Interferometric Calibration Based on a Constrained Evolutionary Algorithm without Ground Control Points for a Tiangong-2 Interferometric Imaging Radar Altimeter
<p>InIRA topographic mapping geometric relationship.</p> "> Figure 2
<p>The sensitivity of interferometric parameters errors to elevation. The influence of the interferometric parameter errors on the elevation at the center of the image shown as an approximately linear trend. Such a linear relationship exists in the entire range direction. (<b>a</b>) The influence of baseline length error on elevation; (<b>b</b>) the influence of baseline inclination error on elevation; (<b>c</b>) the influence of interferometric phase error on elevation.</p> "> Figure 3
<p>Comparison of convergence performance of optimization functions with different population number <span class="html-italic">N</span>. The population number <span class="html-italic">N</span> is set to 10, 40, and 80, respectively.</p> "> Figure 4
<p>The flowchart of the InIRA interferometric calibration algorithm. The orange part is our improvement of the original WOA evolutionary algorithm.</p> "> Figure 5
<p>The study area considered in this paper.</p> "> Figure 6
<p>Interference processing processes of the InIRA data. (<b>a</b>) Amplitude image; (<b>b</b>) interferogram image; (<b>c</b>) phase diagram image obtained based on the minimum cost flow unwrapping; (<b>d</b>) coherence image of the master and slave SAR images.</p> "> Figure 6 Cont.
<p>Interference processing processes of the InIRA data. (<b>a</b>) Amplitude image; (<b>b</b>) interferogram image; (<b>c</b>) phase diagram image obtained based on the minimum cost flow unwrapping; (<b>d</b>) coherence image of the master and slave SAR images.</p> "> Figure 7
<p>The distribution of external control points on land (orange points in the green dashed box) and elevation constraint points on the lake (orange points in the blue dashed box).</p> "> Figure 8
<p>Comparison flowchart of interferometric calibration methods. The green flowchart represents the reference DEM method, the blue flowchart represents the flat ground method, the yellow flowchart represents the flat earth phase method, and the pink flowchart represents the method we proposed.</p> "> Figure 9
<p>The study area and the selected Sentinel-3 data for evaluation, acquired on 5 October and 1 November 2017. The image on the (<b>right</b>) is an enlarged view of the verification points in the (<b>left</b>) image.</p> "> Figure 10
<p>Distribution of elevation values and the elevation errors at the validation points. (<b>a</b>) Elevation values generated by the four methods and the validation elevation values; (<b>b</b>) elevation errors of the four methods at the validation points.</p> "> Figure 11
<p>Four different calibration point placement on the lake. The color of the calibration points is orange, and the calibration points on the land and the calibration points on the lake are located in the green and blue dashed boxes, respectively. (<b>a</b>) Near-range single-range direction placement; (<b>b</b>) far-range single-range direction placement; (<b>c</b>) near-range multi-range direction placement; (<b>d</b>) far-range multi-range direction placement.</p> "> Figure 12
<p>Elevation values generated by the four different placement and the elevation errors at the validation points. (<b>a</b>) Elevation values generated by the four different placements and the validation elevation values; (<b>b</b>) Elevation errors of the four different placements at the validation points.</p> ">
Abstract
:1. Introduction
2. InIRA Three-Dimensional Reconstruction and Elevation Error Analysis
2.1. InIRA Three-Dimensional Reconstruction Model
2.2. InIRA Elevation Error Analysis
3. Optimization Calibration Method Based on Inland Water Body
3.1. InIRA Optimization Calibration Model
3.2. Whale Optimization Algorithm (WOA)
3.2.1. Encirclement Search Mode
3.2.2. Random Search Mode
3.2.3. Spiral Search Mode
3.3. WOA Interferometric Calibration Algorithm Based on Adaptive Penalty Function
4. Experiments and Analysis
4.1. Interferometric Data Processing in the Experimental Area
4.2. Experimental Design and Procedures
4.3. Results and Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, L.L.; Cazenave, A. Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Tapley, B.D.; Born, G.H.; Parke, M.E. The Seasat altimeter data and its accuracy assessment. J. Geophys. Res. Ocean. 1982, 87, 3179–3188. [Google Scholar] [CrossRef]
- Cheney, R.E.; Douglas, B.C.; Miller, L. Evaluation of Geosat altimeter data with application to tropical Pacific sea level variability. J. Geophys. Res. Ocean. 1989, 94, 4737–4747. [Google Scholar] [CrossRef]
- Biancamaria, S.; Schaedele, T.; Blumstein, D.; Frappart, F.; Boy, F.; Desjonquères, J.D.; Pottier, C.; Blarel, F.; Niño, F. Validation of Jason-3 tracking modes over French rivers. Remote Sens. Environ. 2018, 209, 77–89. [Google Scholar] [CrossRef]
- Bonnefond, P.; Laurain, O.; Exertier, P.; Boy, F.; Guinle, T.; Picot, N.; Labroue, S.; Raynal, M.; Donlon, C.; Féménias, P.; et al. Calibrating the SAR SSH of Sentinel-3A and CryoSat-2 over the Corsica Facilities. Remote Sens. 2018, 10, 92. [Google Scholar] [CrossRef]
- Kong, W.; Chong, J.; Tan, H. Performance analysis of ocean surface topography altimetry by Ku-band near-nadir interferometric SAR. Remote Sens. 2017, 9, 933. [Google Scholar] [CrossRef]
- Chaudhary, A.; Agarwal, N.; Sharma, R.; Ojha, S.P.; Kumar, R. Nadir altimetry Vis-à-Vis swath altimetry: A study in the context of SWOT mission for the Bay of Bengal. Remote Sens. Environ. 2021, 252, 112120. [Google Scholar] [CrossRef]
- Xu, B.; Li, Z.; Zhu, Y.; Shi, J.; Feng, G. SAR interferometric baseline refinement based on flat-earth phase without a ground control point. Remote Sens. 2020, 12, 233. [Google Scholar] [CrossRef]
- Otten, M.; Dow, J. Envisat Precise Orbit Determination. In Proceedings of the Envisat & ERS Symposium, Salzburg, Austria, 6–10 September 2005; Volume 572. [Google Scholar]
- Scharroo, R.; Visser, P. Precise orbit determination and gravity field improvement for the ERS satellites. J. Geophys. Res. Ocean. 1998, 103, 8113–8127. [Google Scholar] [CrossRef]
- Small, D.; Werner, C.; Nuesch, D. Baseline modelling for ERS-1 SAR interferometry. In Proceedings of the IGARSS’93-IEEE International Geoscience and Remote Sensing Symposium, Tokyo, Japan, 18–21 August 1993; pp. 1204–1206. [Google Scholar]
- Joughin, I.; Winebrenner, D.; Fahnestock, M.; Kwok, R.; Krabill, W. Measurement of ice-sheet topography using satellite-radar interferometry. J. Glaciol. 1996, 42, 10–22. [Google Scholar] [CrossRef]
- Kimura, H.; Todo, M. Baseline estimation using ground points for interferometric SAR. In Proceedings of the IGARSS’97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing-A Scientific Vision for Sustainable Development, Singapore, 3–8 August 1997; Volume 1, pp. 442–444. [Google Scholar]
- Liu, G. Monitoring of Ground Deformations with Radar Interferometry; Surveying and Mapping Press: Austin, TX, USA, 2006. [Google Scholar]
- Li, X.; Guo, H.; Liao, J.; Wang, C.; Fan, D. Baseline estimation of interferometric SAR based on fast fourier transform. Acta Geod. Cartogr. Sin. 2003, 32, 70–72. [Google Scholar]
- Dall, J.; Christensen, E.L. Interferometric calibration with natural distributed targets. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; Volume 1, pp. 170–172. [Google Scholar]
- Zhang, W.; Xiang, M.; Wu, Y. Interferometric SAR calibration with area calibration site of same height. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; Volume 4, pp. IV-554–IV-557. [Google Scholar]
- Mao, Y.; Xiang, M.; Han, Y.; Gao, W. Weighted joint calibration for interferometric SAR. J. Syst. Eng. Electron. 2013, 24, 761–771. [Google Scholar] [CrossRef]
- Jun, F.; Tao, L.; Xiaoqing, Z.; Qianfu, C.; Xiang, Z.; Jing, L. Interferometric calibration method for spaceborne SAR based on independent parameter decomposition. Acta Geod. Cartogr. Sin. 2019, 48, 737. [Google Scholar]
- González, J.H.; Bachmann, M.; Krieger, G.; Fiedler, H. Development of the TanDEM-X calibration concept: Analysis of systematic errors. IEEE Trans. Geosci. Remote Sens. 2009, 48, 716–726. [Google Scholar] [CrossRef]
- Adeli, H.; Cheng, N.T. Integrated genetic algorithm for optimization of space structures. J. Aerosp. Eng. 1993, 6, 315–328. [Google Scholar] [CrossRef]
- Guo, P.; Wang, X.; Han, Y. The enhanced genetic algorithms for the optimization design. In Proceedings of the 2010 3rd International Conference on Biomedical Engineering and Informatics, Yantai, China, 16–18 October 2010; Volume 7, pp. 2990–2994. [Google Scholar]
- Wang, Q. Using genetic algorithms to optimise model parameters. Environ. Model. Softw. 1997, 12, 27–34. [Google Scholar] [CrossRef]
- Beck, A.; Ben-Tal, A.; Teboulle, M. Finding a global optimal solution for a quadratically constrained fractional quadratic problem with applications to the regularized total least squares. SIAM J. Matrix Anal. Appl. 2006, 28, 425–445. [Google Scholar] [CrossRef]
- Gravelle, H.; Rees, R. Microeconomics; Pearson Education: London, UK, 2004. [Google Scholar]
- Tang, W.; Huang, L.; Liu, A. An Optimized Design of the Interferometric Calibration Method Based on Genetic Algorithm. In Proceedings of the 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Xiamen, China, 26–29 November 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Vikhar, P.A. Evolutionary algorithms: A critical review and its future prospects. In Proceedings of the 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), Jalgaon, India, 22–24 December 2016; pp. 261–265. [Google Scholar]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Gharehchopogh, F.S.; Gholizadeh, H. A comprehensive survey: Whale Optimization Algorithm and its applications. Swarm Evol. Comput. 2019, 48, 1–24. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, G.; Ding, X.; Li, Z. Monitoring earth surface deformations with InSAR technology: Principles and some critical issues. J. Geospat. Eng. 2000, 2, 3–22. [Google Scholar]
- Ma, F.; Sun, X.; Zhang, F.; Zhou, Y.; Li, H.C. What Catch Your Attention in SAR Images: Saliency Detection Based on Soft-Superpixel Lacunarity Cue. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–17. [Google Scholar] [CrossRef]
- Yun, Y.; Zeng, Q.; Jiao, J.; Liang, C.; Wang, Q.; Zhou, X.; Yan, D. Calibration of airborne interferometric SAR data by external dem without artificial calibrators. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 4501–4504. [Google Scholar]
- Yu, Y.; Jin, G.; Xiong, X.; Tong, C.; Zhang, G. SAR elevation control point extraction combining multistrategy ATLAS data preference and image matching. J. Radars 2023, 12, 64. [Google Scholar]
- Zhang, X.; Jiang, L.; Kittel, C.M.; Yao, Z.; Nielsen, K.; Liu, Z.; Wang, R.; Liu, J.; Andersen, O.B.; Bauer-Gottwein, P. On the performance of Sentinel-3 altimetry over new reservoirs: Approaches to determine onboard a priori elevation. Geophys. Res. Lett. 2020, 47, e2020GL088770. [Google Scholar] [CrossRef]
- Jiang, L.; Nielsen, K.; Dinardo, S.; Andersen, O.B.; Bauer-Gottwein, P. Evaluation of Sentinel-3 SRAL SAR altimetry over Chinese rivers. Remote Sens. Environ. 2020, 237, 111546. [Google Scholar] [CrossRef]
- Aguilar, F.J.; Agüera, F.; Aguilar, M.A.; Carvajal, F. Effects of terrain morphology, sampling density, and interpolation methods on grid DEM accuracy. Photogramm. Eng. Remote Sens. 2005, 71, 805–816. [Google Scholar] [CrossRef]
[m] | B [m] | [] | [m] | Incidence Range [] |
---|---|---|---|---|
0.0221 | 2.3m | 5 | 392,081.51 | 3∼8 |
Method | Number of Checkpoints | VAR [m] | Average Error [m] | RMSE [m] |
---|---|---|---|---|
Reference DEM | 48 | 30.86 | −29.68 | 30.18 |
Flat ground | 48 | 0.95 | 18.31 | 18.34 |
Flat-earth phase | 48 | 4.76 | −0.97 | 2.36 |
Proposed | 48 | 0.95 | 0.31 | 1.01 |
Placement | Number of Checkpoints | VAR [m] | Average Error [m] | RMSE [m] |
---|---|---|---|---|
Near-range single-range | 48 | 30.86 | −29.68 | 30.19 |
Far-range single-range | 48 | 19.25 | 30.15 | 30.46 |
Near-range multi-range | 48 | 0.95 | 0.31 | 1.01 |
Far-range multi-range | 48 | 0.95 | 0.31 | 1.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Tan, H.; Wang, B.; Xiang, M.; Wang, K.; Wang, Y. Interferometric Calibration Based on a Constrained Evolutionary Algorithm without Ground Control Points for a Tiangong-2 Interferometric Imaging Radar Altimeter. Remote Sens. 2023, 15, 4789. https://doi.org/10.3390/rs15194789
Li L, Tan H, Wang B, Xiang M, Wang K, Wang Y. Interferometric Calibration Based on a Constrained Evolutionary Algorithm without Ground Control Points for a Tiangong-2 Interferometric Imaging Radar Altimeter. Remote Sensing. 2023; 15(19):4789. https://doi.org/10.3390/rs15194789
Chicago/Turabian StyleLi, Lanyu, Hong Tan, Bingnan Wang, Maosheng Xiang, Ke Wang, and Yachao Wang. 2023. "Interferometric Calibration Based on a Constrained Evolutionary Algorithm without Ground Control Points for a Tiangong-2 Interferometric Imaging Radar Altimeter" Remote Sensing 15, no. 19: 4789. https://doi.org/10.3390/rs15194789