schlink, U.; Hertel, D.; Liu, W.; Zhao, M.; Guo, F. How do urban morphological blocks shape spatial patterns of land surface temperature over different seasons? A multifactorial driving analysis of Beijing, China. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102648. [Google Scholar] [CrossRef]
- Lai, J.; Zhan, W.; Quan, J.; Liu, Z.; Li, L.; Huang, F.; Hong, F.; Liao, W. Reconciling debates on the controls on surface urban heat island intensity: Effects of scale and sampling. Geophys. Res. Lett. 2021, 48, e2021GL094485. [Google Scholar] [CrossRef]
- Hu, Y.; Dai, Z.; Guldmann, J.M. Modeling the impact of 2D/3D urban indicators on the urban heat island over different seasons: A boosted regression tree approach. J. Env. Manag. 2020, 266, 110424. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Cai, X.; Yang, C.; Lu, X. Seasonal variations of daytime land surface temperature and their underlying drivers over Wuhan, China. Remote Sens. 2021, 13, 323. [Google Scholar] [CrossRef]
- Quan, J. Enhanced geographic information system-based mapping of local climate zones in Beijing, China. Sci. China Technol. Sci. 2019, 62, 2243–2260. [Google Scholar] [CrossRef]
- Göttsche, F.-M.; Olesen, F.S. Modelling of diurnal cycles of brightness temperature extracted from METEOSAT data. Remote Sens. Environ. 2001, 76, 337–348. [Google Scholar] [CrossRef]
- Göttsche, F.-M.; Olesen, F.-S. Modelling the effect of optical thickness on diurnal cycles of land surface temperature. Remote Sens. Environ. 2009, 113, 2306–2316. [Google Scholar] [CrossRef]
- Jiang, G.-M.; Li, Z.-L.; Nerry, F. Land surface emissivity retrieval from combined mid-infrared and thermal infrared data of MSG-SEVIRI. Remote Sens. Environ. 2006, 105, 326–340. [Google Scholar] [CrossRef]
- Bergh, F.v.d.; Wyk, M.A.v.; Wyk, B.J.v.; Udahemuka, G. A comparison of data-driven and model-driven approaches to brightness temperature diurnal cycle interpolation. SAIEE Afr. Res. J. 2007, 98, 81–86. [Google Scholar] [CrossRef]
- Inamdar, A.K.; French, A.; Hook, S.; Vaughan, G.; Luckett, W. Land surface temperature retrieval at high spatial and temporal resolutions over the southwestern United States. J. Geophys. Res. Atmos. 2008, 113, D07107. [Google Scholar] [CrossRef]
- Schädlich, S.; Göttsche, F.M.; Olesen, F.S. Influence of land surface parameters and atmosphere on METEOSAT brightness temperatures and generation of land surface temperature maps by temporally and spatially interpolating atmospheric correction. Remote Sens. Environ. 2001, 75, 39–46. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Wang, N.; Wu, H.; Tang, B.-H. Evaluation of six land-surface diurnal temperature cycle models using clear-sky in situ and satellite data. Remote Sens. Environ. 2012, 124, 15–25. [Google Scholar] [CrossRef]
- Meng, X.; Liu, H.; Cheng, J. Evaluation and characteristic research in diurnal surface temperature cycle in China using FY-2F data. J. Remote Sens. 2019, 23, 570–581. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Cheng, J.; Dong, S.; Shi, J. 0.02° Seamless Hourly Land Surface Temperature Dataset over East Asia (2016–2021). 2022. Available online: https://data.tpdc.ac.cn/en/data/06414391-abd4-4d28-a844-bd036a0b8c55/ (accessed on 30 September 2023).
- Chun, B.; Guhathakurta, S. The impacts of three-dimensional surface characteristics on urban heat islands over the diurnal cycle. Prof. Geogr. 2017, 69, 191–202. [Google Scholar] [CrossRef]
- Erell, E. The application of urban climate research in the design of cities. Adv. Build. Energy Res. 2008, 2, 95–121. [Google Scholar] [CrossRef]
- Lai, J.; Zhan, W.; Huang, F.; Voogt, J.; Bechtel, B.; Allen, M.; Peng, S.; Hong, F.; Liu, Y.; Du, P. Identification of typical diurnal patterns for clear-sky climatology of surface urban heat islands. Remote Sens. Environ. 2018, 217, 203–220. [Google Scholar] [CrossRef]
- Liu, Z.; Lai, J.; Zhan, W.; Bechtel, B.; Voogt, J.; Quan, J.; Hu, L.; Fu, P.; Huang, F.; Li, L.; et al. Urban heat islands significantly reduced by COVID-19 lockdown. Geophys. Res. Lett. 2022, 49, e2021GL096842. [Google Scholar] [CrossRef]
- Berry, R.; Livesley, S.J.; Aye, L. Tree canopy shade impacts on solar irradiance received by building walls and their surface temperature. Build. Environ. 2013, 69, 91–100. [Google Scholar] [CrossRef]
- Alkama, R.; Forzieri, G.; Duveiller, G.; Grassi, G.; Liang, S.; Cescatti, A. Vegetation-based climate mitigation in a warmer and greener World. Nat. Commun. 2022, 13, 606. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.; Zhou, X.; Wu, Z.; Xiao, R.; Chen, Y. Characterizing the impact of urban morphology heterogeneity on land surface temperature in Guangzhou, China. Environ. Model. Softw. 2016, 84, 427–439. [Google Scholar] [CrossRef]
- Liu, W.Y.; Gong, A.D.; Zhou, J.; Zhan, W.F. Investigation on relationships between urban building materials and land surface temperature through a mult-resource remote sensing approach. Remote Sens. Inf. 2011, 31, 46–53+110. [Google Scholar] [CrossRef]
- Wu, X.; Wang, G.; Yao, R.; Wang, L.; Yu, D.; Gui, X. Investigating surface urban heat islands in south America based on MODIS data from 2003–2016. Remote Sens. 2019, 11, 1212. [Google Scholar] [CrossRef]
- Yang, P.; Chen, J.; Hou, X.; Gao, Q.; Zhao, Q. Study of urban heat island based on multi-source data—By the example of the Shijiazhuang area. Meteorol. Mon. 2013, 39, 1304–1313. [Google Scholar] [CrossRef]
- Rongbo, X. A review of the eco-environmental consequences of urban heat islands. Acta Ecol. Sin. 2005, 25, 2055–2060. [Google Scholar]
- Hu, N.; Ren, Z.; Dong, Y.; Fu, Y.; Guo, Y.; Mao, Z.; Chang, X. Spatio-temporal evolution of heat island effect and its driving factors in urban agglomerations of China. Sci. Geogr. Sin. 2022, 42, 1534–1545. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, Y.; Zhang, X.; Zhan, W. Modelling the diurnal variations of urban heat islands with multi-source satellite data. Int. J. Remote Sens. 2013, 34, 7568–7588. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, P.; Ma, X.; Yang, H.; Wu, Y. Monitoring seasonal and diurnal surface urban heat islands variations using Landsat-scale data in Hefei, China, 2000–2017. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6410–6423. [Google Scholar] [CrossRef]
- Long, L.; Yong, Z.; Jiahua, Z. Spatial and dynamic perspectives on surface urban heat island and their relationships with vegetation activity in Beijing, China, based on Moderate Resolution Imaging Spectroradiometer data. Int. J. Remote Sens. 2020, 41, 882–896. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Dong, N.; Yao, W. Urban heat island effect under different meteorological conditions in Jining of Shandong province. J. Nanjing Univ. Inf. Sci. Technol. 2016, 8, 160–165. [Google Scholar] [CrossRef]
- Hong, F.; Zhan, W.; Göttsche, F.M.; Liu, Z.; Dong, P.; Fu, H.; Fan, H.; Zhang, X. A global dataset of spatiotemporally seamless daily mean land surface temperatures: Generation, validation, and analysis. Earth Syst. Sci. Data 2022, 14, 3091–3113. [Google Scholar] [CrossRef]
- Ma, J.; Shen, H.; Wu, P.; Wu, J.; Gao, M.; Meng, C. Generating gapless land surface temperature with a high spatio-temporal resolution by fusing multi-source satellite-observed and model-simulated data. Remote Sens. Environ. 2022, 278, 113083. [Google Scholar] [CrossRef]
- Berger, C.; Rosentreter, J.; Voltersen, M.; Baumgart, C.; Schmullius, C.; Hese, S. Spatio-temporal analysis of the relationship between 2D/3D urban site characteristics and land surface temperature. Remote Sens. Environ. 2017, 193, 225–243. [Google Scholar] [CrossRef]
- Wang, R.; Wang, M.; Zhang, Z.; Hu, T.; Xing, J.; He, Z.; Liu, X. Geographical detection of urban thermal environment based on the local climate zones: A case study in Wuhan, China. Remote Sens. 2022, 14, 1067. [Google Scholar] [CrossRef]
- Sun, Z.J.; Xie, S.Y. Spatiotemporal variation in net primary productivity and factor detection in Yunnan Province based on geodetector. Chin. J. Ecol. 2021, 40, 3836–3848. [Google Scholar] [CrossRef]
Indicator | Description | Temporal Resolution | Spatial Resolution | Source | Calculation |
---|---|---|---|---|---|
Morphological Factors | |||||
EVI | Enhanced vegetation index | Monthly | 500→1000 m | MOD13A3 1 | |
MNDWI 2 | Modified normalized difference water index | Yearly | 10→1000 m | Sentinel 2 | (Green–MIR)/(Green+MIR) |
BSF | Building surface fraction | Yearly | 10→1000 m | CSM | Total building area/grid area 3 |
BH | Mean building height | Yearly | 10→1000 m | CSM | Total building height/total building numbers |
Socioeconomic Factors | |||||
GDP | Gross domestic product | Yearly | 1000 m | RESDC 4 | |
PD | Population density | Yearly | 1000 m | RESDC | |
RD | Road density | Yearly | 1000 m | CSM | Total road area/grid area |
Meteorological Factors | |||||
PRS | Atmospheric pressure | Hourly | Site→1000 m | CMDC 5 | Spline interpolation |
RHU | Relative humidity | Hourly | Site→1000 m | CMDC | Spline interpolation |
TEM | Air temperature | Hourly | Site→1000 m | CMDC | Spline interpolation |
Creterion | Interaction Type |
---|---|
q(X1 ∩ X2) < Min(q(X1), q(X2)) | Nonlinear weakening |
Min(q(X1), q(X2)) < q(X1 ∩ X2) < Max(q(X1), q(X2)) | Single-factor nonlinear weakening |
q(X1 ∩ X2) > Max(q(X1), q(X2)) | Two-factor enhancement |
q(X1 ∩ X2) = q(X1) + q(X2) | Independent |
q(X1 ∩ X2) > q(X1) + q(X2) | Nonlinear enhancement |
Factors | Spring | Summer | Autumn | Winter | Average | ||||
---|---|---|---|---|---|---|---|---|---|
Day | Night | Day | Night | Day | Night | Day | Night | ||
Morphological Factors | |||||||||
EVI | 0.21 | 0.32 | 0.60 | 0.66 | 0.58 | 0.63 | 0.23 | 0.54 | 0.47 |
MNDWI | 0.04 * | 0.14 | 0.19 | 0.22 | 0.14 | 0.23 | 0.06 | 0.19 | 0.15 |
BSF | 0.19 | 0.15 | 0.26 | 0.21 | 0.30 | 0.18 | 0.19 | 0.17 | 0.21 |
BH | 0.02 * | 0.22 | 0.12 | 0.37 | 0.08 | 0.20 | 0.03 | 0.34 | 0.17 |
Socioeconomic Factors | |||||||||
GDP | 0.21 | 0.45 | 0.37 | 0.41 | 0.43 | 0.46 | 0.32 | 0.45 | 0.39 |
PD | 0.08 | 0.52 | 0.28 | 0.46 | 0.34 | 0.44 | 0.22 | 0.46 | 0.35 |
RD | 0.08 | 0.47 | 0.19 | 0.41 | 0.42 | 0.52 | 0.20 | 0.45 | 0.34 |
Meteorological Factors | |||||||||
PRS | 0.02 * | 0.27 | 0.27 | 0.36 | 0.16 | 0.28 | 0.13 | 0.26 | 0.22 |
RHU | 0.15 | 0.44 | 0.28 | 0.57 | 0.26 | 0.53 | 0.26 | 0.64 | 0.39 |
TEM | 0.11 | 0.61 | 0.16 | 0.73 | 0.15 | 0.73 | 0.10 | 0.71 | 0.41 |
Ranking of the 10 factors for each column |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, Y.; Quan, J.; Ma, T.; Cao, S.; Xu, C.; Guo, J. Identifying Major Diurnal Patterns and Drivers of Surface Urban Heat Island Intensities across Local Climate Zones. Remote Sens. 2023, 15, 5061. https://doi.org/10.3390/rs15205061
Guan Y, Quan J, Ma T, Cao S, Xu C, Guo J. Identifying Major Diurnal Patterns and Drivers of Surface Urban Heat Island Intensities across Local Climate Zones. Remote Sensing. 2023; 15(20):5061. https://doi.org/10.3390/rs15205061
Chicago/Turabian StyleGuan, Yongjuan, Jinling Quan, Ting Ma, Shisong Cao, Chengdong Xu, and Jiali Guo. 2023. "Identifying Major Diurnal Patterns and Drivers of Surface Urban Heat Island Intensities across Local Climate Zones" Remote Sensing 15, no. 20: 5061. https://doi.org/10.3390/rs15205061