Comparison of Deep Neural Networks in the Classification of Bark Beetle-Induced Spruce Damage Using UAS Images †
<p>Proposed supervised deep learning workflow for spruce health estimation.</p> "> Figure 2
<p>Distribution of the study areas in Helsinki and Ruokolahti. Background map (raster) <a href="https://www.maanmittauslaitos.fi/en/opendata-licence-cc40" target="_blank">https://www.maanmittauslaitos.fi/en/opendata-licence-cc40</a> (accessed on 29 September 2023).</p> "> Figure 3
<p>The multisensory UAS with a dual-RGB camera, Rikola hyperspectral camera, and MicaSense RedEdge.</p> "> Figure 4
<p>(<b>a</b>) Area cropped from original orthophoto. Reference trees are surrounded by blue bounding boxes. (<b>b</b>) Input image for YOLO network. Unlabeled trees (white areas) are manually removed from the image. Reference trees are depicted with different colors based on class. Green denotes healthy trees, orange infested, and red dead trees.</p> "> Figure 5
<p>Tree crown images captured by RGB, MS, and HS cameras with 5, 5, and 10 cm ground sample distances, respectively. MS images have visible color bands (B: 475, G: 560, R: 668 nm) and HS images have false color bands (B: 557.59; G: 648.67; R: 855.44 nm).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Method
2.2. Study Areas and Reference Data
2.3. Remote Sensing Datasets
2.4. Data Preparation
2.5. Classifier Model Training
2.5.1. Classifier Networks
2.5.2. Hyperparameter Optimization
2.5.3. Data Augmentation
2.6. YOLO Implementation
2.7. Computing Platform
2.8. Evaluation Metrics
3. Results
3.1. Classification Results
3.2. Impact of Data Augmentation
3.3. Integrating YOLO and Classifiers
4. Discussion
4.1. Assessment of Classification Models for Different Datasets
4.2. Complete Pipeline for Detections and Classifications
4.3. Further Research
4.4. Contributions and Outlook
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bauman, D.; Fortunel, C.; Delhaye, G.; Malhi, Y.; Cernusak, L.A.; Bentley, L.P.; Rifai, S.W.; Aguirre-Gutiérrez, J.; Menor, I.O.; Phillips, O.L.; et al. Tropical tree mortality has increased with rising atmospheric water stress. Nature 2022, 608, 528–533. [Google Scholar] [CrossRef]
- Anderegg, W.R.; Wu, C.; Acil, N.; Carvalhais, N.; Pugh, T.A.; Sadler, J.P.; Seidl, R. A climate risk analysis of Earth’s forests in the 21st century. Science 2022, 377, 1099–1103. [Google Scholar] [CrossRef]
- Patacca, M.; Lindner, M.; Lucas-Borja, M.E.; Cordonnier, T.; Fidej, G.; Gardiner, B.; Hauf, Y.; Jasinevičius, G.; Labonne, S.; Linkevičius, E.; et al. Significant increase in natural disturbance impacts on European forests since 1950. Glob. Chang. Biol. 2023, 29, 1359–1376. [Google Scholar] [CrossRef]
- Bentz, B.J.; Jönsson, A.M.; Schroeder, M.; Weed, A.; Wilcke, R.A.I.; Larsson, K. Ips typographus and Dendroctonus ponderosae Models Project Thermal Suitability for Intra- and Inter-Continental Establishment in a Changing Climate. Front. For. Glob. Chang. 2019, 2, 1. [Google Scholar] [CrossRef]
- Hlásny, T.; König, L.; Krokene, P.; Lindner, M.; Montagné-Huck, C.; Müller, J.; Qin, H.; Raffa, K.F.; Schelhaas, M.J.; Svoboda, M.; et al. Bark Beetle Outbreaks in Europe: State of Knowledge and Ways Forward for Management. Curr. For. Rep. 2021, 7, 138–165. [Google Scholar] [CrossRef]
- Hlásny, T.; Krokene, P.; Liebhold, A.; Montagné-Huck, C.; Müller, J.; Qin, H.; Raffa, K.; Schelhaas, M.-J.; Seidl, R.; Svoboda, M.; et al. Living with Bark Beetles: Impacts, Outlook and Management Options. From Science to Policy 8; European Forest Institute: Joensuu, Finland, 2019. [Google Scholar] [CrossRef]
- Rogers, B.M.; Solvik, K.; Hogg, E.H.; Ju, J.; Masek, J.G.; Michaelian, M.; Berner, L.T.; Goetz, S.J. Detecting early warning signals of tree mortality in boreal North America using multiscale satellite data. Glob. Chang. Biol. 2018, 24, 2284–2304. [Google Scholar] [CrossRef]
- Blomqvist, M.; Kosunen, M.; Starr, M.; Kantola, T.; Holopainen, M.; Lyytikäinen-Saarenmaa, P. Modelling the Predisposition of Norway Spruce to Ips typographus L. Infestation by Means of Environmental Factors in Southern Finland. Eur. J. Forest Res. 2018, 137, 675–691. [Google Scholar] [CrossRef]
- Barta, V.; Hanus, J.; Dobrovolny, L.; Homolova, L. Comparison of field survey and remote sensing techniques for detection of bark beetle-infested trees. For. Ecol. Manag. 2022, 506, 119984. [Google Scholar] [CrossRef]
- Senf, C.; Seidl, R.; Hostert, P. Remote sensing of forest insect disturbances: Current state and future directions. Int. J. Appl. Earth Obs. Geoinf. 2018, 60, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Huang, H.; Roques, A. Early Monitoring of Forest Wood-Boring Pests with Remote Sensing. Annu. Rev. Entomol. 2023, 68, 277–298. [Google Scholar] [CrossRef]
- Biedermann, P.H.W.; Muller, J.; Gregoire, J.-C.; Gruppe, A.; Hagge, J.; Hammerbacher, A.; Hofstetter, R.W.; Kandasamy, D.; Kolarik, M.; Kostovcik, M.; et al. Bark Beetle Population Dynamics in the Anthropocene: Challenges and Solutions. Trends Ecol. Evol. 2019, 34, 914–924. [Google Scholar] [CrossRef]
- Huo, L.; Lindberg, E.; Bohlin, J.; Persson, H.J. Assessing the detectability of European spruce bark beetle green attack in multispectral drone images with high spatial- and temporal resolutions. Remote Sens. Environ. 2023, 287, 113484. [Google Scholar] [CrossRef]
- Safonova, A.; Hamad, Y.; Alekhina, A.; Kaplun, D. “Detection of Norway Spruce Trees (Picea abies) Infested by Bark Beetle in UAS Images Using YOLOs Architectures. IEEE Access 2022, 10, 10384–10392. [Google Scholar] [CrossRef]
- Kanerva, H.; Honkavaara, E.; Näsi, R.; Hakala, T.; Junttila, S.; Karila, K.; Koivumäki, N.; Alves Oliveira, R.; Pelto-Arvo, M.; Pölönen, I.; et al. Estimating Tree Health Decline Caused by Ips typographus L. Remote Sens. 2022, 14, 6257. [Google Scholar] [CrossRef]
- Kloucek, T.; Komarek, J.; Surovy, P.; Hrach, K.; Janata, P.; Vasicek, B. The Use of UAV Mounted Sensors for Precise Detection of Bark Beetle Infestation. Remote Sens. 2019, 11, 1561. [Google Scholar] [CrossRef]
- Abdollahnejad, A.; Panagiotidis, D. Tree Species Classification and Health Status Assessment for a Mixed Broadleaf-Conifer Forest with UAS Multispectral Imaging. Remote Sens. 2020, 12, 3722. [Google Scholar] [CrossRef]
- Duarte, A.; Borralho, N.; Cabral, P.; Caetano, M. Recent Advances in Forest Insect Pests and Diseases Monitoring Using UAV-Based Data: A Systematic Review. Forests 2022, 13, 911. [Google Scholar] [CrossRef]
- Minarik, R.; Langhammer, J.; Lenzioch, T. Detection of Bark Beetle Disturbance at Tree Level Using UAS Multispectral Imagery and Deep Learning. Remote Sens. 2021, 13, 4768. [Google Scholar] [CrossRef]
- Junttila, S.; Näsi, R.; Koivumäki, N.; Imagholiloo, M.; Saarinen, N.; Raisio, J.; Holopainen, M.; Hyyppä, H.; Hyyppä, J.; Lyytikäinen-Saarenmaa, P.; et al. Multispectral Imagery Provides Benefits for Mapping Spruce Tree Decline Due to Bark Beetle Infestation When Acquired Late in the Season. Remote Sens. 2022, 14, 909. [Google Scholar] [CrossRef]
- Näsi, R.; Honkavaara, E.; Blomqvist, M.; Lyytikäinen-Saarenmaa, P.; Hakala, T.; Viljanen, N.; Kantola, T.; Holopainen, M. Remote sensing of bark beetle damage in urban forests at individual tree level using a novel hyperspectral camera from UAV and aircraft. Urban For. Urban Green. 2018, 30, 72–83. [Google Scholar] [CrossRef]
- Ecke, S.; Dempewolf, J.; Frey, J.; Schwaller, A.; Endres, E.; Klemmt, H.-J.; Tiede, D.; Seifert, T. UAV-Based Forest Health Monitoring: A Systematic Review. Remote Sens. 2022, 14, 3205. [Google Scholar] [CrossRef]
- Georgieva, M.; Belilov, S.; Dimitrov, S.; Iliev, M.; Trenkin, V.; Mirchev, P.; Georgiev, G. Application of Remote Sensing Data for Assessment of Bark Beetle Attacks in Pine Plantations in Kirkovo Region, the Eastern Rhodopes. Forests 2022, 13, 620. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshich, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Junttila, S.; Holopainen, M.; Vastaranta, M.; Lyytikäinen-Saarenmaa, P.; Kaartinen, H.; Hyyppä, J.; Hyyppä, H. The potential of dual-wavelength terrestrial lidar in early detection of Ips typographus (L.) infestation–Leaf water content as a proxy. Remote Sens. Environ. 2019, 231, 111264. [Google Scholar] [CrossRef]
- Abdullah, H.; Darvishzadeh, R.; Skidmore, A.K.; Groen, T.A.; Heurich, M. European spruce bark beetle (Ips typographus L.) green attack affects foliar reflectance and biochemical properties. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 199–209. [Google Scholar] [CrossRef]
- Filella, I.; Penuelas, J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Int. J. Remote Sens. 1994, 15, 1459–1470. [Google Scholar] [CrossRef]
- Honkavaara, E.; Rosnell, T.; Oliveira, R.; Tommaselli, A. Band registration of tuneable frame format hyperspectral UAV imagers in complex scenes. ISPRS J. Photogramm. Remote Sens. 2017, 134, 96–109. [Google Scholar] [CrossRef]
- Honkavaara, E.; Khoramshahi, E. Radiometric Correction of Close-Range Spectral Image Blocks Captured Using an Unmanned Aerial Vehicle with a Radiometric Block Adjustment. Remote Sens. 2018, 10, 256. [Google Scholar] [CrossRef]
- Karila, K.; Alves Oliveira, R.; Ek, J.; Kaivosoja, J.; Koivumäki, N.; Korhonen, P.; Niemeläinen, O.; Nyholm, L.; Näsi, R.; Pölönen, I.; et al. Estimating Grass Sward Quality and Quantity Parameters Using Drone Remote Sensing with Deep Neural Networks. Remote Sens. 2022, 14, 2692. [Google Scholar] [CrossRef]
- Nezami, S.; Khoramshahi, E.; Nevalainen, O.; Pölönen, I.; Honkavaara, E. Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional. Remote Sens. 2020, 12, 1070. [Google Scholar] [CrossRef]
- Pi, W.; Du, J.; Bi, Y.; Gao, X.; Zhu, X. 3D-CNN based UAS hyperspectral imagery for grassland degradation indicator ground object classification research. Ecol. Inform. 2021, 62, 101278. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, L.; Zhang, X. Three-dimensional convolutional neural network model for tree species classification using airborne hyperspectral images. Remote Sens. Environ. 2020, 247, 111938. [Google Scholar] [CrossRef]
- Yu, C.; Han, R.; Song, M.; Liu, C.; Chang, C.I. A Simplified 2D-3D CNN Architecture for Hyperspectral Image Classification Based on Spatial–Spectral Fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2485–2501. [Google Scholar] [CrossRef]
- Ge, Z.; Cao, G.; Li, X.; Fu, P. Hyperspectral Image Classification Method Based on 2D–3D CNN and Multibranch Feature Fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5776–5788. [Google Scholar] [CrossRef]
- Morales, G.; Sheppard, J.W.; Scherrer, B.; Shaw, J.A. Reduced-cost hyperspectral convolutional neural networks. Appl. Remote Sens. 2020, 14, 036519. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. In Proceedings of the International Conference on Learning Representations (ICLR), Vienna, Austria, 4–7 May 2021. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, Florida, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Akiba, T.; Shotaro, S.; Toshihiko, Y.; Takeru, O.; Masanori, K. Optuna: A Next-generation Hyperparameter Optimization Framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD), Anchorage, AK, USA, 4–8 August 2019. [Google Scholar]
- Ozaki, Y.; Nomura, M. Hyperparameter Optimization Methods: Overview and Characteristics. IEICE Trans. 2020, 103, 615–631. [Google Scholar] [CrossRef]
- Li, L.; Jamieson, K.; Rostamizadeh, A.; Gonina, E.; Ben-Tzur, J.; Hardt, M.; Rechta, B.; Talwalkar, A. A System for Massively Paraller Hyperparameter Tuning. In Proceedings of the Machine Learning and Systems (MLSys), Austin, TX, USA, 2–4 March 2020. [Google Scholar]
- TorchVision: PyTorch’s Computer Vision Library. Github Repository. 2016. Available online: https://github.com/pytorch/vision (accessed on 29 September 2023).
- PyTorch Torchvision. Torchvision.Transforms.RandomRotation, Version 0.13.1. Software Package. Available online: https://pytorch.org/vision/stable/transforms.html#randomrotation (accessed on 29 September 2023).
- PyTorch Torchvision. Torchvision.Transforms.RandomHorizontalFlip, Version 0.13.1. Software Package. Available online: https://pytorch.org/vision/stable/transforms.html#randomhorizontalflip (accessed on 29 September 2023).
- PyTorch Torchvision. Torchvision.Transforms.RandomVerticalFlip, Version 0.13.1. Software Package. Available online: https://pytorch.org/vision/stable/transforms.html#randomverticalflip (accessed on 29 September 2023).
- PyTorch Torchvision. Torchvision.Transforms.GaussianBlur, Version 0.13.1. Software Package. Available online: https://pytorch.org/vision/stable/transforms.html#gaussianblur (accessed on 29 September 2023).
- PyTorch Torchvision. Torchvision.Transforms.Pad, Version 0.13.1. Software Package. Available online: https://pytorch.org/vision/stable/transforms.html#pad (accessed on 29 September 2023).
- PyTorch Torchvision. Torchvision.Transforms.RandomPerspective, Version 0.13.1. Software Package. Available online: https://pytorch.org/vision/stable/transforms.html#randomperspective (accessed on 29 September 2023).
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Wang, C.Y.; Liao, H.Y.M.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A new backbone that can enhance learning capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 390–391. [Google Scholar]
- Lin, T.Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Zitnick, C.L.; Dollár, P. Microsoft COCO: Common Objects in Context. In Proceedings of the European Conference on Computer Vision (ECCV), Cham, Germany, 6–12 September 2014; pp. 740–755. [Google Scholar]
- Padilla, R.; Passos, W.L.; Dias, T.L.B.; Netto, S.L.; da Silva, E.A.B. A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 2021, 10, 279. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, J.; Ao, Z.; Lao, D.; Xin, Q. Deep Learning Approaches for the Mapping of Tree Species Diversity in a Tropical Wetland Using Airborne LiDAR and High-Spatial-Resolution Remote Sensing Images. Forests 2019, 10, 1047. [Google Scholar] [CrossRef]
- Alem, A.; Kumar, S. Transfer Learning Models for Land Cover and Land Use Classification in Remote Sensing Image. Appl. Artif. Intell. 2022, 36, 2014192. [Google Scholar] [CrossRef]
- Reedha, R.; Dericquebourg, E.; Canals, R.; Hafiane, A. Transformer Neural Network for Weed and Crop Classification of High Resolution UAS Images. Remote Sens. 2022, 14, 592. [Google Scholar] [CrossRef]
- Bazi, Y.; Bashmal, L.; Al Rahhal, M.M.; Al Dayil, R.; Al Ajlan, N. Vision Transformers for Remote Sensing Image Classification. Remote Sens. 2021, 13, 516. [Google Scholar] [CrossRef]
- Chadwick, A.J.; Coops, N.C.; Bater, C.W.; Martens, L.A.; White, B. Species Classification of Automatically Delineated Regenerating Conifer Crowns Using RGB and Near-Infrared UAS Imagery. IEEE Geosci. Remote. Sens. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Oliveira, R.A.; Näsi, R.; Korhonen, P.; Mustonen, A.; Niemeläinen, O.; Koivumäki, N.; Hakala, T.; Suomalainen, J.; Kaivosoja, J.; Honkavaara, E. High-precision estimation of grass quality and quantity using UAS-based VNIR and SWIR hyperspectral cameras and machine learning. Precis. Agric. 2023. [Google Scholar] [CrossRef]
Area | Data Type | Total | Healthy | Infested | Dead |
---|---|---|---|---|---|
RGB | 604 | 231 | 162 | 211 | |
Paloheinä | MS | 380 | 141 | 109 | 130 |
HS | 502 | 208 | 130 | 164 | |
RGB | 862 | 538 | 11 | 313 | |
Ruokolahti | MS | 862 | 538 | 11 | 313 |
HS | 493 | 307 | 3 | 183 | |
RGB | 1466 | 769 | 173 | 524 | |
Total | MS | 1242 | 679 | 120 | 443 |
HS | 995 | 515 | 133 | 347 |
Dataset | Date | Area (ha) | Weather | FA (m) | GSD RGB; MS; HS (cm) | Equipment |
---|---|---|---|---|---|---|
MM_2019 | 28 August 2019 | 60 | Sunny | 140 | 3; 6; - | DualSonyA7RII, Altum |
14:08–14:32 | ||||||
14:46–15:11 | ||||||
PS_2019 | 28 August 2019 | 45 | Sunny | 140 | 3; 6; - | DualSonyA7RII, Altum |
11:52–12:15 | ||||||
12:27–12:51 | ||||||
PS_2020 | 27 August 2020 | 32 | Varying | 140 | 6; 6; - | SonyA7R, Altum |
16:30–17:00 | ||||||
RM_2019 | 27 September 2019 | 27 | Sunny | 140 | 6; 6; - | DualSonyA7RII, Altum |
13:05–13:27 | ||||||
14:44–15:03 | 10 | Sunny | 140 | -; -; 10 | Rikola | |
RM_2020 | 27 August 2020 | 20 | Sunny | 140 | 4; 6; 10 | DualSonyA7RII, Altum, Rikola |
10:05–10:27 | ||||||
VL_2019 | 27 August 2019 | 120 | Sunny | 140 | 6; 8; - | DualSonyA7RII, Altum |
16:11–16:34 | ||||||
16:42–17:02 | ||||||
28 August 2019 | ||||||
9:26–9:47 | ||||||
9:55–10:16 | ||||||
29 August 2019 | 12 | Sunny | 140 | -; -; 10 | Rikola | |
11:48–12:14 | ||||||
VL_2020 | 27 August 2020 | 25 | Varying | 140 | 6; 6; 10 | DualSonyA7RII, Altum, Rikola |
11:26–11:50 | ||||||
15:05–15:26 | 33 | Varying | 140 | 6; 6; - | SonyA7R, Altum | |
PH_2020_1 | 20 May 2020 | 24 | Varying | 110 | 5; 5; - | Sony A7R, Altum |
12:18–12:39 | ||||||
PH_2020_2 | 15 July 2020 | 24 | Sunny | 110 | 5; 5; 10 | DualSonyA7RII, Altum, Rikola |
10:41–11:04 | ||||||
11 September 2020 | 24 | Cloudy | 110 | 5; 5; 10 | DualSonyA7RII, Altum, Rikola | |
11:16–11:40 | ||||||
PH_2020_3 | 23 September 2020 | 24 | Varying | 110 | 5; -; 10 | DualSonyA7RII, Rikola |
10:08–10:32 |
Quantity | Values |
---|---|
Micasense Altum L0 (nm) | 475, 560, 668, 717, 840, 12,000 |
Micasense Altum FWHM (nm) | 20, 20, 10, 10, 40, 6000 |
Rikola L0 (nm) | 504.28, 512.91, 521.48, 530.75, 539.46, 548.45, 557.59, 566.28, 575.31, 583.98, 593.37, 601.4, 611.64, 620.27, 628.86, 643.8, 648.67, 657.82, 666.88, 676.21, 684.56, 693.97, 701.6, 711.43, 720.08, 728.95, 738.01, 746.76, 756.03, 764.56, 773.71, 782.85, 792.18, 800.88, 809.82, 818.49, 828.84, 837.57, 846.22, 855.44, 863.54, 873.07, 881.51, 890.21, 899.16, 908.17 |
Rikola FWHM (nm) | 6.36, 7.26, 7.47, 6.75, 7.42, 6.64, 7.35, 6.47, 7.02, 6.6, 6.18, 6.49, 7.64, 8.3, 7.05, 6.76, 6.58, 7.58, 6.72, 7.52, 6.66, 6.82, 5.01, 4.43, 4.97, 3.92, 4.86, 4.11, 4.49, 3.67, 4.3, 5.95, 5.8, 6.46, 5.67, 6.62, 9.05, 10.16, 9.24, 9.93, 9.46, 9.21, 9.55, 9.03, 9.58, 8.9 |
Network | Layers | Number of Kernels and Kernel Sizes | Number of Trainable Parameters |
---|---|---|---|
VGG16 | 2 × Conv2D–MaxPool– | (64) 3 × 3 | ~134 million |
2 × Conv2D–MaxPool– | (128) 3 × 3 | ||
3 × Conv2D–MaxPool– | (256) 3 × 3 | ||
3 × Conv2D–MaxPool– | (512) 3 × 3 | ||
3 × Conv2D–MaxPool– | (512) 3 × 3 | ||
3 × FC | |||
2D-CNN | Conv2D–BN–MaxPool– | (32) 3 × 3 | ~200,000 |
Conv2D–BN–MaxPool– | (64) 3 × 3 | ||
Conv2D–BN–AvgPool– | (64) 3 × 3 | ||
FC–Dropout–FC | |||
3D-CNN 1 | Conv3D–MaxPool– | (32) 3 × 3 × 3 | ~300,000 |
Conv3D–MaxPool– | (64) 3 × 3 × 3 | ||
Conv3D–AvgPool– | (64) 3 × 3 × 3 | ||
FC–Dropout–FC | |||
3D-CNN 2 | Conv3D–MaxPool– | (20) 5 × 5 × 5 | ~100,000 |
Conv3D–MaxPool– | (50) 5 × 5 × 5 | ||
Conv3D– | (3) 1 × 1 × 1 | ||
FC–FC | |||
3D-CNN 3 | Conv3D–MaxPool– | (5) 3 × 3 × 3 | ~387 million |
Conv3D–MaxPool– | (10) 3 × 3 × 3 | ||
Conv3D–MaxPool– | (15) 3 × 3 × 3 | ||
FC–FC | |||
3D-CNN 4 | Conv3D– | (4) 3 × 3 × 7 | ~236 million |
Conv3D– | (8) 3 × 3 × 7 | ||
Conv3D– | (16) 3 × 3 × 7 | ||
Conv3D– | (32) 3 × 3 × 7 | ||
Conv3D–MaxPool– | (64) 3 × 3 × 7 | ||
Dropout–FC–Dropout–FC | |||
2D-3D-CNN 1 | Conv2D– | (46) 3 × 3 | ~13 million |
Conv3D–MaxPool– | (200) 3 × 3 × 3 | ||
2D-Deconvolution– | (1) 3 × 3 | ||
FC–FC | |||
2D-3D-CNN 2 | Branch 1: | ~23 million | |
Conv3D– | (1) 7 × 7 × 7 | ||
Conv2D | (6 ∗ 46) 3 × 3 | ||
Branch 2: | |||
Conv3D– | (1) 5 × 5 × 5 | ||
Conv3D– | (6) 3 × 3 × 3 | ||
Conv2D | (12 ∗ 46) 3 × 3 | ||
Branch 3: | |||
Conv3D– | (1) 3 × 3 × 3 | ||
Conv3D– | (8) 3 × 3 × 3 | ||
Conv3D– | (12) 3 × 3 × 3 | ||
Conv2D | (32 ∗ 46) 3 × 3 | ||
Concatenation | |||
FC–FC–FC–FC | |||
2D-3D-CNN 3 | Feature extractor: | ~10 million | |
Conv3D–BN– | (1) 3 × 3 × 5 | ||
Conv3D–BN | (8) 3 × 3 × 5 | ||
Conv3D–BN– | (16) 3 × 3 × 5 | ||
Conv3D–BN | (24) 3 × 3 × 5 | ||
Spatial encoder: | |||
Conv2D– | (32 ∗ 46) 3 × | ||
Conv2D–BN– | (32 )3 × 3 | ||
Conv2D– | (16) 3 × 3 | ||
Conv2D–BN– | (16) 3 × 3 | ||
FC |
Network | Layers | Number of Trainable Parameters |
---|---|---|
ViT | Transformer encoder | ~22 million |
12 × (Layer norm–MHA block–Skip connection– | ||
Layer norm–FC block–Skip connection) |
Network | Data | Learning Rate | Weight Decay | Batch Size |
---|---|---|---|---|
VGG16 | RGB | 0.000005 | 0.02 | 12 |
ViT | RGB | 0.000001 | 0.05 | 32 |
2D-CNN | RGB | 0.00002 | 0.02 | 12 |
VGG16 | MS | 0.000001 | 0.03 | 32 |
ViT | MS | 0.000001 | 0.02 | 48 |
2D-CNN | MS | 0.0001 | 0.08 | 32 |
VGG16 | HS | 0.0000005 | 0.03 | 12 |
ViT | HS | 0.0000003 | 0.06 | 32 |
2D-CNN | HS | 0.000005 | 0.04 | 12 |
3D-CNN 1 | HS | 0.000004 | 0.01 | 32 |
3D-CNN 2 | HS | 0.000005 | 0.02 | 32 |
3D-CNN 3 | HS | 0.00001 | 0.01 | 32 |
3D-CNN 4 | HS | 0.00003 | 0.04 | 32 |
2D-3D-CNN 1 | HS | 0.00002 | 0.04 | 32 |
2D-3D-CNN 2 | HS | 0.00002 | 0.03 | 24 |
2D-3D-CNN 3 | HS | 0.00001 | 0.02 | 12 |
Network | Layers | Number of Kernels and Kernel Sizes | Number of Trainable Parameters |
---|---|---|---|
YOLO | Conv2D–MaxPool– | (64) 7 × 7 | ~64 million |
Conv2D–MaxPool– | (192) 3 × 3 | ||
Conv2D– | (128) 1 × 1 | ||
Conv2D– | (256) 3 × 3 | ||
Conv2D– | (256) 1 × 1 | ||
Conv2D–MaxPool– | (512) 3 × 3 | ||
4 × (Conv2D– | (256) 1 × 1 | ||
Conv2D–) * | (512) 3 × 3 | ||
Conv2D– | (512) 1 × 1 | ||
Conv2D–MaxPool– | (1024) 3 × 3 | ||
Conv2D– | (512) 1 × 1 | ||
Conv2D– | (1024) 3 × 3 | ||
Conv2D– | (512) 1 × 1 | ||
5 × Conv2D– ** | (1024) 3 × 3 | ||
FC–FC |
Model | Training Time (min) | ||
---|---|---|---|
RGB | MS | HS | |
VGG16 | 135 | 128 | 157 |
2D-CNN | 16 | 15 | 17 |
3D-CNN 1 | - | - | 48 |
3D-CNN 2 | - | - | 36 |
3D-CNN 3 | - | - | 173 |
3D-CNN 4 | - | - | 189 |
2D-3D-CNN 1 | - | - | 62 |
2D-3D-CNN 2 | - | - | 128 |
2D-3D-CNN 3 | - | - | 115 |
ViT | 144 | 139 | 168 |
YOLO | 144 | - | - |
Model | Data | Overall Accuracy | Class | Precision | Recall | F1-Score | N-Reference Tr; Va; Te |
---|---|---|---|---|---|---|---|
VGG16 | RGB | 0.813 | Healthy | 0.776 | 0.894 | 0.831 | 524; 131; 114 |
Infested | 0.800 | 0.466 | 0.589 | 118; 29; 26 | |||
Dead | 0.816 | 1.000 | 0.899 | 374; 93; 57 | |||
ViT | RGB | 0.815 | Healthy | 0.780 | 0.889 | 0.831 | 524; 131; 114 |
Infested | 0.598 | 0.406 | 0.484 | 118; 29; 26 | |||
Dead | 0.958 | 1.000 | 0.979 | 374; 93; 57 | |||
2D-CNN | RGB | 0.789 | Healthy | 0.712 | 0.883 | 0.788 | 524; 131; 114 |
Infested | 0.582 | 0.561 | 0.571 | 118; 29; 26 | |||
Dead | 0.941 | 0.972 | 0.956 | 374; 93; 57 | |||
VGG16 | MS | 0.867 | Healthy | 0.935 | 0.864 | 0.898 | 452; 113; 114 |
Infested | 0.528 | 0.865 | 0.656 | 75; 19; 26 | |||
Dead | 0.943 | 0.978 | 0.960 | 309; 77; 57 | |||
ViT | MS | 0.800 | Healthy | 0.877 | 0.655 | 0.750 | 452; 113; 114 |
Infested | 0.585 | 0.699 | 0.637 | 75; 19; 26 | |||
Dead | 0.893 | 0.988 | 0.938 | 309; 77; 57 | |||
2D-CNN | MS | 0.901 | Healthy | 0.946 | 0.879 | 0.911 | 452; 113; 114 |
Infested | 0.765 | 0.684 | 0.722 | 75; 19; 26 | |||
Dead | 0.825 | 0.979 | 0.895 | 309; 77; 57 | |||
VGG16 | HS | 0.758 | Healthy | 0.972 | 0.589 | 0.734 | 321; 80; 114 |
Infested | 0.531 | 0.699 | 0.604 | 86; 21; 26 | |||
Dead | 0.901 | 0.988 | 0.942 | 232; 58; 57 | |||
ViT | HS | 0.827 | Healthy | 0.872 | 0.797 | 0.833 | 321; 80; 114 |
Infested | 0.673 | 0.437 | 0.530 | 86; 21; 26 | |||
Dead | 0.899 | 1.000 | 0.947 | 232; 58; 57 | |||
2D-CNN | HS | 0.801 | Healthy | 0.887 | 0.717 | 0.793 | 321; 80; 114 |
Infested | 0.588 | 0.476 | 0.526 | 86; 21; 26 | |||
Dead | 0.796 | 0.915 | 0.851 | 232; 58; 57 | |||
3D-CNN 1 | HS | 0.866 | Healthy | 0.896 | 0.859 | 0.877 | 321; 80; 114 |
Infested | 0.597 | 0.648 | 0.621 | 86; 21; 26 | |||
Dead | 0.901 | 0.968 | 0.933 | 232; 58; 57 | |||
3D-CNN 2 | HS | 0.807 | Healthy | 0.866 | 0.762 | 0.811 | 321; 80; 114 |
Infested | 0.539 | 0.788 | 0.640 | 86; 21; 26 | |||
Dead | 0.958 | 0.962 | 0.960 | 232; 58; 57 | |||
3D-CNN 3 | HS | 0.859 | Healthy | 0.776 | 0.976 | 0.864 | 321; 80; 114 |
Infested | 0.577 | 0.811 | 0.674 | 86; 21; 26 | |||
Dead | 0.912 | 0.988 | 0.948 | 232; 58; 57 | |||
3D-CNN 4 | HS | 0.847 | Healthy | 0.768 | 0.955 | 0.851 | 321; 80; 114 |
Infested | 0.564 | 0.846 | 0.677 | 86; 21; 26 | |||
Dead | 0.882 | 0.968 | 0.952 | 232; 58; 57 | |||
2D-3D-CNN 1 | HS | 0.833 | Healthy | 0.855 | 0.900 | 0.877 | 321; 80; 114 |
Infested | 0.596 | 0.423 | 0.495 | 86; 21; 26 | |||
Dead | 0.889 | 0.971 | 0.928 | 232; 58; 57 | |||
2D-3D-CNN 2 | HS | 0.829 | Healthy | 0.893 | 0.742 | 0.809 | 321; 80; 114 |
Infested | 0.626 | 0.911 | 0.742 | 86; 21; 26 | |||
Dead | 0.938 | 0.968 | 0.952 | 232; 58; 57 | |||
2D-3D-CNN 3 | HS | 0.755 | Healthy | 0.848 | 0.797 | 0.822 | 321; 80; 114 |
Infested | 0.542 | 0.393 | 0.456 | 86; 21; 26 | |||
Dead | 0.845 | 0.933 | 0.887 | 232; 58; 57 |
Model | Data | OA | Class | Prec. | Recall | F1-Score | Relative F1-Score Change (%) | N-reference Tr; Va; Te |
---|---|---|---|---|---|---|---|---|
VGG16 | RGB | 0.848 | Healthy | 0.882 | 0.851 | 0.866 | 4.04 | 524; 131; 114 |
Infested | 0.722 | 0.500 | 0.591 | 0.34 | 588; 147; 26 | |||
Dead | 0.826 | 1.000 | 0.905 | 0.66 | 570; 142; 57 | |||
2D-CNN | RGB | 0.821 | Healthy | 0.773 | 0.855 | 0.812 | 2.96 | 524; 131; 114 |
Infested | 0.577 | 0.601 | 0.589 | 3.06 | 588; 147; 26 | |||
Dead | 0.954 | 0.976 | 0.965 | 0.93 | 570; 142; 57 | |||
2D-CNN | MS | 0.858 | Healthy | 0.898 | 0.851 | 0.874 | −4.23 | 452; 113; 114 |
Infested | 0.739 | 0.654 | 0.694 | −4.03 | 360; 90; 26 | |||
Dead | 0.833 | 0.965 | 0.894 | −0.11 | 370; 92; 57 | |||
3D-CNN 3 | HS | 0.861 | Healthy | 0.813 | 0.924 | 0.865 | 0.12 | 321; 80; 114 |
Infested | 0.619 | 0.811 | 0.702 | 3.99 | 428; 107; 26 | |||
Dead | 0.945 | 0.978 | 0.961 | 1.56 | 297; 74; 57 | |||
3D-CNN 4 | HS | 0.863 | Healthy | 0.789 | 0.945 | 0.860 | 1.05 | 321; 80; 114 |
Infested | 0.597 | 0.855 | 0.703 | 3.70 | 428; 107; 26 | |||
Dead | 0.913 | 0.988 | 0.949 | −0.32 | 297; 74; 57 | |||
2D-3D-CNN 2 | HS | 0.863 | Healthy | 0.968 | 0.807 | 0.880 | 8.07 | 321; 80; 114 |
Infested | 0.688 | 0.846 | 0.759 | 2.24 | 428; 107; 26 | |||
Dead | 0.880 | 0.982 | 0.928 | −2.59 | 297; 74; 57 |
Measured | |||||
---|---|---|---|---|---|
Healthy | Infested | Dead | |||
VGG16 RGB | Predicted | Healthy | 97 | 13 | 0 |
Infested | 5 | 13 | 0 | ||
Dead | 12 | 0 | 57 | ||
2D-CNN MS | Healthy | 97 | 9 | 2 | |
Infested | 6 | 17 | 0 | ||
Dead | 11 | 0 | 55 | ||
2D-3D-CNN 2 HS | Healthy | 92 | 3 | 0 | |
Infested | 9 | 22 | 1 | ||
Dead | 13 | 1 | 56 |
Model | Data | OA | Class | Prec. | Recall | F1-Score | Relative F1-Score Change (%) |
---|---|---|---|---|---|---|---|
YOLO | RGB | 0.699 | Healthy | 0.605 | 0.848 | 0.706 | |
Infested | 0.652 | 0.522 | 0.580 | ||||
Dead | 0.824 | 0.806 | 0.815 | ||||
VGG16 | RGB | 0.803 | Healthy | 0.769 | 0.855 | 0.810 | 12.8 |
Infested | 0.749 | 0.516 | 0.611 | 5.07 | |||
Dead | 0.873 | 0.980 | 0.923 | 11.7 | |||
2D-CNN | MS | 0.880 | Healthy | 0.900 | 0.897 | 0.898 | 21.4 |
Infested | 0.715 | 0.739 | 0.727 | 20.2 | |||
Dead | 0.886 | 0.967 | 0.925 | 11.9 | |||
2D-3D-CNN 2 | HS | 0.890 | Healthy | 0.913 | 0.955 | 0.883 | 20.0 |
Infested | 0.765 | 0.801 | 0.783 | 25.9 | |||
Dead | 0.922 | 0.967 | 0.945 | 13.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turkulainen, E.; Honkavaara, E.; Näsi, R.; Oliveira, R.A.; Hakala, T.; Junttila, S.; Karila, K.; Koivumäki, N.; Pelto-Arvo, M.; Tuviala, J.; et al. Comparison of Deep Neural Networks in the Classification of Bark Beetle-Induced Spruce Damage Using UAS Images. Remote Sens. 2023, 15, 4928. https://doi.org/10.3390/rs15204928
Turkulainen E, Honkavaara E, Näsi R, Oliveira RA, Hakala T, Junttila S, Karila K, Koivumäki N, Pelto-Arvo M, Tuviala J, et al. Comparison of Deep Neural Networks in the Classification of Bark Beetle-Induced Spruce Damage Using UAS Images. Remote Sensing. 2023; 15(20):4928. https://doi.org/10.3390/rs15204928
Chicago/Turabian StyleTurkulainen, Emma, Eija Honkavaara, Roope Näsi, Raquel A. Oliveira, Teemu Hakala, Samuli Junttila, Kirsi Karila, Niko Koivumäki, Mikko Pelto-Arvo, Johanna Tuviala, and et al. 2023. "Comparison of Deep Neural Networks in the Classification of Bark Beetle-Induced Spruce Damage Using UAS Images" Remote Sensing 15, no. 20: 4928. https://doi.org/10.3390/rs15204928
APA StyleTurkulainen, E., Honkavaara, E., Näsi, R., Oliveira, R. A., Hakala, T., Junttila, S., Karila, K., Koivumäki, N., Pelto-Arvo, M., Tuviala, J., Östersund, M., Pölönen, I., & Lyytikäinen-Saarenmaa, P. (2023). Comparison of Deep Neural Networks in the Classification of Bark Beetle-Induced Spruce Damage Using UAS Images. Remote Sensing, 15(20), 4928. https://doi.org/10.3390/rs15204928