Preliminary Results of the Three-Dimensional Plasma Drift Velocity at East Asian Low-Latitudes Observed by the Sanya Incoherent Scattering Radar (SYISR)
<p>Three kinds of beam configurations and the corresponding LOS velocity and its error: (<b>a</b>) beams scanning in zonal plane marked in red (elevation angle larger than 50°) and green (elevation angle smaller than 50°) dots, blue hexagon marked the scanning range with non-grate lobe; (<b>b</b>) the zonal distribution of line-of-sight velocity at 12:30 LT (daytime) and (<b>c</b>) its error; (<b>d</b>) the zonal distribution of line-of-sight velocity at 21:24 LT (nighttime) and (<b>e</b>) its error; (<b>f</b>–<b>j</b>) showing the same as (<b>a</b>–<b>e</b>) but for meridional plane; (<b>k</b>) beams scanning in both zonal and meridional planes; (<b>l</b>–<b>o</b>) the zonal distribution of line-of-sight velocity and its error by beams scanning in zonal plane part; (<b>p</b>–<b>s</b>) showing the same as (<b>l</b>–<b>o</b>) but by beams scanning in meridional plane part. Location of the zenith beam marked in the bottom of (<b>a</b>,<b>f</b>,<b>k</b>).</p> "> Figure 2
<p>(<b>a</b>–<b>l</b>) the local time distribution of error of LOS velocity at 300 km altitude four under different azimuth angle bins from left to right panels and three different elevation angle bins from top to bottom panels; (<b>m</b>) the distribution of errors of LOS velocity with elevation angle and range during 12:00 LT to 15:00 LT.</p> "> Figure 3
<p>The distribution of vector plasma drift: (<b>a</b>) the component of perpendicular magnetic field to eastward, (<b>c</b>) the component of perpendicular magnetic field to northward, (<b>e</b>) the component of antiparallel magnetic field and its error (<b>b</b>,<b>d</b>,<b>f</b>) with altitude and local time on 27 March 2021.</p> "> Figure 4
<p>The distribution of vector plasma drift in meridian (<b>a</b>,<b>b</b>) and zonal (<b>c</b>,<b>d</b>) planes at daytime and nighttime on 27 March 2021. Gray dotted lines marked the magnetic lines in (<b>a</b>,<b>b</b>).</p> "> Figure 5
<p>The local time variation of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">v</mi> </mrow> <mrow> <mi mathvariant="normal">p</mi> <mi mathvariant="normal">n</mi> </mrow> </msub> </mrow> </semantics></math> at 300 km altitude during 11–28 May (gray dots) as well as its median value (red dots).</p> "> Figure 6
<p>(<b>a</b>) The local time variation of EIA TEC from GIM TEC in the longitude of 110°E, (<b>b</b>) its differences with median value and (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">v</mi> </mrow> <mrow> <mi mathvariant="normal">p</mi> <mi mathvariant="normal">n</mi> </mrow> </msub> </mrow> </semantics></math> at altitude of 300 km (blank areas meaning missing data).</p> "> Figure 7
<p>(<b>a</b>) The local time variation of monthly median pattern of EIA calculated from GIM TEC in the longitude of 110°E, (<b>b</b>) the local time variation of correlation coefficient between <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">v</mi> </mrow> <mrow> <mi mathvariant="normal">p</mi> <mi mathvariant="normal">n</mi> </mrow> </msub> </mrow> </semantics></math> and CTR, the number of data points to calculate the correlation coefficient marked in red bars.</p> "> Figure 8
<p>(<b>a</b>) The local time variation of E<sub>y</sub> (blue), IMF B<sub>z</sub> (green) and Dst (red) index on 18 May, (<b>b</b>) the local time variation of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">v</mi> </mrow> <mrow> <mi mathvariant="normal">p</mi> <mi mathvariant="normal">n</mi> </mrow> </msub> </mrow> </semantics></math> at 300 km altitude on 18 May (red) as well as its median value (black), (<b>c</b>) the distribution of the peak electron density height derived from SYISR electron density profile on 18 May (red) as well as its median value (black). The absence of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">v</mi> </mrow> <mrow> <mi mathvariant="normal">p</mi> <mi mathvariant="normal">n</mi> </mrow> </msub> </mrow> </semantics></math> and electron density after ~14:10 LT on 18 May because of the experiment interruption.</p> "> Figure 9
<p>The distribution of relative electron density and plasma drift (white arrows) at 12:30 LT on 18 May in meridian plane, median pattern of plasma drift showed with black arrows. Gray dotted lines marked the magnetic lines.</p> ">
Abstract
:1. Introduction
2. Experiment Setting and Line-of-Sight Velocity
3. Inversion Method and Process
4. Result and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cai, X.; Qian, L.; Wang, W.; McInerney, J.M.; Liu, H.-L.; Eastes, R.W. Hemispherically asymmetric evolution of nighttime ionospheric equatorial ionization anomaly in the American longitude sector. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030706. [Google Scholar] [CrossRef]
- Tulasi Ram, S.; Su, S.Y.; Liu, C.H. FORMOSAT-3/COSMIC observations of seasonal and longitudinal variations of equatorial ionization anomaly and its interhemispheric asymmetry during the solar minimum period. J. Geophys. Res. 2009, 114, A06311. [Google Scholar] [CrossRef]
- Sripathi, S.; Sreekumar, S.; Banola, S. Characteristics of equatorial and low-latitude plasma irregularities as investigated using a meridional chain of radio experiments over India. J. Geophys. Res. Space Phys. 2018, 123, 4364–4380. [Google Scholar] [CrossRef]
- Karan, D.K.; Daniell, R.E.; England, S.L.; Martinis, C.R.; Eastes, R.W.; Burns, A.G.; McClintock, W.E. First zonal drift velocity measurement of equatorial plasma bubbles (EPBs) from a geostationary orbit using GOLD data. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028173. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, R.; Liu, L.; Kuai, J.; Yang, N.; Zhong, J.; Wan, X.; Liu, J. Persistent eastward EEJ enhancement during the geomagnetic storm recovery phases. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030258. [Google Scholar] [CrossRef]
- Reinisch, B.W.; Scali, J.L.; Haines, D.M. Ionospheric drift measurements with ionosondes. Ann. Geophys. 1998, 41, 695–702. [Google Scholar] [CrossRef]
- Coley, W.R.; Heelis, R.A. Low-latitude zonal and vertical ion drifts seen by DE 2. J. Geophys. Res. 1989, 94, 6751–6761. [Google Scholar] [CrossRef]
- Hysell, D.L.; Michhue, G.; Nicolls, M.J.; Heinselman, C.J.; Larsen, M.F. Assessing auroral electric field variance with coherent and incoherent scatter radar. J. Atmos. Sol. Terr. Phys. 2009, 71, 697–707. [Google Scholar] [CrossRef]
- Heelis, R.A.; Hanson, W.B. Measurements of Thermal Ion Drift Velocity and Temperature Using Planar Sensors. In Measurement Techniques in Space Plasmas: Particles; Pfaff, R.F., Borovsky, J., Young, D.T., Eds.; Wiley: Hoboken, NJ, USA, 1998. [Google Scholar] [CrossRef]
- Yeh, H.-C.; Su, S.Y.; Yeh, Y.C.; Wu, J.M.; Heelis, R.A.; Holt, B.J. Scientific Mission of the IPEI payload onboard ROCSAT-1. Terr. Atmos. Ocean. Sci. 1999, 19–42. [Google Scholar] [CrossRef]
- Immel, T.J.; England, S.L.; Mende, S.B.; Heelis, R.A.; Englert, C.R.; Edelstein, J.; Frey, H.U.; Korpela, E.J.; Taylor, E.R.; Craig, W.W.; et al. The ionospheric connection explorer mission: Mission goals and design. Space Sci. Rev. 2018, 214, 13. [Google Scholar] [CrossRef]
- Woodman, R.F.; Chau, J.L.; Ilma, R.R. Comparison of ionosonde and incoherent scatter. drift measurements at the magnetic equator. Geophys. Res. Lett. 2006, 33, L01103. [Google Scholar] [CrossRef]
- Evans, J.V. Theory and practice of ionosphere study by Thomson scatter radar. Proc. IEEE 1969, 57, 496–530. [Google Scholar] [CrossRef]
- Fejer, B.G.; Maute, A. Equatorial Ionospheric Electrodynamics. In Ionosphere Dynamics and Applications; Wiley: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Fejer, B.G. Low latitude electrodynamic plasma drifts: A review. J. Atmos. Terr. Phys. 1991, 53, 677–693. [Google Scholar] [CrossRef]
- Scherliess, L.; Fejer, B.G. Radar and satellite global equatorial F region vertical drift model. J. Geophys. Res. 1999, 104, 6829–6842. [Google Scholar] [CrossRef]
- Fejer, B.G.; Souza, J.R.; Santos, A.S.; Perreira, A.E.C. Climatology of F region zonal drifts over Jicamarca. J. Geophys. Res. 2005, 110, A12310. [Google Scholar] [CrossRef]
- Nicolls, M.J.; Cosgrove, R.; Bahcivan, H. Estimating the vector electric field using monostatic, multibeam incoherent scatter radar measurements. Radio Sci. 2014, 49, 1124–1139. [Google Scholar] [CrossRef]
- Yue, X.; Wan, W.; Ning, B.; Jin, L.; Ding, F.; Zhao, B.; Zeng, L.; Ke, C.; Deng, X.; Wang, J.; et al. Development of the Sanya incoherent scatter radar and preliminary results. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030451. [Google Scholar] [CrossRef]
- Hao, H.; Zhao, B.; Wan, W.; Yue, X.; Ding, F.; Ning, B.; Zeng, L.; Jin, Y.; Wang, J.; Zhang, N. Initial Ionospheric Ion Line Results and Evaluation by Sanya Incoherent Scatter Radar (SYISR). J. Geophys. Res. Space Phys. 2022, 127, e2022JA030563. [Google Scholar] [CrossRef]
- Heinselman, C.J.; Nicolls, M.J. A Bayesian approach to electric field and E-region neutral wind estimation with the Poker Flat Advanced Modular Incoherent Scatter Radar. Radio Sci. 2008, 43, RS5013. [Google Scholar] [CrossRef]
- Fejer, B.G.; de Paula, E.R.; González, S.A.; Woodman, R.F. Average vertical and zonal F region plasma drifts over Jicamarca. J. Geophys. Res. 1991, 96, 13901–13906. [Google Scholar] [CrossRef]
- Balan, N.; Liu, L.B.; Le, H.J. A brief review of equatorial ionization anomaly and ionospheric irregularities. Earth Planet. Phys. 2018, 2, 257–275. [Google Scholar] [CrossRef]
- Luo, W.; Li, H.; Xiong, C.; Zhu, Z.; Yu, X.; Chang, S. Linkage of equatorial ionization anomaly with the day-to-day occurrence of postsunset irregularities and scintillation in low-latitude region around 110° E. Space Weather 2022, 20, e2022SW003192. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, Y.; Wang, N.; Hernandez-Pajares, M.; Huo, X. SHPTS: Towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions. J. Geod. 2014, 89, 331–345. [Google Scholar] [CrossRef]
- Xiong, C.; Lühr, H.; Ma, S.Y. The magnitude and inter-hemispheric asymmetry of equatorial ionization anomaly-based on CHAMP and GRACE observations. J. Atmos. Sol. Terr. Phys. 2013, 105–106, 160–169. [Google Scholar] [CrossRef]
Scanning Mode | Time (Days) | Number of Beams | Minimum Angle of Elevation (°) | Interval Angle of Elevation (°) |
---|---|---|---|---|
NS | 5 | 41 | 40 | 2.50 |
16 | 41 | 25 | 3.25 | |
EW | 1 | 41 | 25 | 3.25 |
NS + EW | 1 | 41 | 45 | 4.50 |
1 | 41 | 55 | 3.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Zhao, B.; Hao, H.; Yue, X.; Ding, F.; Ning, B.; Zeng, L.; Li, Z. Preliminary Results of the Three-Dimensional Plasma Drift Velocity at East Asian Low-Latitudes Observed by the Sanya Incoherent Scattering Radar (SYISR). Remote Sens. 2023, 15, 2842. https://doi.org/10.3390/rs15112842
Jin Y, Zhao B, Hao H, Yue X, Ding F, Ning B, Zeng L, Li Z. Preliminary Results of the Three-Dimensional Plasma Drift Velocity at East Asian Low-Latitudes Observed by the Sanya Incoherent Scattering Radar (SYISR). Remote Sensing. 2023; 15(11):2842. https://doi.org/10.3390/rs15112842
Chicago/Turabian StyleJin, Yuyan, Biqiang Zhao, Honglian Hao, Xinan Yue, Feng Ding, Baiqi Ning, Lingqi Zeng, and Zishen Li. 2023. "Preliminary Results of the Three-Dimensional Plasma Drift Velocity at East Asian Low-Latitudes Observed by the Sanya Incoherent Scattering Radar (SYISR)" Remote Sensing 15, no. 11: 2842. https://doi.org/10.3390/rs15112842
APA StyleJin, Y., Zhao, B., Hao, H., Yue, X., Ding, F., Ning, B., Zeng, L., & Li, Z. (2023). Preliminary Results of the Three-Dimensional Plasma Drift Velocity at East Asian Low-Latitudes Observed by the Sanya Incoherent Scattering Radar (SYISR). Remote Sensing, 15(11), 2842. https://doi.org/10.3390/rs15112842