Use of ICEsat-2 and Sentinel-2 Open Data for the Derivation of Bathymetry in Shallow Waters: Case Studies in Sardinia and in the Venice Lagoon
"> Figure 1
<p>Representation of the two areas of operation (AOOs): (<b>a</b>) Gulf of Congianus, (<b>b</b>) Venice Lagoon and the open sea outside it. (Picture generated using Google Earth, 5 February 2023).</p> "> Figure 2
<p>Representation of S-2 images selected and cropped according to areas of interest: (<b>a</b>) Gulf of Congianus and (<b>b</b>) Venice Lagoon.</p> "> Figure 3
<p>Projection of soundings contained in the trajectories of ICESat-2 beams selected and cleaned for the study areas: (<b>a</b>) Gulf of Congianus and (<b>b</b>) Venice Lagoon.</p> "> Figure 4
<p>MBES bathymetric surveys of (<b>a</b>) Venice Lagoon and (<b>b</b>) Gulf of Congianus. To the left of each image is the graduated scale reflecting the reference depth.</p> "> Figure 5
<p>(<b>a</b>) Geographical distribution of tide gauges inside the Venice Lagoon and (<b>b</b>) the geographical division in two macro areas inside and outside the lagoon, with further subdivisions inside them.</p> "> Figure 6
<p>Example of a profile obtained from the first phase of ICESat-2 data processing, with the photons dataset referenced to ellipsoid WGS84 (<b>blue</b>) and the photons shifted and referenced to the geoid EGM-2008 (<b>green</b>).</p> "> Figure 7
<p>The measured height (blue dots) relative to the geoid was transformed into the water column depth (fuchsia dots) relative to a zero level (yellow line), which represents the shift of the water surface (red line) as a reference level. Zoom-in on the 16–17 m along-track distance of the profile in <a href="#remotesensing-15-02944-f006" class="html-fig">Figure 6</a>.</p> "> Figure 8
<p>Bathymetry points (in purple) corrected by refraction (green dots) and their tide level correction (red dots) relative to a specific date and time, using local tide gauge measurements. The ICESat-2 data were acquired during a lower tide than the reference time, causing an upward shift.</p> "> Figure 9
<p>Example of tide correction applied to the ICESat-2 and MBES data to reference them to the time of S-2 image acquisition.</p> "> Figure 10
<p>The profile obtained from the ATL03_20200114165545_02900602_005_01_gt2r beam at the end of the <span class="html-italic">Data automatic download and preparation</span> phase and after referencing to the geoid EGM-2008. The diagram shows the profile of the emerged land, the waterline, and the seabed, which remains well distinct from the noise points, especially in the more superficial layers. The profile section in rectangle A is zoomed in <a href="#remotesensing-15-02944-f011" class="html-fig">Figure 11</a>.</p> "> Figure 11
<p>The bathymetric points (green dots) extracted automatically, and their resulting depths after the refraction and tide level correction (red dots) relative to a specific date and time, using local tide gauge measurement and local temperature and salinity data (Section A from <a href="#remotesensing-15-02944-f010" class="html-fig">Figure 10</a>).</p> "> Figure 12
<p>Result of the seabed classification process in the Gulf of Congianus. Seabed classes are sand (yellow), rock (grey), and vegetation and other seabed cover (green).</p> "> Figure 13
<p>Calibration results, showing the relationship between the Blue/Green ratio (in green) or the Blue/Red ratio (in red) and the depth of the ICESat-2 calibration point set. (<b>a</b>) Sand, 0–5 m; (<b>b</b>) Rocks, 0–5 m; (<b>c</b>) Sand, 5–10 m; (<b>d</b>) Rocks, 5–10 m. Gulf of Congianus.</p> "> Figure 13 Cont.
<p>Calibration results, showing the relationship between the Blue/Green ratio (in green) or the Blue/Red ratio (in red) and the depth of the ICESat-2 calibration point set. (<b>a</b>) Sand, 0–5 m; (<b>b</b>) Rocks, 0–5 m; (<b>c</b>) Sand, 5–10 m; (<b>d</b>) Rocks, 5–10 m. Gulf of Congianus.</p> "> Figure 14
<p>SDB validation: error scatter plots in different depth ranges, showing the relationship between the depth of the ICESat-2 bathymetric points and the estimated SDB. N is the number of ICESat-2 points used. (<b>a</b>) Sand, 0–5 m; (<b>b</b>) Rocks, 0–5 m; (<b>c</b>) Sand, 5–10 m; (<b>d</b>) Rocks, 5–10 m. Gulf of Congianus.</p> "> Figure 15
<p>SDBs obtained down to 5 m depth using the Blue/Red ratio for sand and rocks and using Blue/Green ratio in the 5–10 m range for sand. No bathymetries were derived for rocky areas in the 5–10 m range.</p> "> Figure 16
<p>BIAS distribution for the Gulf of Congianus.</p> "> Figure 17
<p>Profile obtained from beam ATL03_20200101053635_00840606_005_01_gt3l at the end of phase 1 <span class="html-italic">Data automatic download and preparation</span>, with a sub-section, and after the referencing to the geoid EGM-2008. The main elements of this image are the profile of the hinterland of Venice partially below the current sea level on the left, the Venice Lagoon in the middle, and the open sea with the seabed on the right. The lagoon shows a complex structure of water layers. The profile sections in rectangles A and B are zoomed in <a href="#remotesensing-15-02944-f018" class="html-fig">Figure 18</a> and <a href="#remotesensing-15-02944-f019" class="html-fig">Figure 19</a>.</p> "> Figure 18
<p>(<b>a</b>) Automatically extracted bathymetric points (red dots). The highlighted points (red dots) are not representative of the seabed. (<b>b</b>) Manually extracted bathymetric points (green dots) and their resulting depths after refraction and tidal level correction (red dots) relative to a specific date and time, using local tide gauge measurements and local temperature and salinity data. Section A of <a href="#remotesensing-15-02944-f017" class="html-fig">Figure 17</a> relating to the lagoon area.</p> "> Figure 18 Cont.
<p>(<b>a</b>) Automatically extracted bathymetric points (red dots). The highlighted points (red dots) are not representative of the seabed. (<b>b</b>) Manually extracted bathymetric points (green dots) and their resulting depths after refraction and tidal level correction (red dots) relative to a specific date and time, using local tide gauge measurements and local temperature and salinity data. Section A of <a href="#remotesensing-15-02944-f017" class="html-fig">Figure 17</a> relating to the lagoon area.</p> "> Figure 19
<p>Automatically extracted bathymetric points (green dots) and their resulting depths after refraction and tide level correction (red dots) relative to a specific date and time, using local tide gauge measurements and local temperature and salinity data. Section B from the outer sea in <a href="#remotesensing-15-02944-f017" class="html-fig">Figure 17</a>.</p> "> Figure 20
<p>Result of the seabed classification process in the Venice Lagoon. Classes of the seabed are identified as sand in yellow areas and marine vegetation in green.</p> "> Figure 21
<p>Results of the calibration phase showing the relationship between the Blue/Green ratio (green color) or the Blue/Red ratio (red color) and the depth of the ICESat-2 calibration point sets. (<b>a</b>) Lagoon; (<b>b</b>) Open sea, 0–5 m; (<b>c</b>) Open sea, 5–10 m. Venice Lagoon.</p> "> Figure 22
<p>SDB validation: error scatter plots of the relationship between the depth of the ICESat-2 bathymetric points and the estimated depth (SDB). The black line is the regression line. (<b>a</b>) Lagoon; (<b>b</b>) Open sea, 0–5 m; (<b>c</b>) Open sea, 5–10 m. Venice Lagoon.</p> "> Figure 23
<p>Sentinel-derived bathymetry (SDB) for the Venice Lagoon and the open sea area in front of Venice.</p> "> Figure 24
<p>BIAS distribution for the areas inside and outside the Venice Lagoon.</p> "> Figure 25
<p>Overlapping of ICESat-2 bathymetric points (yellow points) and MBES bathymetric data (the colored area from the range red–blue) and zoom-in of the coastal area with more ICESat-2 points. Sardinia.</p> "> Figure 26
<p>Histogram of the differences in the depth values measured by ICESat-2 and MBES in the Gulf of Congianus.</p> "> Figure 27
<p>ICESat-2 (red points) and MBES (area colored from red to blue) data. Zoom-in of two characteristic areas. Venice Lagoon.</p> "> Figure 28
<p>Bar charts of the differences in the depth values measured with MBES surveys The red dashed line represents the ±0.5 m range, the Total Vertical Uncertainty for the Order 1 Standard of the IHO-S44 Publication. (<b>a</b>) MBES-SDB, Gulf of Congianus, Sand; (<b>b</b>) MBES-SDB, Gulf of Congianus, Rocks; (<b>c</b>) MBES-SDB, Venice, Lagoon; (<b>d</b>) MBES-SDB, Venice, Sea.</p> "> Figure 29
<p>SDB results in the Gulf of Congianus area after a 5 m depth (filter only to rocky seabed areas) is applied for the range of acceptability of vertical uncertainty of IHO standards. On the left are the S-2 images and on the right are the SDB results. (<b>a</b>) Cugnana Gulf, the shallower part of the case study area; (<b>b</b>) a jagged coastal area from the Marinella and Aranci Gulfs.</p> "> Figure 30
<p>SDB results from the Venice Lagoon area, after a 3.5 m depth is filter applied for the range of acceptability of vertical uncertainty of IHO standards.</p> "> Figure 31
<p>SDB results from the Venice Lagoon area, after a 3.5 m depth filter is applied for the range of acceptability of vertical uncertainty of IHO standards. On the left are the S-2 images, and on the right are the SDB results: (<b>a</b>) the northern part of the Venice Lagoon, (<b>b</b>) the lagoon area near Venice Town, (<b>c</b>) the lagoon area near Malamocco, (<b>d</b>) the lagoon area near Chioggia Town.</p> ">
Abstract
:1. Introduction
2. Areas of Operation
3. Materials and Methods
3.1. Data Collection
3.1.1. Copernicus S-2 Imagery
3.1.2. NASA ICESat-2 Datasets
3.1.3. In Situ Datasets
3.2. ICESat-2 Bathymetry Extraction Algorithm
3.2.1. Data Automatic Download and Preparation
3.2.2. Waterline Detection and Water Column Depth Identification
3.2.3. Noise Cleaning and Seabed Identification
3.2.4. Refraction Correction
3.3. Tide Correction
3.4. S-2-Satellite-Derived Bathymetry Algorithm
3.4.1. Pre-Processing
3.4.2. Seabed Classification
3.4.3. Data Processing
4. Results
4.1. Congianus
4.1.1. ICESat-2 Bathymetry
4.1.2. S-2 Seabed Classification
4.1.3. Regression Analysis
4.1.4. SDB Validation and Error Analysis
4.1.5. SDB and BIAS Maps
4.2. Venice Lagoon
4.2.1. ICESat-2 Bathymetry
4.2.2. S-2 Seabed Classification
4.2.3. Regression Analysis
4.2.4. SDB Validation and Error Analysis
4.2.5. SDB and BIAS Map
5. Discussion
5.1. Comparing ICESat-2 and MBES Points in the Two AOOs
5.2. Comparing SDB with MBES in the Two AOOs
5.3. SDB Method Analysis and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Criteria | Order 2 | Order 1b | Order 1a | Special Order | Exclusive Order |
---|---|---|---|---|---|
Depth THU [m] + [% of Depth] | 20 m + 10% of depth | 5 m + 5% of depth | 5 m + 5% of depth | 2 m | 1 m |
Depth TVU * (a) [m] and (b) | a = 1.0 m b = 0.023 | a = 0.5 m b = 0.013 | a = 0.5 m b = 0.013 | a = 0.25 m b = 0.0075 | a = 0.15 m b = 0.0075 |
Feature Detection [m] or [% of Depth] | Not Specified | Not Specified | Cubic features >2 m, in depths down to 40 m; 10% of depth beyond 40 m | Cubic features >1 m | Cubic features >0.5 m |
References
- OECD. Ocean Shipping and Shipbuilding. Available online: https://www.oecd.org/ocean/topics/ocean-shipping/ (accessed on 1 March 2023).
- UNCTAD. Review of Maritime Transport. 2022. Available online: https://unctad.org/topic/transport-and-trade-logistics/review-of-maritime-transport (accessed on 1 March 2023).
- Pascual, M. Cables and Pipelines. 16 February 2018. Available online: https://maritime-spatial-planning.ec.europa.eu/sites/default/files/sector/pdf/mspforbluegrowth_sectorfiche_cablespipelines.pdf (accessed on 27 February 2023).
- Díaz, H.; Guedes Soares, C. Review of the current status, technology and future trends of offshore wind farms. Ocean. Eng. 2020, 209, 107381. [Google Scholar] [CrossRef]
- NOAA. Introduction to Multibeam—NOAA Hydro Training 2009. Available online: https://slideplayer.com/slide/5974610/ (accessed on 28 January 2023).
- Khomsin, D.G.P.; Saputro, I. Comparative analysis of singlebeam and multibeam echosounder bathymetric data. IOP Conf. Mater. Sci. Eng. 2021, 1052, 012015. [Google Scholar] [CrossRef]
- IHO. S-44 IHO Standards for Hydrographic Surveys—Ed. 6. 2020. Available online: https://iho.int/uploads/user/pubs/standards/s-44/S-44_Edition_6.0.0_EN.pdf (accessed on 28 February 2023).
- Parrish, C.E.; Magruder, L.A.; Neuenschwander, A.L.; Forfinski-Sarkozi, N.; Alonzo, M.; Jasinski, M. Validation of ICESat-2 ATLAS Bathymetry and Analysis of ATLAS’s Bathymetric Mapping Performance. Remote Sens. 2019, 11, 1634. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Chen, Y.; Le, Y.; Zhang, D.; Yan, Q.; Dong, Y.; Han, W.; Wang, L. Nearshore Bathymetry Based on ICESat-2 and Multispectral Images: Comparison between Sentinel-2, Landsat-8, and Testing Gaofen-2. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2449–2462. [Google Scholar] [CrossRef]
- Cahalane, C.; Magee, A.; Monteys, X.; Casal, G.; Hanafin, J.; Harris, P. A comparison of Landsat 8, RapidEye and Pleiades products for improving empirical predictions of satellite-derived bathymetry. Remote Sens. Environ. 2019, 233, 111414. [Google Scholar] [CrossRef]
- Poursanidis, D.; Traganos, D.; Reinartz, P.; Chrysoulakis, N. On the use of Sentinel-2 for coastal habitat mapping and satellite-derived bathymetry estimation using downscaled coastal aerosol band. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 58–70. [Google Scholar] [CrossRef]
- Casal, G.; Monteys, X.; Hedley, J.; Harris, P.; Cahalane, C.; McCarthy, T. Assessment of empirical algorithms for bathymetry extraction using Sentinel-2 data. Int. J. Remote Sens. 2019, 40, 2855–2879. [Google Scholar] [CrossRef]
- Casal, G.; Harris, P.; Monteys, X.; Hedley, J.; Cahalane, C.; McCarthy, T. Understanding satellite-derived bathymetry using Sentinel 2 imagery and spatial prediction models. GISci. Remote Sens. 2020, 57, 271–286. [Google Scholar] [CrossRef]
- Hochberg, E.; Andrefouet, S.; Tyler, M. Sea surface correction of high spatial resolution Ikonos images to improve bottom mapping in near-shore environments. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1724–1729. [Google Scholar] [CrossRef]
- Ohlendorf, S.; Müller, A.; Heege, T.; Cerdeira-Estrada, S.; Kobryn, H.T. Bathymetry mapping and sea floor classification using multispectral satellite data and standardized physics based data processing. In Proceedings of the Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2011, Prague, Czech Republic, 21–22 September 2011; Volume 8175, pp. 33–41. [Google Scholar]
- Lubac, B.; Burvingt, O.; Nicolae Lerma, A.; Sénéchal, N. Performance and Uncertainty of Satellite-Derived Bathymetry Empirical Approaches in an Energetic Coastal Environment. Remote Sens. 2022, 14, 2350. [Google Scholar] [CrossRef]
- Caballero, I.; Stumpf, R.P. Retrieval of nearshore bathymetry from Sentinel-2A and 2B satellites in South Florida coastal waters. Estuar. Coast. Shelf Sci. 2019, 226, 106277. [Google Scholar] [CrossRef]
- Brando, V.E.; Anstee, J.M.; Wettle, M.; Dekker, A.G.; Phinn, S.R.; Roelfsema, C. A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data. Remote Sens. Environ. 2009, 113, 755–770. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Holderied, K.; Sinclair, M. Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol. Oceanogr. 2003, 48, 547–556. [Google Scholar] [CrossRef]
- Lyzenga, D.; Malinas, N.; Tanis, F. Multispectral bathymetry using a simple physically based algorithm. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2251–2259. [Google Scholar] [CrossRef]
- Xie, C.; Chen, P.; Pan, D.; Zhong, C.; Zhang, Z. Improved Filtering of ICESat-2 Lidar Data for Nearshore Bathymetry Estimation Using Sentinel-2 Imagery. Remote Sens. 2021, 13, 4303. [Google Scholar] [CrossRef]
- Apicella, L.; De Martino, M.; Ferrando, I.; Quarati, A.; Federici, B. Deriving Coastal Shallow Bathymetry from Sentinel 2-, Aircraft- and UAV-Derived Orthophotos: A Case Study in Ligurian Marinas. J. Mar. Sci. Eng. 2023, 11, 671. [Google Scholar] [CrossRef]
- Apicella, L.; De Martino, M.; Quarati, A. Copernicus User Uptake: From Data to Applications. ISPRS Int. J. Geo-Inf. 2022, 11, 121. [Google Scholar] [CrossRef]
- European Comission. General Presentations of the Copernicus Programme—What is the Copernicus Programme? 2016. Available online: https://www.youtube.com/playlist?list=PLNxdHvTE74JztZhhmA5A5GylDcIKPT0fD (accessed on 30 May 2023).
- ESA. Mission Objectives. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2/mission-objectives (accessed on 8 January 2023).
- Drusch, M.; Gascon, F. GMES Sentinel-2 Mission Requirement Document; ESA: Paris, France, 2010. [Google Scholar]
- ESA. Sentinel-2. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 8 January 2023).
- Forfinski-Sarkozi, N.A.; Parrish, C. Analysis of MABEL Bathymetry in Keweenaw Bay and Implications for ICESat-2 ATLAS. Remote Sens. 2016, 8, 772. [Google Scholar] [CrossRef] [Green Version]
- Jasinski, M.F.; Stoll, J.D.; Cook, W.B.; Ondrusek, M.; Stengel, E.; Brunt, K. Inland and Near-Shore Water Profiles Derived from the High-Altitude Multiple Altimeter Beam Experimental Lidar (MABEL). J. Coast. Res. 2016, 76, 44–55. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, N.; Liu, Z.; Yang, B.; Yang, F.; Wang, X.H.; Li, S. Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets. Remote Sens. Environ. 2020, 250, 112047. [Google Scholar] [CrossRef]
- Thomas, N.; Pertiwi, A.P.; Traganos, D.; Lagomasino, D.; Poursanidis, D.; Moreno, S.; Fatoyinbo, L. Space-borne cloud-native satellite-derived Bathymetry (SDB) models using ICESat-2 and sentinel-2. Geophys. Res. Lett. 2021, 48, e2020GL092170. [Google Scholar] [CrossRef]
- Albright, A.; Glennie, C. Nearshore bathymetry from fusion of Sentinel-2 and ICESat-2 observations. IEEE Geosci. Remote Sens. Lett. 2020, 18, 900–904. [Google Scholar] [CrossRef]
- Babbel, B.J.; Parrish, C.E.; Magruder, L.A. ICESat-2 elevation retrievals in support of satellite-derived bathymetry for global science applications. Geophys. Res. Lett. 2021, 48, e2020GL090629. [Google Scholar] [CrossRef]
- Ranndal, H.; Sigaard Christiansen, P.; Kliving, P.; Baltazar Andersen, O.; Nielsen, K. Evaluation of a Statistical Approach for Extracting Shallow Water Bathymetry Signals from ICESat-2 ATL03 Photon Data. Remote Sens. 2021, 13, 3548. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L.; Gege, P. Physics-based Bathymetry and Water Quality Retrieval Using PlanetScope Imagery: Impacts of 2020 COVID-19 Lockdown and 2019 Extreme Flood in the Venice Lagoon. Remote Sens. 2020, 12, 2381. [Google Scholar] [CrossRef]
- Gianinetto, M.; Lechi, G. A DNA algorithm for the batimetric mapping in the lagoon of Venice using QuickBird multispectral data. In Proceedings of the 20th ISPRS Congress, Geo-Imagery Bridging Continents Volume: The International Archive of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Istanbul, Turkey, 12–23 July 2004; pp. 94–99. [Google Scholar]
- EO-Portal. ICESat-2. Available online: https://www.eoportal.org/satellite-missions/icesat-2 (accessed on 7 February 2023).
- NASA. ICESat-2, How it Works. Available online: https://icesat-2.gsfc.nasa.gov/how-it-works (accessed on 7 February 2023).
- NASA. ICESat-2, Technical Specs. Available online: https://icesat-2.gsfc.nasa.gov/science/specs (accessed on 7 February 2023).
- Neumann, A.; Brenner, D.H. ATLAS/ICESat-2 L2A Global Geolocated Photon Data, Version 2; NSIDC: Boulder, CO, USA, 2018. [Google Scholar] [CrossRef]
- Magruder, L.A.; Brunt, K.M. Performance Analysis of Airborne Photon- Counting Lidar Data in Preparation for the ICESat-2 Mission. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2911–2918. [Google Scholar] [CrossRef]
- NSIDC. Open Access NASA Data for Your Research and Studies. 2022. Available online: https://nsidc.org/data/data-programs/nsidc-daac (accessed on 7 February 2023).
- The icepyx Developers. icepyx: Python Tools for Obtaining and Working with ICESat-2 data. 2023. Available online: https://github.com/icesat2py/icepyx (accessed on 30 May 2023).
- Austin, R.W.; Halikas, G. The Index of Refraction of Seawater; Scripps Institution of Oceanography: San Diego, CA, USA, 1976. [Google Scholar]
- Sentinel Application Platform (SNAP). ESA. Brockmann Consult, Skywatch, Sensar and C-S. Available online: https://step.esa.int/main/toolboxes/snap (accessed on 30 May 2023).
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation. 2022. Available online: http://qgis.osgeo.org (accessed on 30 May 2023).
- GRASS Development Team. Geographic Resources Analysis Support System (GRASS) Software, Version 8.2. Open Source Geospatial Foundation. 2022. Available online: https://grass.osgeo.org (accessed on 30 May 2023).
- RUS Service. Nearshore Bathymetry Derivation with Sentinel-2. 2021. Available online: https://eo4society.esa.int/wp-content/uploads/2022/01/COAS01_BathymetryDerivation_Greece.pdf (accessed on 27 February 2023).
- Ivajnšič, D.; Kaligarič, M.; Fantinato, E.; Del Vecchio, S.; Buffa, G. The fate of coastal habitats in the Venice Lagoon from the sea level rise perspective. Appl. Geogr. 2018, 98, 34–42. [Google Scholar] [CrossRef] [Green Version]
- D’Alpaos, A.; Finotello, A.; Tognin, D.; Carniello, L.; Marani, M. The Venice Lagoon foreshadows the fate of coastal systems under climate change and increasing human pressure. In Proceedings of the GU General Assembly 2023, Vienna, Austria, 24–28 April 2023. EGU23-10125. [Google Scholar] [CrossRef]
- Regione del Veneto. Emergenza Crisi Idrica. 2022. Available online: https://www.regione.veneto.it/web/gestioni-commissariali-e-post-emergenze/crisiidrica2022/ (accessed on 3 March 2023).
- World Economic Forum. Italy Faces New Drought Alert as Venice Canals Run Dry. 2023. Available online: https://www.weforum.org/agenda/2023/02/heres-how-italys-dry-canals-in-venice-spell-trouble-for-this-year (accessed on 3 March 2023).
Site | Gulf of Congianus, Sardinia |
---|---|
Latitude | 40°58.8′N–41°8.4′N |
Longitude | 009°30.6′E–009°40.2′E |
ICESat-2 Track-beams (Tot.: 7) | ATL03_20200114165545_02900602_005_01—gt2r |
ATL03_20200114165545_02900602_005_01—gt3r | |
ATL03_20200613215507_12120706_005_01—gt1l | |
ATL03_20200613215507_12120706_005_01—gt2l | |
ATL03_20200613215507_12120706_005_01—gt3l | |
ATL03_20200912173455_12120806_005_01—gt1l | |
ATL03_20201111023110_07320902_005_01—gt1l | |
S-2 | 22 June 2020–S2B_MSIL2A |
In situ data | MBES Kongsberg EM 2040C (1 September 2016–31 October 2016) |
Oceanographic Data—Copernicus Marine Service | |
Tidal Data—Tide Gauge IIM in La Maddalena |
Site | Venice Lagoon, Veneto | |
---|---|---|
Latitude | 45°10.8′N–45°36′N | |
Longitude | 12°7.8′E–12°42′E | |
ICESat-2 Track-beams (Tot.: 73) | ATL03_20181128122207_09300102_005_01 | All beams |
ATL03_20181205002119_10290106_005_01 | 1l-3l-3r | |
ATL03_20190227080209_09300202_005_01 | 1r-2l-2r | |
ATL03_20190305200120_10290206_005_01 | 1l-2l-3l-3r | |
ATL03_20190730004527_04880402_005_01 | 3l-3r | |
ATL03_20190827232133_09300402_005_01 | 1l-2l | |
ATL03_20190903112043_10290406_005_01 | 1l | |
ATL03_20190925215739_13720402_005_01 | 1l-1r-2r | |
ATL03_20191225173726_13720502_005_01 | 1l | |
ATL03_20200101053635_00840606_005_01 | 2l-2r-3l-3r | |
ATL03_20200503234405_05870706_005_01 | 1l-1r | |
ATL03_20200601222008_10290706_005_01 | 1l-1r-2l-2r-3l | |
ATL03_20200630205609_00840806_005_01 | 3l-3r | |
ATL03_20200727072442_04880802_005_01 | All beams | |
ATL03_20201124014034_09300902_005_01 | 1l-1r-2r-3r | |
ATL03_20201130133944_10290906_005_01 | 1l-1r-2r-3r | |
ATL03_20210124224424_04881002_005_01 | 1l-3l-3r | |
ATL03_20210301091935_10291006_005_01 | 2l-2r-3l-3r | |
ATL03_20210629033531_00841206_005_01 | 3r | |
ATL03_20210927231529_00841306_005_01 | All beams | |
ATL03_20211024094406_04881302_005_01 | 2l-2r-3l-3r | |
S-2 | 19 March 2020 - S2A_MSIL2A | |
In situ data | Soundings from the IIM BathyDataBase (2013–2019) | |
Oceanographic data—ARPA (Venice) and Copernicus Marine Service | ||
Tidal data—ISPRA (Venice) |
Blue/Red | Blue/Green | ||||
---|---|---|---|---|---|
Sand | Rocks | Sand | Rocks | ||
0–5 m | N | 25 | 149 | 25 | 150 |
RMSE | 0.46 | 1.13 | 0.65 | 1.79 | |
MAE | 0.37 | 0.82 | 0.45 | 1.26 | |
BIAS_AVG | −0.01 | −0.04 | −0.03 | 0.04 | |
BIAS_STD | 0.47 | 1.14 | 0.67 | 1.79 | |
5–10 m | N | 40 | 12 | 40 | 12 |
RMSE | 5.71 | 4.59 | 0.78 | 4.95 | |
MAE | 4.89 | 3.38 | 0.61 | 4.17 | |
BIAS_AVG | 1.73 | 1.90 | 0.06 | 0.23 | |
BIAS_STD | 5.56 | 4.48 | 0.79 | 5.21 |
Blue/Red | Blue/Green | ||
---|---|---|---|
Lagoon | |||
0–3.5 m | N | 12,615 | 12,615 |
RMSE | 0.63 | 2.05 | |
MAE | 0.38 | 1.52 | |
BIAS_AVG | −0.04 | −0.05 | |
BIAS_STD | 0.63 | 2.05 | |
Open sea | |||
0–5 m | N | 776 | 776 |
RMSE | 0.48 | 1.10 | |
MAE | 0.37 | 0.74 | |
BIAS_AVG | −0.07 | −0.13 | |
BIAS_STD | 0.47 | 1.09 | |
5–10 m | N | 654 | 654 |
RMSE | 5.47 | 1.25 | |
MAE | 4.65 | 0.99 | |
BIAS_AVG | 0.31 | 0.03 | |
BIAS_STD | 5.48 | 1.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernardis, M.; Nardini, R.; Apicella, L.; Demarte, M.; Guideri, M.; Federici, B.; Quarati, A.; De Martino, M. Use of ICEsat-2 and Sentinel-2 Open Data for the Derivation of Bathymetry in Shallow Waters: Case Studies in Sardinia and in the Venice Lagoon. Remote Sens. 2023, 15, 2944. https://doi.org/10.3390/rs15112944
Bernardis M, Nardini R, Apicella L, Demarte M, Guideri M, Federici B, Quarati A, De Martino M. Use of ICEsat-2 and Sentinel-2 Open Data for the Derivation of Bathymetry in Shallow Waters: Case Studies in Sardinia and in the Venice Lagoon. Remote Sensing. 2023; 15(11):2944. https://doi.org/10.3390/rs15112944
Chicago/Turabian StyleBernardis, Massimo, Roberto Nardini, Lorenza Apicella, Maurizio Demarte, Matteo Guideri, Bianca Federici, Alfonso Quarati, and Monica De Martino. 2023. "Use of ICEsat-2 and Sentinel-2 Open Data for the Derivation of Bathymetry in Shallow Waters: Case Studies in Sardinia and in the Venice Lagoon" Remote Sensing 15, no. 11: 2944. https://doi.org/10.3390/rs15112944
APA StyleBernardis, M., Nardini, R., Apicella, L., Demarte, M., Guideri, M., Federici, B., Quarati, A., & De Martino, M. (2023). Use of ICEsat-2 and Sentinel-2 Open Data for the Derivation of Bathymetry in Shallow Waters: Case Studies in Sardinia and in the Venice Lagoon. Remote Sensing, 15(11), 2944. https://doi.org/10.3390/rs15112944