Spatial–Temporal Patterns of Interannual Variability in Planted Forests: NPP Time-Series Analysis on the Loess Plateau
<p>Geographic location and planted forest map of the Loess Plateau: (<b>a</b>) general location in China; (<b>b</b>) NPP data from the MODIS sensor on 1 January 2021 from Google Earth Engine (GEE) imagery; and the spatial distribution of (<b>c</b>) planted forest and (<b>d</b>) planting year.</p> "> Figure 2
<p>The changes in NPP within planted forests, natural forests, and the entire Loess Plateau region: (<b>a</b>) the total amount of NPP change, (<b>b</b>) the number of pixels affected by the change, (<b>c</b>) the percentage of NPP change relative to the entire area, (<b>d</b>) the mean valve of NPP, and (<b>e</b>) the change trends of NPP in different provinces.</p> "> Figure 3
<p>Spatial distributions of NPP change rate, increment, and total amount before planting, after planting, in natural forests, and in the whole Loess Plateau region.</p> "> Figure 4
<p>Characteristics of the five change patterns in the ICV change of NPP time series: (<b>a</b>) number and percentage, and (<b>b</b>) spatial distribution.</p> "> Figure 5
<p>Change rate of planted forest variability: (<b>a</b>) slope of the first phase in all change patterns, (<b>b</b>) slope of the last phase in all change patterns, (<b>c</b>) chord diagram of slope from the first phase to last phase, and (<b>d</b>) raincloud and average of slope of all change phases in five change patterns.</p> "> Figure 6
<p>Percentage of each pattern (<b>a</b>) and slopes in the last phase (<b>b</b>) for different stand ages of planted forests.</p> "> Figure A1
<p>Stand age histogram of planted forests.</p> "> Figure A2
<p>The official statistics of forest coverage rate (<b>a</b>), woodland area (<b>b</b>), planted forest area (<b>c</b>), and afforestation area of the year (<b>d</b>) in different provinces. Additionally, remote-sensing-based data of the planted forest area (<b>e</b>), and afforestation area of the year (<b>f</b>) in different provinces.</p> "> Figure A3
<p>Correlation coefficients between change rate of planted forest NPP and slope (<b>a</b>), and change rate of soil conservation (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preparation
Data | Source | Bands | Temporal Resolution | Spatial Resolution | Available Period |
---|---|---|---|---|---|
NPP | MOD17A3 | Net primary productivity | Yearly | 500 m | 2000–2021 |
Planted forest | [45] | Yearly | 30 m | 1986–2021 | |
Soil conservation (SC) dataset | [49] | Soil conservation (SC) | Average | 300 m | 2000–2020 |
Official statistic data of planted forests | Forestry Knowledge Service System (http://lygc.lknet.ac.cn/, accessed on 5 June 2023), The National Bureau of Statistics of China (http://www.stats.gov.cn/, accessed on 5 June 2023) | -- | Yearly | -- | 1949–2020 |
2.3. Constructing Variability Time Series
2.4. Analyzing the Spatial–Temporal Patterns of Interannual Variability of NPP
3. Results
3.1. Dynamic Characteristics of NPP before and after Planting
3.2. Spatial–Temporal Patterns of Interannual Variability of NPP
3.3. Change Rate of Planted Forest Variability
3.4. Response of Variability Patterns of NPP to Plantation Age
4. Discussion
4.1. Effects of NPP Variability in Planted Forests
4.2. Insight Analysis, Limitations, and Directions of Future Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Wang, Y.; Brandt, M.; Zhao, M.; Tong, X.; Xing, K.; Xue, F.; Kang, M.; Wang, L.; Jiang, Y.; Fensholt, R. Major forest increase on the Loess Plateau, China (2001–2016). Land Degrad. Dev. 2018, 29, 4080–4091. [Google Scholar] [CrossRef]
- Wu, X.; Wei, Y.; Fu, B.; Wang, S.; Zhao, Y.; Moran, E.F. Evolution and effects of the social-ecological system over a millennium in China’s Loess Plateau. Sci. Adv. 2020, 6, eabc0276. [Google Scholar] [CrossRef]
- Feng, X.M.; Fu, B.J.; Piao, S.; Wang, S.H.; Ciais, P.; Zeng, Z.Z.; Lu, Y.H.; Zeng, Y.; Li, Y.; Jiang, X.H.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Thornton, P.K.; Ericksen, P.J.; Herrero, M.; Challinor, A.J. Climate variability and vulnerability to climate change: A review. Glob. Chang. Biol. 2014, 20, 3313–3328. [Google Scholar] [CrossRef]
- Smith, A.M.S.; Kolden, C.A.; Tinkham, W.T.; Talhelm, A.F.; Marshall, J.D.; Hudak, A.T.; Boschetti, L.; Falkowski, M.J.; Greenberg, J.A.; Anderson, J.W.; et al. Remote sensing the vulnerability of vegetation in natural terrestrial ecosystems. Remote Sens. Environ. 2014, 154, 322–337. [Google Scholar] [CrossRef]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef] [PubMed]
- Mohajane, M.; Essahlaoui, A.; Oudija, F.; El Hafyani, M.; Teodoro, C. Mapping Forest Species in the Central Middle Atlas of Morocco (Azrou Forest) through Remote Sensing Techniques. Isprs Int. J. Geo-Inf. 2017, 6, 275. [Google Scholar] [CrossRef]
- Duarte, L.; Silva, P.; Teodoro, A.C. Development of a QGIS Plugin to Obtain Parameters and Elements of Plantation Trees and Vineyards with Aerial Photographs. Isprs Int. J. Geo-Inf. 2018, 7, 109. [Google Scholar] [CrossRef]
- Pasquarella, V.J.; Holden, C.E.; Woodcock, C.E. Improved mapping of forest type using spectral-temporal Landsat features. Remote Sens. Environ. 2018, 210, 193–207. [Google Scholar] [CrossRef]
- Xu, Z.H.; Wang, Y.X. Radar Satellite Image Time Series Analysis for High-Resolution Mapping of Man-Made Forest Change in Chongming Eco-Island. Remote Sens. 2020, 12, 3438. [Google Scholar] [CrossRef]
- Wang, F.; Pan, X.B.; Gerlein-Safdi, C.; Cao, X.M.; Wang, S.; Gu, L.H.; Wang, D.F.; Lu, Q. Vegetation restoration in Northern China: A contrasted picture. Land Degrad. Dev. 2020, 31, 669–676. [Google Scholar] [CrossRef]
- Fu, B.J.; Wang, S.; Liu, Y.; Liu, J.B.; Liang, W.; Miao, C.Y. Hydrogeomorphic Ecosystem Responses to Natural and Anthropogenic Changes in the Loess Plateau of China. In Annual Review of Earth and Planetary Sciences; Jeanloz, R., Freeman, K.H., Eds.; Annual Reviews: Palo Alto, CA, USA, 2017; Volume 45, pp. 223–243. [Google Scholar]
- Li, T.; Wang, Q.; Liu, Y.; Lai, C.H.; Lu, H.; Qiu, Y.M.; Peng, L.; Tang, H. An exploration of sustainability versus productivity and ecological stability in planted and natural forests in Sichuan, China. Land Degrad. Dev. 2022, 33, 3641–3651. [Google Scholar] [CrossRef]
- Guo, L.H.; Zuo, L.Y.; Gao, J.B.; Jiang, Y.; Zhang, Y.L.; Ma, S.C.; Zou, Y.F.; Wu, S.H. Revealing the fingerprint of climate change in interannual NDVI variability among biomes in Inner Mongolia, China. Remote Sens. 2020, 12, 1332. [Google Scholar] [CrossRef]
- Pimm, S.L. The complexity and stability of ecosystems. Nature 1984, 307, 321–326. [Google Scholar] [CrossRef]
- De Keersmaecker, W.; Lhermitte, S.; Honnay, O.; Farifteh, J.; Somers, B.; Coppin, P. How to measure ecosystem stability? An evaluation of the reliability of stability metrics based on remote sensing time series across the major global ecosystems. Glob. Chang. Biol. 2014, 20, 2149–2161. [Google Scholar] [CrossRef]
- De Keersmaecker, W.; Lhermitte, S.; Tits, L.; Honnay, O.; Somers, B.; Coppin, P. A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover. Glob. Ecol. Biogeogr. 2015, 24, 539–548. [Google Scholar] [CrossRef]
- Seddon, A.W.R.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 2016, 531, 229–232. [Google Scholar] [CrossRef]
- Maure, L.A.; Diniz, M.F.; Coelho, M.T.P.; de Oliveira, M.P.S.; Ribeiro, M.C.; da Silva, F.R.; Hasui, E. Predicting resilience and stability of early second-growth forests. Remote Sens. Ecol. Conserv. 2022, 8, 477–491. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, C.; Li, W.; Tian, L.; Zhu, Q.; Chen, H.; Fang, X.; Zhang, G.; Liu, G.; Mu, X.; et al. Multiple afforestation programs accelerate the greenness in the ‘Three North’ region of China from 1982 to 2013. Ecol. Indic. 2016, 61, 404–412. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Y.; Zhang, Y.; Wang, Z. Assessing vegetation dynamics and their relationships with climatic variability in northern China. Phys. Chem. Earth Parts A/B/C 2015, 87–88, 79–86. [Google Scholar] [CrossRef]
- Jiang, X.D.; Shen, W.; Bai, X.Y. Response of net primary productivity to vegetation restoration in Chinese Loess Plateau during 1986–2015. PLoS ONE 2019, 14, e0219270. [Google Scholar] [CrossRef]
- Smith, F.W.; Long, J.N. Age-related decline in forest growth: An emergent property. Forest Ecology and Management 2001, 144, 175–181. [Google Scholar] [CrossRef]
- Zaehle, S.; Sitch, S.; Prentice, I.C.; Liski, J.; Cramer, W.; Erhard, M.; Hickler, T.; Smith, B. The importance of age-related decline in forest NPP for modeling regional carbon balances. Ecol. Appl. 2006, 16, 1555–1574. [Google Scholar] [CrossRef]
- Wang, S.Q.; Zhou, L.; Chen, J.M.; Ju, W.M.; Feng, X.F.; Wu, W.X. Relationships between net primary productivity and stand age for several forest types and their influence on China’s carbon balance. J. Environ. Manag. 2011, 92, 1651–1662. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.W.; Luyssaert, S.; Richardson, A.D.; Kutsch, W.; Janssens, I.A. Steeper declines in forest photosynthesis than respiration explain age-driven decreases in forest growth. Proc. Natl. Acad. Sci. USA 2014, 111, 8856–8860. [Google Scholar] [CrossRef] [PubMed]
- Li, X.H.; Farooqi, T.J.A.; Jiang, C.; Liu, S.R.; Sun, O.J. Spatiotemporal variations in productivity and water use efficiency across a temperate forest landscape of Northeast China. For. Ecosyst. 2019, 6, 22. [Google Scholar] [CrossRef]
- Shestakova, T.A.; Mackey, B.; Hugh, S.; Dean, J.; Kukavskaya, E.A.; Laflamme, J.; Shvetsov, E.G.; Rogers, B.M. Mapping forest stability within major biomes using canopy indices derived from MODIS time series. Remote Sens. 2022, 14, 3813. [Google Scholar] [CrossRef]
- Standish, R.J.; Hobbs, R.J.; Mayfield, M.M.; Bestelmeyer, B.T.; Suding, K.N.; Battaglia, L.L.; Eviner, V.; Hawkes, C.V.; Temperton, V.M.; Cramer, V.A.; et al. Resilience in ecology: Abstraction, distraction, or where the action is? Biol. Conserv. 2014, 177, 43–51. [Google Scholar] [CrossRef]
- Meng, Y.Y.; Liu, X.N.; Ding, C.; Xu, B.L.; Zhou, G.X.; Zhu, L.H. Analysis of ecological resilience to evaluate the inherent maintenance capacity of a forest ecosystem using a dense Landsat time series. Ecol. Inform. 2020, 57, 101064. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, X.N.; Yang, Q.; Meng, Y.Y.; Zhu, L.H.; Zou, X.Y. Quantifying the spatiotemporal characteristics of multi-dimensional karst ecosystem stability with Landsat time series in southwest China. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102575. [Google Scholar] [CrossRef]
- White, H.J.; Gaul, W.; Sadykova, D.; Leon-Sanchez, L.; Caplat, P.; Emmerson, M.C.; Yearsley, J.M. Quantifying large-scale ecosystem stability with remote sensing data. Remote Sens. Ecol. Conserv. 2020, 6, 354–365. [Google Scholar] [CrossRef]
- Yang, J.; Pan, S.F.; Dangal, S.; Zhang, B.W.; Wang, S.Y.; Tian, H.Q. Continental-scale quantification of post-fire vegetation greenness recovery in temperate and boreal North America. Remote Sens. Environ. 2017, 199, 277–290. [Google Scholar] [CrossRef]
- Humphrey, V.; Zscheischler, J.; Ciais, P.; Gudmundsson, L.; Sitch, S.; Seneviratne, S.I. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 2018, 560, 628–631. [Google Scholar] [CrossRef]
- Chen, C.; He, B.; Yuan, W.P.; Guo, L.L.; Zhang, Y.F. Increasing interannual variability of global vegetation greenness. Environ. Res. Lett. 2019, 14, 124005. [Google Scholar] [CrossRef]
- Horion, S.; Prishchepov, A.V.; Verbesselt, J.; de Beurs, K.; Tagesson, T.; Fensholt, R. Revealing turning points in ecosystem functioning over the Northern Eurasian agricultural frontier. Glob. Chang. Biol. 2016, 22, 2801–2817. [Google Scholar] [CrossRef] [PubMed]
- Loreau, M.; de Mazancourt, C. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecol. Lett. 2013, 16, 106–115. [Google Scholar] [CrossRef]
- Wales, S.B.; Kreider, M.R.; Atkins, J.; Hulshof, C.M.; Fahey, R.T.; Nave, L.E.; Nadelhoffer, K.J.; Gough, C.M. Stand age, disturbance history and the temporal stability of forest production. For. Ecol. Manag. 2020, 460, 117865. [Google Scholar] [CrossRef]
- Ouyang, S.; Xiang, W.H.; Wang, X.P.; Xiao, W.F.; Chen, L.; Li, S.G.; Sun, H.; Deng, X.W.; Forrester, D.I.; Zeng, L.X.; et al. Effects of stand age, richness and density on productivity in subtropical forests in China. J. Ecol. 2019, 107, 2266–2277. [Google Scholar] [CrossRef]
- Zeng, Y.L.; Wu, H.L.; Ouyang, S.; Chen, L.; Fang, X.; Peng, C.H.; Liu, S.R.; Xiao, W.F.; Xiang, W.H. Ecosystem service multifunctionality of Chinese fir plantations differing in stand age and implications for sustainable management. Sci. Total Environ. 2021, 788, 147791. [Google Scholar] [CrossRef]
- Gamfeldt, L.; Snall, T.; Bagchi, R.; Jonsson, M.; Gustafsson, L.; Kjellander, P.; Ruiz-Jaen, M.C.; Froberg, M.; Stendahl, J.; Philipson, C.D.; et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 2013, 4, 1340. [Google Scholar] [CrossRef]
- Di Mauro, B.; Fava, F.; Busetto, L.; Crosta, G.F.; Colombo, R. Post-fire resilience in the Alpine region estimated from MODIS satellite multispectral data. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 163–172. [Google Scholar] [CrossRef]
- Huang, K.; Xia, J.Y. High ecosystem stability of evergreen broadleaf forests under severe droughts. Glob. Chang. Biol. 2019, 25, 3494–3503. [Google Scholar] [CrossRef]
- Zhang, B.Q.; Wu, P.T.; Zhao, X.N.; Wang, Y.B.; Gao, X.D. Changes in vegetation condition in areas with different gradients (1980–2010) on the Loess Plateau, China. Environ. Earth Sci. 2013, 68, 2427–2438. [Google Scholar] [CrossRef]
- Meng, Y.Y.; Hou, B.W.; Ding, C.; Huang, L.; Guo, Y.P.; Tang, Z.Y. Spatiotemporal patterns of planted forests on the Loess Plateau between 1986 and 2021 based on Landsat NDVI time-series analysis. GISci. Remote Sens. 2023, 60, 2185980. [Google Scholar] [CrossRef]
- Wang, C.; Wang, S.; Fu, B.J.; Yang, L.; Li, Z.S. Soil moisture variations with land use along the precipitation gradient in the North-south Transect of the Loess Plateau. Land Degrad. Dev. 2017, 28, 926–935. [Google Scholar] [CrossRef]
- Zhao, M.S.; Heinsch, F.A.; Nemani, R.R.; Running, S.W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 2005, 95, 164–176. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Q.W.; Zou, F.L. Spatio-temporal changes of vegetation Net Primary Productivity and its driving factors on the Qinghai-Tibetan Plateau from 2001 to 2017. Remote Sens. 2021, 13, 1566. [Google Scholar] [CrossRef]
- Li, J.; He, H.; Chen, L.; Sun, R. Long-time Series Dataset of Soil Conservation Capacity Preventing Water Erosion in China (1992–2019). Earth Syst. Sci. Data Discuss. 2022. preprint. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of theestimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Bari, S.H.; Rahman, M.T.U.; Hoque, M.A.; Hussain, M.M. Analysis of seasonal and annual rainfall trends in the northern region of Bangladesh. Atmos. Res. 2016, 176, 148–158. [Google Scholar] [CrossRef]
- Tabari, H.; Talaee, P.H.; Ezani, A.; Some’e, B.S. Shift changes and monotonic trends in autocorrelated temperature series over Iran. Theor. Appl. Climatol. 2012, 109, 95–108. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef]
- Yuan, W.P.; Piao, S.L.; Qin, D.H.; Dong, W.J.; Xia, J.Z.; Lin, H.; Chen, M. Influence of vegetation growth on the enhanced seasonality of atmospheric CO2. Glob. Biogeochem. Cycles 2018, 32, 32–41. [Google Scholar] [CrossRef]
- Kang, W.P.; Liu, S.L.; Chen, X.; Feng, K.; Guo, Z.C.; Wang, T. Evaluation of ecosystem stability against climate changes via satellite data in the eastern sandy area of northern China. J. Environ. Manag. 2022, 308, 114596. [Google Scholar] [CrossRef]
- Liu, F.; Yan, H.M.; Gu, F.X.; Niu, Z.E.; Huang, M. Net Primary Productivity Increased on the Loess Plateau Following Implementation of the Grain to Green Program. J. Resour. Ecol. 2017, 8, 413–421. [Google Scholar]
- Chen, S.F.; Zhang, Q.F.; Chen, Y.N.; Zhou, H.H.; Xiang, Y.Y.; Liu, Z.H.; Hou, Y.F. Vegetation Change and Eco-Environmental Quality Evaluation in the Loess Plateau of China from 2000 to 2020. Remote Sens. 2023, 15, 424. [Google Scholar] [CrossRef]
- Yu, Q.S.; Rao, X.Q.; Chu, C.J.; Liu, S.P.; Lin, Y.B.; Sun, D.; Tan, X.P.; Abu, H.; Shen, W.J. Species dominance rather than species asynchrony determines the temporal stability of productivity in four subtropical forests along 30 years of restoration. For. Ecol. Manag. 2020, 457, 117687. [Google Scholar] [CrossRef]
- Dolezal, J.; Fibich, P.; Altman, J.; Leps, J.; Uemura, S.; Takahashi, K.; Hara, T. Determinants of ecosystem stability in a diverse temperate forest. Oikos 2020, 129, 1692–1703. [Google Scholar] [CrossRef]
- Poulter, B.; Frank, D.; Ciais, P.; Myneni, R.B.; Andela, N.; Bi, J.; Broquet, G.; Canadell, J.G.; Chevallier, F.; Liu, Y.Y.; et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 2014, 509, 600–603. [Google Scholar] [CrossRef]
- Ahlstrom, A.; Raupach, M.R.; Schurgers, G.; Smith, B.; Arneth, A.; Jung, M.; Reichstein, M.; Canadell, J.G.; Friedlingstein, P.; Jain, A.K.; et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 2015, 348, 895–899. [Google Scholar] [CrossRef]
- Huang, L.; He, B.; Chen, A.F.; Wang, H.Y.; Liu, J.J.; Lu, A.F.; Chen, Z.Y. Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems. Sci. Rep. 2016, 6, 24639. [Google Scholar] [CrossRef] [PubMed]
- Lioubimtseva, E.; Henebry, G.M. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid Environ. 2009, 73, 963–977. [Google Scholar] [CrossRef]
- North, M.P.; Stevens, J.T.; Greene, D.F.; Coppoletta, M.; Knapp, E.E.; Latimer, A.M.; Restaino, C.M.; Tompkins, R.E.; Welch, K.R.; York, R.A.; et al. Tamm Review: Reforestation for resilience in dry western US forests. For. Ecol. Manag. 2019, 432, 209–224. [Google Scholar] [CrossRef]
- Hemmerling, J.; Pflugmacher, D.; Hostert, P. Mapping temperate forest tree species using dense Sentinel-2 time series. Remote Sens. Environ. 2021, 267, 112743. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Abla, M.; Lü, D.; Yan, R.; Ren, Q.; Ren, Z.; Yang, Y.; Zhao, W.; Lin, P.; et al. Effects of vegetation and rainfall types on surface runoff and soil erosion on steep slopes on the Loess Plateau, China. CATENA 2018, 170, 141–149. [Google Scholar] [CrossRef]
- Piao, S.L.; Liu, Z.; Wang, T.; Peng, S.S.; Ciais, P.; Huang, M.T.; Ahlstrom, A.; Burkhart, J.F.; Chevallier, F.; Janssens, I.A.; et al. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat. Clim. Chang. 2017, 7, 359–363. [Google Scholar] [CrossRef]
Change Patterns | Description | Graphs |
---|---|---|
LI | One linear trend, increase | |
LD | One linear trend, decrease | |
ID | At least two trends, increase in the first trend and decrease in the last trend | |
DI | At least two trends, decrease in the first trend and increase in the last trend | |
Others | There is no trend, or the change trends are not regular |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amantai, N.; Meng, Y.; Song, S.; Li, Z.; Hou, B.; Tang, Z. Spatial–Temporal Patterns of Interannual Variability in Planted Forests: NPP Time-Series Analysis on the Loess Plateau. Remote Sens. 2023, 15, 3380. https://doi.org/10.3390/rs15133380
Amantai N, Meng Y, Song S, Li Z, Hou B, Tang Z. Spatial–Temporal Patterns of Interannual Variability in Planted Forests: NPP Time-Series Analysis on the Loess Plateau. Remote Sensing. 2023; 15(13):3380. https://doi.org/10.3390/rs15133380
Chicago/Turabian StyleAmantai, Nigenare, Yuanyuan Meng, Shanshan Song, Zihui Li, Bowen Hou, and Zhiyao Tang. 2023. "Spatial–Temporal Patterns of Interannual Variability in Planted Forests: NPP Time-Series Analysis on the Loess Plateau" Remote Sensing 15, no. 13: 3380. https://doi.org/10.3390/rs15133380